
A Methodology for Building a Fault

Diagnoser for Hybrid Systems ⋆

Jorge Vento, Vicenç Puig and Ramon Sarrate

Advanced Control Systems (SAC)
Universitat Politècnica de Catalunya (UPC)

Rambla Sant Nebridi, 11, 08222 Terrassa, Spain
(e-mail: {jorge.isaac.vento,vicenc.puig,ramon.sarrate}@upc.edu).

Abstract: In this paper, a design methodology for building diagnosers for hybrid systems
is proposed. The design methodology uses as a starting point a hybrid automaton model to
represent the hybrid system behaviour by means of the interaction of continuous dynamics and
discrete events. Then, a hybrid fault diagnoser is designed using the methodology described in
this paper and implemented by means of a discrete event system which carries out the mode
recognition and diagnostic tasks, both based on residuals generated using models. Both tasks
interact each other since the diagnosis module adapts according to the current mode of the
hybrid system. The mode recognition task involves detecting and identifying the mode change by
determining the set of residuals that are consistent with the current mode of the hybrid system.
On the other hand, the diagnostic task involves detecting and isolating faults by identifying the
fault that can explain the set of residuals that are inconsistent. A section of the Barcelona sewer
network is used as application case study to illustrate the proposed fault diagnosis for hybrid
systems.

Keywords: Fault detection and isolation, hybrid systems, diagnosers.

1. INTRODUCTION

Most real systems are on-line controlled and supervised by
means of automatic computer-based control systems. But,
they are subject to faults that can appear in the plant
components, sensors and actuators. Many of these systems
present a behavior that changes with the operating mode
that can be modeled as a hybrid system. Thus, fault
diagnosis using models, mostly developed for non-hybrid
systems, should be extended to handle the hybrid system
behavior.

Recently, in the literature, model based techniques have
been proposed to diagnose hybrid systems (Travé-Massuyès
et al., 2008; Bayoudh, 2009; Cocquempot et al., 2004;
Daigle, 2008). The continuous behavior in each mode is
described using differential equations. These techniques
extend, in some way, existing model-based approaches for
non-hybrid systems being able to handle the continuous
and discrete-event system behaviors. In hybrid systems,
the diagnoser should be parameterized as a function of the
current mode. Thus, the proposed diagnoser should be able
to evaluate on-line the behaviour of the hybrid system and
to detect and isolate the mode and the faults. In (Travé-
Massuyès et al., 2008; Bayoudh, 2009), the discrete-event
behavior is modeled as a set of discrete modes, that can
include nominal or faulty modes, and transitions between
them are governed by events. Following the methodology
proposed by (Sampath et al., 1995), a diagnoser combining

⋆ This work was supported in part by the grant CICYT HYFA
DPI2008-01996 and WATMAN DPI2009-13744 of Spanish Ministry
of Education.

the discrete and the continuous dynamics is built by means
of a behaviour automaton. In (Cocquempot et al., 2004),
an algorithm to diagnose multi-mode systems is presented.
The hybrid systemmode is recognized by checking the con-
sistency of the whole set of ARRs generated, considering
all system modes, but a discrete-event diagnoser is not
built. In a previous work (Vento et al., 2010), the authors
propose a fault detection and isolation approach for hybrid
systems based on identifying inconsistency between the
measured and the estimated system behavior by means
of analytical redundancy relations (ARR), extending the
approach suggested by (Cocquempot et al., 2004). The
hybrid system is described by means of a hybrid automa-
ton model whereas the diagnoser is implemented as a
discrete-event system by means of a finite state machine.
The events handled by the diagnoser are generated by
the residuals that are activated when a fault or a mode
change occurs. An algorithm able to distinguish between
both types of events is proposed. The set of residuals of the
current mode are used to detect and isolate faults while
the set of the residuals of the successor modes are used to
identify a mode change.

The approach in (Vento et al., 2010) is different from
(Travé-Massuyès et al., 2008; Bayoudh, 2009) since it
considers faults that do not cause a change of mode, and
the mode recognition uses the information provided by the
residuals in a different approach.

In this paper, a general methodology for designing and
building a diagnoser for hybrid systems is proposed fol-
lowing the diagnoser approach proposed in (Vento et al.,
2010). Thus, this paper extends the results presented in



(Vento et al., 2010; Travé-Massuyès et al., 2008; Bayoudh,
2009; Cocquempot et al., 2004) by proposing a methodol-
ogy to build in an automatic way the hybrid diagnoser by
identifying the set of states and events from the hybrid au-
tomaton and the set of residuals. Finally, the proposed al-
gorithm is applied to a section of the Barcelona sewer net-
work, which allows to assess its validity and performance.
The hybrid diagnoser generated by the proposed method-
ology is implemented using SIMULINK/STATEFLOW.

The structure of this paper is the following. In Section 2,
an hybrid model description is presented. In Section 3, an
overview of the technique proposed to diagnose faults in
hybrid systems is presented. In Section 4, the methodology
to build a hybrid diagnoser is presented as well as its
implementation. In Section 5, an application case study
based on the sewer network of the Barcelona city is used
to assess the validity of the proposed approach. Finally,
conclusions are presented in Section 6.

2. HYBRID SYSTEM MODELING

Let us consider that the model of the hybrid system to
be diagnosed can be described by the following hybrid
automaton HA =< Q, X, U, Y, F,G,H,Σ, T >, where:

• Q = {qi : i ∈ M} is a set of discrete states and
q0 is the initial discrete state. The finite set M =
{1, 2, · · · ,m} represents the nominal and anticipated
fault modes of the system.
• X ⊆ ℜnx defines a discrete-time continuous state
space. x(k) ∈ X is the discrete-time state vector at
sample k and x0 the initial state vector.
• U ∈ ℜnu defines a discrete-time continuous input
space. u(k) ∈ U is the discrete-time continuous input
vector.
• Y ∈ ℜny defines a discrete-time continuous output
space. y(k) ∈ Y is the discrete-time continuous
output vector.
• F is a set of faults.
• G = {gi : i ∈ M} defines a set of discrete-time state
affine functions for each mode i ∈M :

x(k + 1)=Aix(k) +Biu(k) + Fi
xf(k) +Gi

x (1)

where Ai ∈ ℜnx×nx, Bi ∈ ℜnx×nu and Gi
x ∈ ℜ

nx×1

are the state matrices in mode i, and f(k) ∈ ℜnf

represents the faults in the system, with Fi
x ∈ ℜ

nx×nf

being the fault distribution matrix in mode i.
• H = {hi : i ∈M} defines a set of discrete-time output
affine functions for each mode i ∈M :

y(k) =Cix(k) +Diu(k) + Fi
yf(k) +Gi

y (2)

where Ci ∈ ℜny×nx, Di ∈ ℜny×nu and Gi
y ∈ ℜ

ny×1

are the output matrices in mode i,Fi
y ∈ ℜ

ny×nf being
the fault distribution matrix in mode i.
• Σ = Σs∪Σc∪Σf is a set of events. Spontaneous mode
switching events (Σs), input events (Σc) and fault
events Σf are considered. Each spontaneous event
σs ⊆ Σs defines when the state vector intersects a
jump surface Sσs

= {x(k) ∈ X : sσs
(x(k)) = 0}, with

sσs
being a linear switching condition.

• Σ can be partitioned as Σo∪Σuo where Σo represents
the set of observable events and Σuo represents the

set of unobservable events. Σf ⊆ Σuo, Σc ⊆ Σo and
Σs can be contained in both partitions.
• T : Q × Σ → Q defines a discrete state transition
function.

This hybrid automaton model results from an adaptation
of (Lygeros et al., 2003), by introducing faults and events.
Other alternative descriptions can be found in the liter-
ature (Cocquempot et al., 2004; Travé-Massuyès et al.,
2008; Bayoudh, 2009)

Alternatively, the model given by (1) and (2) can be
expressed in input-output form using the q-operator (or
delay operator) and considering zero initial conditions as
follows

y(k) = Mi(q−1)u(k) +Gi
f (q

−1)f(k) +Qi(q−1) (3)

where:

Mi(q−1) =Ci(qI−Ai)−1Bi +Di

Gi
f (q

−1) =Ci(qI−Ai)−1Fi
x + Fi

y

Qi
y(q

−1) =Gi
y

q

q − 1

Qi(q−1) =Qi
x(q

−1) +Qi
y(q

−1)

Qi
x(q

−1) =Ci(qI−Ai)−1Gi
x

q

q − 1

3. OVERVIEW OF THE HYBRID SYSTEM
DIAGNOSIS APPROACH

The hybrid system diagnosis approach used in this paper
is an extension of the classic FDI approach where the
estimated behaviour of the system obtained from a non-
faulty model is compared with the real behaviour available
through sensor measurements (see (Vento et al., 2010;
Mezyani, 2007)). In particular, the FDI algorithm for
hybrid systems takes into account which is the current
operation mode i to adapt the model to generate the
residuals. The residual expression is given by:

ri(k) = y(k)−Gi(q−1)u(k)−Hi(q−1)y(k)−Qi
e (4)

where Gi(q−1), Hi(q−1) and Qi
e correspond with the

estimated output for the mode i. These matrices can be
calculated for instant, using observers, or state predictors
(Meseguer et al., 2008).

The fault diagnoser in hybrid systems can be organized
in two modules: a fault diagnosis module and a mode
recognition module.

3.1 Fault diagnosis module

The diagnosis task is implemented through the fault de-
tection and isolation submodules (see Fig. 1).

Fault detection. This submodule performs the fault
detection task by monitoring whether the set of residuals
(4) belonging to the current mode become inconsistent.
The fault effect form of these residuals is obtained by
replacing (3) in (4) (Meseguer et al., 2008) leading to:



REAL SYSTEM

f(k)

y(k)u(k)

IDENTIFICATION

MODE

DETECTION

ISOLATION

MODE

FAULT

FAULT

DETECTION CHANGE

MODE

FAULT

Fig. 1. Conceptual block diagram of hybrid system FDI module

ri(k) = Si
f (q

−1)f(k) (5)

where:

Si
f (q

−1) = (I−Hi(q−1))Gi
f (q

−1)

The residual expression (5) allows the study of how a fault
(without disturbances or noise) affects a given residual
through the fault sensitivity matrix defined as follows

Si
f (q

−1) =
∂ri(k)

∂f
(6)

Thereby, using this residual expression it is possible to
determine the fault signature matrix FSMi corresponding
to mode i. The theoretical binary fault signature can be
determined in automatic way by means of the residual
fault sensitivity (6). In particular, given the fault sen-
sitivity of the jth residual with respect to the lth fault
denoted as sif (j, l) (i.e, the element (j, l) of the sensitivity

matrix Si
f ), the element (j, l) of the fault signature matrix

is determined as follows:

fsmi(j, l) =

{

1 if sif (j, l)(q
−1) 6= 0

0 if sif (j, l)(q
−1) = 0

(7)

i.e., if the jth residual in mode i depends on the lth

fault it is coded as a 1 or otherwise as a 0. Since in a
hybrid system, residuals change with the mode, the fault
sensitivity depends on the mode as well as the theoretical
fault signature matrix. Consequently, fault detectability 1

and isolability 2 properties also depend on the system
mode.

1 The lth fault is detectable if there exist some residual that is
sensitive to it, i.e., the lth column in the fault signature matrix should
contain at least an element equal to 1
2 The fault lth is isolable if the lth column in the fault signature
matrix is different from the rest of the columns

Fault isolation. The isolation submodule is responsible
of identifying which is the fault that is present in the
system by checking the observed fault signature against
the theoretical fault signature matrix. For example, let
the theoretical fault signature matrix corresponding to
mode i be given by Table 1. Then, the logic of the fault
isolation module corresponding to mode i will be based on
the following binary test:

f1 = si1 ∧ si2 ∧ si3

f2 = si1 ∧ si2 ∧ si3

It compares the observed inconsistent residual with the
inconsistency values that should have been observed in
case some of the faults considered in the fault signature
matrix had been occurred.

Binary codification Faults
Signature f1 f2

r
i(k) ri

1
0 1

ri
2

0 0
ri
3

1 0

Table 1. Fault signature matrix corresponding
to mode i

3.2 Mode recognition module

The mode recognition task is implemented through the
mode change detection and recognition submodules (see
Fig. 1).

Mode change detection. The aim of this submodule is to
detect when a mode transition occurs in the hybrid system.
A model change can be inferred when an inconsistency
in the set of residuals of the current mode i is detected
while at the same time the set of residuals corresponding
to another mode j is proved to be consistent. When
the system is in mode j, y(k) can be obtained through
equation (3). In a fault-less situation, results in y(k) =

Mj(q−1)u(k). Replacing this expression in (4) leads to:

ri/j(k) =
(

I−Hi(q−1)
)

(Mj(q−1)u(k) +Qj(q−1))

−Gi(q−1)u(k)−Qi
e(q

−1)
(8)

As long as the mode assumed by the diagnoser coin-
cides with the current mode of the system (i.e., i = j)
ri(k) = 0. On the other hand, when i 6= j means that
the mode assumed by the diagnoser is different from the
current mode of the system. Then, ri(k) 6= 0 as long
as both modes are discernable. Two modes i and j are
non-discernable if (I −Hi(q−1))Mj(q−1) = Gi(q−1) and
(

I−Hi(q−1)
)

Qj(q−1) = Qi
e(q

−1). The notion of non-
discernability was first introduced in (Cocquempot et al.,
2004), where necessary and sufficient conditions were pro-
vided for the parity space method.

Considering the whole set of residuals that can be gen-
erated for all system operating points, a mode signature
matrix MSMi for each mode i can be automatically gen-
erated. This table contains as many rows the residuals cor-
responding to the current mode and its successor modes,



and as many columns as the current mode and its suc-
cessor modes). Let Ki,j

1
(q−1) =

(

I−Hi(q−1)
)

Mj(q−1)−

Gi(q−1) andK
i,j
2
(q−1) =

(

I−Hi(q−1)
)

Qj(q−1)−Qi
e(q

−1).
Then, the residual expression can be rewritten as:

ri/j(k) = K
i,j
1
(q−1)u(k) +K

i,j
2
(q−1) (9)

Therefore, each element of the MSMi is given by:

msmi(rjl ) =

{

0 if Ki,j
1
(q−1) = 0 ∧K

i,j
2
(q−1) = 0

1 otherwise
(10)

where i is the current mode and j is the successor mode
and l is the residual component.

Mode identification. Once a mode transition has been
detected, the new mode should be identified using the
mode signature matrix. To identify the reached mode,
the current observed signature is compared against the
state signatures of the successor states. When a set of
residuals of a given mode j is proved to be consistent with
the observed signature, it is assumed that a change from
the current mode to a new state j has been occurred. To
illustrate this procedure, let us consider, as an example,
the state signature matrix presented in Table 2. Once
a mode change is detected (because e.g. r1 6= 0), the
following set of consistency tests are evaluated using the
residuals of the successor modes.

q2 = s2
1
∧ s2

2
∧ s2

3

q3 = s3
1
∧ s3

2
∧ s3

3

The new current mode i will be the mode which satisfies
ri(k) = 0. In this example, the new current mode could be
q2 or q3, depending on wether the set of residuals that are
consistent is r2 or r3. The values denoted by ∗ in the table
can be 0 or 1 depending on wether the condition given
by (10) is satisfied. But, these values are not taken into
account to track the state sequence.

Current mode Successor modes
q1 q2 q3

r1 r1
1

0 ∗ ∗

r1
2

0 ∗ ∗

r1
3

0 ∗ ∗

r2 r2
1

∗ 0 ∗

r2
2

∗ 0 ∗

r2
3

∗ 0 ∗

r3 r3
1

∗ ∗ 0
r3
2

∗ ∗ 0
r3
3

∗ ∗ 0

Table 2. Mode signature matrix corresponding
to mode 1

3.3 Hybrid diagnoser

A diagnoser for hybrid systems based on the conceptual
scheme of Fig. 1 integrates all previous modules to track
the mode change sequence and detect and isolate faults.
Algorithm 1 briefly describes the logic used by the diag-
noser to reason based on the observed signature and the
fault and mode signature tables.

Algorithm 1 Hybrid Diagnoser

1: i← 0
2: repeat
3: Evaluate ri(k) according to (8)
4: until ri(k) 6= 0
5: for all j such that qj ∈ {q : ∀σ ∈ Σ, q = T (qi, σ)} do
6: Evaluate rj(k) according to (8)
7: if rj(k) = 0 then
8: print Transition from mode i to j
9: i← j

10: goto line 2
11: end if
12: end for
13: for all Fault in the system, f ∈ F do

14: if ri(k) = fsmi(•, f) then
15: print Fault f occurred

16: STOP
17: end if
18: end for
19: print Unknown event

The key idea is to check the consistency of the residuals of
the current mode until an inconsistency is detected. Then,
once the residuals of the current mode are proved to be
inconsistent, two hypothesis should be verified: a mode
change or a fault occurrence. First, it is assumed that a
mode change has occurred so that the diagnoser waits until
any of the residual sets corresponding to a successor mode
is proved to be consistent and identify the new mode. If,
after some time window, this consistency is not proved,
then a fault is assumed and identified by comparing the
observed fault signature against the ones stored in the fault
signature matrix corresponding to the current mode.

4. FAULT DIAGNOSER BUILDING METHODOLOGY

The goal of the diagnoser is to detect the occurrence of
faults or mode changes in a system with hybrid behavior.
According to the preceding section, one way to accomplish
this is by monitoring residuals. However, the events defined
on the hybrid automaton model can also be useful in this
task. Thus, the diagnoser is described by a finite state
machine that accepts events generated from the hybrid
automaton as well as from residuals.

An algorithm to build a diagnoser for hybrid systems is
presented in this section. The procedure to construct the
diagnoser consists in two steps. The first step involves
obtaining a discrete-event abstraction of the hybrid au-
tomaton model of the system. In the second step, the
theory of (Sampath et al., 1995) is applied to this discrete-
event abstraction to obtain the fault diagnoser. The first
step involves the abstraction of the hybrid automaton
model into a finite state machine with observable and
unobservable events using the information provided by
the theoretical fault and mode signature matrices. A finite
state machine that reflects the normal and failed behavior
of the system is built. The model describes admissible
sequences of observable or unobservable events. Typically,
observable events include commands issued by the opera-
tor while unobservable events include failure events.

In (Sampath et al., 1995), a methodology to design fault
diagnosers for discrete-event systems was developed. The



diagnoser design methodology produces a state machine
that only accepts observable events, and binds a diagnosis
statement to every state.

The discrete-event abstraction model will be called Be-
havior Automaton (this is an extension of the behavior
automaton introduced in (Travé-Massuyès et al., 2008),
adding faulty modes without dynamic in the abstraction
of the hybrid model). The Behavior Automaton is defined
as follows:

BA =< QBA, q
0,ΣBA, TBA >

• QBA is a set of discrete states, which can be divided
into the following types:
· States related to nominal operation modes in the
hybrid automaton model.
· Faulty states related to the occurrence of a fault
in a mode of the hybrid automaton.
· States related to the detection of a fault in a mode
of the hybrid automaton.
· Intermediate states between two successor nom-
inal modes of the hybrid automaton that are
discernable.

• q0 is the initial state that coincides with the initial
nominal mode of the hybrid automaton.
• ΣBA is the set of discrete events, which can be
classified into the following categories:
· Observable and unobservable events defined in
the hybrid automaton. Observable events include
all input events and, possibly, some spontaneous
events. Unobservable events include, possibly, the
rest of spontaneous events.
· Observable events related to detectable faults.
These are generated based on the fault signature
matrix.
· Unobservable events signaling the occurrence of
a fault.
· Observable events related to a discernable mode
switching. These are generated based on the
mode signature matrix.

• TBA : QBA × ΣBA → QBA is a partial transition
function, defined by Algorithm 2.

The fault and mode signature matrices play an important
role in the diagnoser and behavior automaton due to the
fact that they provide information about fault detectabil-
ity and isolability properties, as well as discernability be-
tween nominal successor modes.

The algorithm is developed based on the following three
assumptions:

• It is assumed that a mode change and a fault do not
occur at the same time instant.
• The residual dynamics have time to stabilize between
two consecutive mode switchings.
• A mode change is not possible after a fault has
occurred.

Once a fault has been detected, the diagnoser stops and it
is not possible to detect further mode changes. It must be
stated that the algorithm has been designed for the single
fault case.

5. APPLICATION CASE STUDY

To illustrate the methodology, a small part of the
Barcelona sewer network will be used. Fig. 2 shows the
model of this part of the Barcelona network using the vir-
tual tank modeling approach (Ocampo and Puigs, 2009).
This approach is based on decomposing the network into
catchments that are modeled as a tank 3 . Then, the mass
balance conservation law is applied to this catchment
(tank).

qd0

q01

qd1

P19

P16

P20

q12

q13

q23

L39

L41

L80

L16

q03

L47

qd3

T0

T1

T2

T3

Fig. 2. Sewer network scheme

The network shown in Fig. 2 is composed of 3 virtual tanks
(T0, T1 and T3), 1 real tank (T2) and 3 control gates.
4 output sensors measure the water level (L39, L41, L47

and L16) and 3 input sensors measure the rain intensity
(P19, P16 and P20). The flows denoted by qd0, qd1 and
qd3 represent the overflow in virtual tanks T0, T1 and T3,
respectively. A hybrid automaton will be used to model
such behaviour.

5.1 Hybrid model

For this particular example, the hybrid automaton de-
scribing the sewer network is shown in Fig. 3. There are
8 discrete states. The state variables are the volumes of
the virtual tanks. The input is the rain intensity and
the output is the level of the tanks. The volume is not
measured so events are unobservable

The set of possible faults F is divided into output sen-
sor faults {fL39

, fL41
, fL47

, fL16
} and input sensor faults

{fP19
, fP16

, fP20
}.

5.2 Diagnoser building

The diagnoser is built applying the methodology explained
in Section 4. A set of 4 residuals are designed for each
mode based on structural analysis (Blanke et al., 2006).

Then, the theoretical binary matrices, FSMi and MSMi,
3 At any given time, the stored volume in a virtual tank represents
the amount of water inside the mains of the corresponding catch-
ment.



T0 WO
T1 WO
T3 WO

T0 O
T1 WO

T3 WO

T0 WO
T1 O

T3 WO

T0 O

T1 O
T3 WO

T0 WO
T2 WO
T3 O

T0 O

T1 WO
T3 O

T0 WO
T1 O
T3 O

T0 O

T1 O

T3 O

1 2

3 4

5 6

7 8

v3 >= v3

v3 >= v3

v3 >= v3

v3 >= v3

v
1
>
=

v
1

v
1
>
=

v
1

v
1
>
=

v
1

v
1
>
=

v
1

v0 >= v0

v0 >= v0

v0 >= v0

v0 >= v0

q
in

1
<

q
o
u
t
1

qin0 < qout0

qin0 < qout0
qin0 < qout0

qin0 < qout0

qin3 < qout3

qin3 < qout3

qin3 < qout3

qin3 < qout3

q
in

1
<

q
o
u
t
1

q
in

1
<

q
o
u
t
1

q
in

1
<

q
o
u
t
1

Fig. 3. Hybrid automata for the sewer network

are obtained using the approach explained in Section 3.
Table 3 and 4 present MSM1 and FSM1 respectively,
corresponding to mode q1. In total, there would be 8
tables, one for each mode.

Nominal Successors

q1 q2 q3 q5

r1
1

0 ∗ ∗ ∗

r1
2

0 ∗ ∗ ∗

r1
3

0 ∗ ∗ ∗

r1
4

0 ∗ ∗ ∗

r2
1

∗ 0 ∗ ∗

r2
2

∗ 0 ∗ ∗

r2
3

∗ 0 ∗ ∗

r2
4

∗ 0 ∗ ∗

r3
1

∗ ∗ 0 ∗

r3
2

∗ ∗ 0 ∗

r3
3

∗ ∗ 0 ∗

r3
4

∗ ∗ 0 ∗

r5
1

∗ ∗ ∗ 0

r5
2

∗ ∗ ∗ 0

r5
3

∗ ∗ ∗ 0

r5
4

∗ ∗ ∗ 0

Table 3. Mode signature matrix MSM1 for
mode q1

Nominal Faults

q1 fL39 fL41 fL47 fL16 fP19 fP16 fP20

r1
1

0 1 0 0 0 1 0 0

r1
2

0 1 1 0 0 0 1 0

r1
3

0 0 1 1 0 0 0 0

r1
4

0 1 1 1 1 0 0 1

Table 4. Fault signature matrix FSM1 for
mode q1

MSMi is used to abstract the mode switchings in a set
of events, whereas FSMi is used to abstract detectable
fault occurrences in a set of another events. Both set of
events are incorporated to the behaviour automaton along
with the events of the hybrid automaton applying the
steps of the Algorithm 2. FSM1 shows that all faults are
detectable. Furthermore, all faults can be isolated except,
fL16

and fP20
, since they have the same fault signature.

The information provided by MSM1 shows mode q1 and
their successors are discernable since all have a different
mode signature.

σu12

σ
u
13

σ
u
1
5

π
1
5

π
13

π12

σfL41

σ f
L
3
9

σ
f
L
4
7

σ
f
P
1
9

σ
f
P

1
6

σ
f
P
2
0

σfL
1
6

π
1 f
L
1
6

π
1

fP20

π 1
f
P
1
9

π1

f
L47

π1

fL41

π1

f
L39

π
1

f P
1
6

1 2

3

5

Fig. 4. A part of the behaviour automaton corresponding
to nominal mode q1

A part of the behaviour automaton that corresponds to
mode q1 is shown in Fig. 4. Leaving from the initial state
q1, 7 successor faulty states are defined (states in black
color), that correspond to every input and output sensor
fault. For every faulty state, there is one unobservable
event denoted by σfP19

, σfP16
, σfP20

, σfL39
, σfL41

, σfL47
,

and σfL16
(see step 14 in Algorithm 2). For every fault

isolability set, there is 1 detectable faulty state (states in
dashed line). There are 6 detectable faulty states since
fL16

and fP20
belong to the same fault isolability set. These

states are related to events πfL39
, πfL41

, πfL47
, πfP19

, πfP 16
,

πfP20
and πfL16

. Events πfL16
and πfP20

are equivalent (see
step 15 in Algorithm 2).

The nominal successor modes of q1 are q2, q3 and q5. The
corresponding events in the hybrid automaton (σu12, σu13

and σu15) are unobservable and mode q1 and their suc-
cessors are discernable, according to MSM1. Therefore,
an intermediate state (states in solid line) between q1 and
their successor mode are defined. The first transition is
related to an unobservable event defined in the hybrid
automaton (step 26 in Algorithm 2). Then, according to
MSM1, the second transition to the nominal successor
mode is bind to an observable event denoted by π12, π13

and π15. From the behaviour automaton, it can be seen
that the detectability and isolability properties depend on
the current mode qi

Then, applying (Sampath et al., 1995) the resulting diag-
noser is obtained (see Fig. 5).

The resulting diagnoser was implemented in STATE-
FLOW to validate the methodology. A SIMULINK model
was implemented that contains the different modules to
track the state sequence of the system and diagnose the
possible faults.

5.3 Application to fault scenarios

A simulation scenario including a fault in sensor L41 is
presented to validate the diagnoser operation. Fig. 6 shows
how the diagnoser tracks the state and the detectable
faults. The state sequence estimated by the diagnoser is
{q1, q3, q7, q5}. Initially, neither tank is in overflow. Then,



π
1
5

π
1
3

π12π
1

f
L
1
6

π 1
f
P
1
9π 1
fL47

π1

fL41

π
1
fL

3
9

π
1 f
P
1
6

1N

2N

3N

5N

1 fL16

1 fP20

1 fP16

1 fP19

1 fL47

1 fL41

1 fL39 π
5
1

π21

π
3
1

Fig. 5. A part of the diagnoser for the sewer network
including the 4 tanks

in the mode q3, T1 is in overflow while later T3 and T1

are in overflow in mode q7. Finally, T1 leaves the overflow
situation but T3 continues in overflow and then the fault
appears.

Fig. 6a and 6b show the set of residuals r5 and r7

corresponding to modes q5 and q7. While the system
remains in mode q7 the set of residuals r7 = 0 until a
transition from this mode to mode q5 takes place. Then,
the set of residuals r5 become 0.

When the fault occurs the set of residuals r5 (see Fig.
6b) become different from zero. The fault is then isolated
checking the observed fault signature against the FSM5.
The fault is detectable and isolable. The fault occurrence
and detection are shown in Fig. 6d).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5
a) residuals r5

 

 

r
1
5

r
2
5

r
3
5

r
4
5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5
b) residuals r7

 

 

r
1
7

r
2
7

r
3
7

r
4
7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10
c) state sequence

 

 
real system
diagnoser

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

0.5

1

d) fault occurrence

time (s)
 

 
fault occurrence
fault detection

Fig. 6. Tracking mode and fault detection

The diagnoser reports the events (transitions and faults)
shown in Table 5. Fig. 6c illustrates the state sequence
estimated by the diagnoser and the real state sequence.
Finally, the fault in L41 is detected at 6000s, but has
occurred at 5700s (see Fig. 6d)).

Diagnoser Simulation Detection Events
output time (s) time (s) sequence

q1 → q3 3300 3600 σu13 → π13

q3 → q7 3600 3900 σu37 → π37

q7 → q5 4800 5400 σu75 → π75

Fault in L41 5700 6000 σfL41
→ π5

fL41

Table 5. Diagnoser report

6. CONCLUSION

This paper has presented a methodology for designing
and building a diagnoser for hybrid systems. The design
methodology uses a hybrid automaton model and abstract
the continuous dynamics based on residuals using models,
obtaining the MSM and FSM matrices. The resulting
diagnoser is able to track the system mode and detect and
isolate the faults. Both tasks interact each other since the
diagnosis module adapts according to the current mode
of the hybrid system. The mode recognition task involves
detecting and identifying the mode change by determining
the set of residuals that are consistent with the current
mode of the hybrid system. On the other hand, the di-
agnostic task involves detecting and isolating the fault by
identifying faults that can explain the set of residuals that
are inconsistent. Finally, a section of the Barcelona sewer
network has been used to assess the validity and perfor-
mance of the proposed methodology. As future work, a tool
that will allow to build the diagnoser in an automatic way
will be developed, following the methodology explained in
this work. Furthermore, uncertainty in the model will be
taken into account to improve the detection robustness in
the residuals activation.

REFERENCES

Bayoudh, M. (2009). Active diagnosis of Hybrid sys-
tems Guided by Diagnosability Properties- Application
to Autonomous Satellites. Ph.D. thesis, l’Université de
Toulouse, Institut National Polytechnique, France.

Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M.
(2006). Diagnosis and Fault Tolerant Control. Springer,
2nd edition.

Cocquempot, V., Mezyani, T., and Staroswiecki, M.
(2004). Fault detection and isolation for hybrid systems
using structured parity residuals. In 5th Asian Control
Conference.

Daigle, M. (2008). A Qualitative Event-Based Approach
to Fault Diagnosis of Hybrid Systems. Ph.D. thesis,
Faculty of the Graduate School of Vanderbilt University,
Nashville, Tennessee.

Lygeros, J., Henrik, K., and Zhang, J. (2003). Dynamical
properties of hybrid automata. IEEE Transactions on
Automatic Control, 48.

Meseguer, J., Puig, V., and Escobet, T. (2008). Fault
diagnosis using a timed discrete event approach based
on interval observers. In Proceedings of the 17th World
Congress, 6914–6919. Seoul, Korea.

Mezyani, T. (2007). Diagnostic des Systèmes Dynamiques
Hybrides. Ph.D. thesis, Université Lille1, France.

Ocampo, C. and Puigs, V. (2009). Fault-tolerant model
predictive control within the hybrid systems framework:
Application to sewer networks. 23(8).

Sampath, M., Sengupta, R., and Lafortune, S. (1995).
Diagnosability of discrete-event system. IEEE Trans-
actions on Automatic Control, 40(9), 1555–1575.

Travé-Massuyès, L., Bayoudh, M., and Olive, X. (2008).
Hybrid systems diagnosis by coupling continuous and
discrete event techniques. In Proceedings of the 17th
World Congress, 7265–7270. Seoul, Korea.

Vento, J., Puig, V., and Sarrate, R. (2010). Fault detection
and isolation of hybrid system using diagnosers that
combine discrete and continuous dynamics. In Con-



ference on Control and Fault Tolerant System. Nice,
French. Algorithm 2 Steps to build the behavior automaton

1: for all nominal mode qi in the hybrid automaton do
2: Determine the set of observable and unobservable

events that lead to a nominal successor mode in the
hybrid automaton model.

3: Generate the set of residuals ri(k)

4: Build the fault signature matrix FSMi according to
the set of faults F

5: Build the mode signature matrix MSMi according
to the successor modes of qi

6: Determine the set of faults that are detectable in qi,
according to the FSMi. Among them, determine the
fault isolability sets.

7: Define the set of observable events related to those
fault isolability sets, based on the FSMi.

8: For the nominal successor modes that are reach-
able through an unobservable event in the hybrid
automaton, determine those that are discernable,
according to the MSMi.

9: Define the set of observable events related to a
discernable mode switching, based on the MSMi.

10: end for
11: for all nominal mode qi in the hybrid automaton do
12: Define a state in the behavior automaton
13: for all fault f ∈ F do
14: Define a successor faulty state in the behav-

ior automaton. This successor state is reachable
through the unobservable event that signals the
occurrence of f

15: if f is detectable then
16: Define a successor state to the faulty state in

the behavior automaton. This successor state is
reachable through the observable event that is
related to the isolability set to which f belongs

17: end if
18: end for
19: for all nominal successor modes qj of qi in the

hybrid automaton model do
20: if qj is reachable through an observable event

then
21: The nominal successor state in the behavior

automaton is reachable through this observable
event

22: else if qj is reachable through an unobservable
event then

23: if qi and qj are not discernable then
24: The nominal successor state in the behavior

automaton is reachable through this unob-
servable event

25: else
26: Define an intermediate state in the behavior

automaton. This successor state is reachable
through that unobservable event.

27: The nominal successor state in the behavior
automaton is reachable from this intermedi-
ate state through the observable event related
to the corresponding mode switching in the
hybrid automaton model.

28: end if
29: end if
30: end for
31: end for


