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Abstract We recall two previously-proposed notions of asymptotic calibration for a forecaster
making a sequence of probability predictions. We note that the existence of efficient algorithms for
calibrated forecasting holds only in the case of binary outcomes. We pose the question: do there
exist such efficient algorithms for the general (non-binary) case?

Review of Calibrated Forecasting

Glenn Brier, writing in the journal Monthly Weather Review in 1950, observed a challenge in assess-
ing sequential probability forecasts [2]:

Verification of weather forecasts has been a controversial subject for more than a half cen-
tury. There are a number of reasons why this problem has been so perplexing to meteo-
rologists and others but one of the most important difficulties seems to be in reaching an
agreement on the specification of a scale of goodness for weather forecasts.

In response, he proposed an objective scoring function which, if implemented by the forecaster,
would lead to “calibrated” predictions. Yet a question which presumably did not occur to Brier is
whether the latter is even computationally feasible. This question will be topic of the present note.

Precisely, we would like to know whether there exists an efficient algorithm for forecasting
sequences of outcomes that is asymptotically calibrated. As the forecaster observes the sequence
y1, y2, . . ., from some given set K, she outputs a sequence of (potentially randomized) probability
predictions p1,p2, . . . ∈ ∆(K), where pt may depend only on the past y1, y2, . . . , yt−1. Roughly
speaking, a forecaster is asymptotically calibrated if her probability predictions match the outcome
frequencies. Let τT (p) := {t : pt ≈ p}, and let δy ∈ ∆(K) be a point mass distribution on y, then
our forecaster is calibrated if, for all p ∈ ∆(K),∑

t∈τT (p) δyt
|τT (p)| → p as T →∞.

In the above definition we have been intentionally vague about the meaning of pt ≈ p, as well as
our notion of convergence in the limit. To be more precise we shall distinguish between two notions
of calibration: strong and weak.

Definition 1 A function g : ∆(K) → R is called lipschitz if there exists some c > 0 for which
|g(p)− g(q)| ≤ c‖p−q‖1 for every p,q ∈ ∆(K). We shall call a forecaster weakly calibrated if for
every lipschitz “test function” g and any sequence y1, y2, . . . ∈ K we have

CST (g) := calibration score w.r.t. g︷ ︸︸ ︷∥∥∥∥∥ 1

T

T∑
t=1

g(pt)(pt − δyt)

∥∥∥∥∥
1

→ 0 almost surely as T →∞. (1)

Let Ip,ε : ∆(K)→ R be the indicator defined as Ip,ε(q) := 1 when ‖p− q‖1 ≤ ε and Ip,ε(q) := 0
otherwise. A forecaster is called strongly calibrated if equation (1) holds for the indicator test
functions g(q) = Ip,ε(q) for every p ∈ ∆(K) and ε > 0. Given a fixed ε, a forecaster is ε-strongly
calibrated if, for every p ∈ ∆(K), the calibration score CST (Ip,ε) ≤ ε for large enough T .

It should be clear from the definitions that strong calibration implies weak, but it may not be as
obvious that the reverse does not hold. It has been shown that for the binary case (K = {0, 1})



there exists a deterministic weakly calibrated forecaster [6, 7], yet any strongly calibrated forecaster
must be randomized. The latter is demonstrated by a well-known counter example of Dawid [4].
(For a complete survey on strongly calibrated forecasting, see Cesa-Bianchi and Lugosi [3].)

The (strong or weak) calibration property leaves much to be desired as a measure of “perfor-
mance” of a forecaster. For one, a forecaster can be calibrated yet completely inaccurate even on
“easy” inputs: If the outcomes simply alternates as (0, 1, 0, 1, 0, 1, . . .) then the trivial forecaster
predicting 0.5 achieves asymptotic calibration. Yet calibrated forecasting remains a useful tool in
many circumstances, particularly given that it is robust to arbitrary and potentially adversarial
inputs. It can be shown, for instance, that no-regret learning algorithms can be constructed from
strongly-calibrated forecasters; the same trick can be applied towards a strategy for Blackwell’s
Approachability problem.

Open Problem: Can We Calibrate Efficiently?

The existence of a calibrated forecaster has been established for some time (strong [5] and weak [6])
in most cases via construction. Unfortunately, these constructions have typically been characterized
by very greedy methods that give rise to inefficient algorithms. The most common approach is to
take the probability space ∆(K) and cover it with an ε-grid and, for each grid point p, the algorithm
maintains some statistic. To achieve ε-strongly-calibrated forecaster, the algorithm will potentially
have to process the entire grid for each prediction pt.

This story may have a happy ending. Recent results suggest that calibration may be achieved via
efficient methods. Mannor et al. [7] developed a weakly calibrated forecasting algorithm that requires
constant time and space for each prediction. In the present year’s COLT proceedings, Abernethy
et al. [1] developed an ε-strongly calibrated forecasting algorithm which requires O(log 1

ε ) time yet

O( 1
ε ) space per prediction.
What’s the catch? Each of the above algorithm are applicable only to binary forecasting and do

not extend to more general K. Mannor and Stoltz [8] have recently introduced work addressing the
case where |K| > 2, utilizing Blackwell approachability, to obtain ε-strong calibration with time and
space complexity that behaves like O(1/ε|K|). As described in the table below, very little progress
has been made towards efficient algorithms that achieve calibration in general.

Strong Weak
Binary (|K| = 2) O(log 1

ε ) time, O( 1
ε ) space [1] O(1) time/space [7]

Finite-alphabet (|K| = n > 2) O(1/ε|K|) time/space [8] ? (no improvement over [8])

We use the term “efficient” to denote an algorithm whose per-step complexity and memory
requirements are poly in |K| and poly-logarithmic in (1/ε). Our concrete questions are:

1. Is there an efficient time and memory algorithm for ε-strong calibration for the binary case?

2. Is there an efficient time and memory algorithm for weak calibration for the general case?

3. Is there an efficient time and memory algorithm for strong calibration for the general case?

Our best guess is that such an algorithm likely exists, for both the weak and strong case, in
particular because we have not placed any restrictions on the rate at which the algorithm must
achieve the calibration objective. On the other hand, the previously-discovered tricks which lead to
efficient calibrated forecasters may be very special to the binary case and we would not be surprised
if no such efficient algorithms exist when |K| > 2.
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