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Abstract

In sequential prediction with log-loss as well as density estimation with risk measured by
KL divergence, one is often interested in the expected instantaneous loss, or, equivalently,
the individual risk at a given fixed sample size n. For Bayesian prediction and estimation
methods, it is often easy to obtain bounds on the cumulative risk. Such results are based on
bounding the individual sequence regret, a technique that is very well known in the COLT
community. Motivated by the easiness of proofs for the cumulative risk, our open problem
is to use the results on cumulative risk to prove corresponding individual-risk bounds.

Background We consider sequential prediction (online learning) with log-loss (Cesa-Bianchi and
Lugosi, 2006). In each iteration n = 1,2,..., after observing a sequence of past outcomes x™ =
T1,Ta,..., %, € X", a prediction strategy assigns a probability distribution on X, denoted P(- | 2™).
Then, a next outcome x,, 1 is revealed and the strategy incurs the log loss —log P(an | ™). The
goal of the prediction strategy is to be not much worse than the best in a reference set of distributions
(also called “experts”), which we call the model M.

In online learning, the performance of a prediction strategy is usually measured by the regret,
which is the difference between the accumulated loss of the prediction strategy and the best dis-
tribution in the model. The goal is then to minimize the regret in the worst case over all possible
data sequences. This problem is relatively well-explored as it has been investigated in such fields
as statistics, information theory, finance and machine learning. For example, it is known that: (1)
when the model is finite (contains a finite number of distributions, say N), it is possible to obtain a
constant bound log NV on the regret, (2) when the model is infinite, but parametric (e.g. exponential
families), a bound of the form g logn+O(1) is usually possible, where k is the number of parameters
(Griinwald, 2007).

In statistics, more focus is traditionally put on the instantaneous rather than cumulative losses
of the prediction strategy: one wants the loss when predicting z,, to be small for fixed n, and to
go to 0 at a fast rate as n increases. Since it is not possible to meaningfully bound instantaneous
loss for adversarial data, one assumes that the data are sampled form a distribution P*. Then, it
is reasonable to define the individual risk or instantaneous redundancy in the n-th iteration as the
difference between the expected loss of the prediction strategy and the expected loss of the best
(w.r.t. P*) distribution in the model:

RISK,(P,P*) = Ep:[—log P(X,11|X")] — Jnf {Ep-[~log P(Xpi1 | X))}

(note that we use capitals to denote both distributions and their densities/mass functions). Although
our questions can be phrased more generally, for simplicity we will assume that data are i.i.d. and
that P* € M. Then the infimum in the above is attained by P* and the expression simplifies to:

RISK,(P,P*) = Exni1.p-[—log P(X11]X™)] — Ex~p+[—log P*(X)]

The aforementioned results about regret immediately imply results about cumulative risk. For ex-
ample, for k- parameter exponential families, Bayesian, ML (maximum likelihood prediction), NML
(normalized maximum likelihood (“Shtarkov”)) and several other well-known strategies achieve cu-

mulative risk Y7, RISK;(P, P*) = (k/2)logn+O(1). In general, especially for Bayesian strategies,



it is easy to obtain bounds on the cumulative risk. For example, if M is countable and P is the
Bayesian predictive distribution based on prior W such that W (P*) > 0, then one has that

n
> RISK;(P,P*) < —log W (P*).
i=1
The proof is completely straightforward using an individual-sequence regret argument (Griinwald,
2007, Chapter 6). The question we ask is what can be said about the individual risk of a prediction
strategy P, given the performance in terms of such cumulative risk. In particular, let P be defined
as a Bayesian predictive distribution. We ask:

Our Questions

1. When the model is a k-parameter exponential family, is a bound of the form % + O(1/n?)
possible?

2. When the model is countably infinite, is it possible to obtain a bound on the individual risk of
the form —8W ) fo1 some v > 0 (preferrably v > 1)?

ny
Known results.

1. Cesaro As noted by e.g. Barron (1998), Yang (2000) (see also Catoni (1997)) it is possible
to establish a relationship between the cumulative risk of a prediction strategy and the individual
risk of a modified strategy using the notion of Cesaro averaging. Let P be any prediction strat-
egy and define: Pcesaro(xn+1|9c”) = %2?21 P(xiﬂ\xi). It turns out that RISKn(PCesarO,P*) <
LS RI SK;(P,P*). Unfortunately, this statement does not say anything about the individual
risk of the original strategy 15, only about its Cesaro average Pc€sar0. In practice, the Cesaro av-
erage will often perform worse than the original P: Cesaro averaging is good to prove things, not
to improve things. Moreover, in question 1 above the Cesaro-strategy, when applied to Bayesian
strategies, gives a rate bounded by n~!(k/2)logn, which is suboptimal by a factor of logn: it is
known that, e.g. with the ML estimator, an individual risk of O(1/n) is achieveable.

2. Follow the Leader So far, the only case for which individual risk results are relatively
well-studied seems to be the maximum likelihood (also known as “follow the leader”) strategy for
exponential families. Griinwald and de Rooij (2005) proved that for one-parameter exponential
family, when the data are generated i.i.d. by a distribution P*, possibly outside M, then the
individual risk of the maximum likelihood decreases as:

RISK, (P, P*) = %var(P*) - I(P) + O(1/n?), (1)

where var(P*) is a variance of P*, I is a Fisher information, while P is the element in M closest to P*
in terms of KL-divergence D(P*||P). In particular, if P* € M, then P* = P and var(P*) = [ ~}(P*),
so that the bound takes the form ﬁ + O(1/n?), which is the optimal rate for a one-dimensional
exponential family. Forster and Warmuth (2002) considered maximum likelihood for k-dimensional
exponential families and managed to prove the bound of the form:

RISK, (P, P*) < ﬁtr{covw*)}- sup [I1(P)]] 2)
n PeM

where cov(P*) is the covariance matrix for P*. The bounds (1) and (2) are very similar, but
essentially incomparable. The latter is a true bound, which holds for all n and any exponential
family, but the constant in front of O(%) is not optimal. The former is an asymptotic expansion of
the individual risk with the optimal constant in front of O(1). Both results concern only a particular
prediction strategy (ML), which is known to be suboptimal when P* ¢ M, and cannot be easily

extended to say anything about any asymptotically optimal strategy, such as Bayes.

3. 2-part MDL If P(X, 41 | X™) is taken to be the 2-part MDL estimator achieving

minpepmq —log W(P) —log P(X™), then one can use a result due to Barron, Cover, Li and Zhang to
get a bound on the squared Hellinger distance between P and P*. If all distributions in M have
uniformly bounded density ratios, i.e. sup,cy pgem P(X)/Q(X) < oo, then this translates into a
bound on the instantaneous risk. With the original bound (see (Griinwald, 2007, Chapter 15) for a
simple statement and proof), one gets a bound O(—log W (P*)(logn)/n) on the individual risk for
the two-part MDL prediction strategy. This can be refined (Zhang, 2006) to get O(—log W (P*)/n).
Strangely, if P is set to be a Bayesian predictive distribution (which usually works better in practice),
then nothing is known about the individual risk.



4. Decreasing risk!? Let a1, aq,... be any sequence of number such that Y., a, < Clogn.
It can be easily shown (Griinwald, 2007) that such a sequence does not necessarily converge to 0.
Bounding Z?:l an, < C does imply that a,, converges to 0, but it can converge at arbitrarily slow
rate. However, if we additionally assume that the sequence a,, is non-increasing, we immediately get
optimal-rate bounds a,, < % in the first question. Thus, one strategy to address our questions for a

given model M would be to first show that individual risks of P are monotonically decreasing. It is
known that e.g. if M is the Gaussian location family, then the risk of the ML predictions is strictly
decreasing; on the other hand in some cases the risk of the Bayesian strategy can slightly increase at
some n. Consider e.g. the Bernoulli model with a uniform prior, and assume the data is a sequence
of independent fair coin flips, i.e. they are i.i.d. Bernoulli 1/2. In that case the risk at sample
size 1 is 0, because the Bayesian predictive distribution based on the uniform prior and no data is
P(X; = 1) = 1/2. At sample size 2, the Bayesian predictive distribution is P(Xs = 1| X; = x)
which is either 2/3 (if z = 1) or 1/3 (if z = 0). In both cases, the risk increases Barron (1998),
Griinwald (2007). So increasing risk is possible. Still, no examples are known of substantially
increasing risk at large n. Thus, maybe one might prove that some tight enough upper bound on
the risk is still decreasing...
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