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Abstract

We pose the question of whether it is possible to design a simple, linear-time algorithm for the basic
multi-armed bandit problem in the adversarial setting which has a regret bound of O(

√
Q log T ),

where Q is the total quadratic variation of all the arms.

We are interested in the fundamental multi-armed bandit (MAB) problem: iteratively at times t =
1, 2, . . . , T the decision maker has to choose (possibly randomly) one of n arms, it, and then receives the pay-
off of the arm, assumed to be in the range [0, 1]. The payoffs are constructed adversarially, as in [ACBFS03],
and we denote the payoff at time t for arm i by ft(i) ∈ [0, 1]. The decision maker can only see her own pay-
off, and does not have access to the entire payoff vector ft (otherwise it would have been the usual “experts”
problem”). The goal is to minimize regret:

Regret = max
i∈[n]

T∑
t=1

ft(i)−
T∑

t=1

ft(it),

where it is the arm chosen by the algorithm in round t. If the algorithm is randomized, then the aim is to
minimize the expected regret over the internal randomization of the algorithm.

The EXP3 algorithm of [ACBFS03], is an efficient (linear in n time) algorithm that obtains regret of
O(
√
nT log T ). This is optimal in T, n up to logarithmic factors.

But the quest for an optimal algorithm for this fundamental problem is not over. Cesa-Bianchi et al.
[CBMS07] conjectured that it should be possible to bound the regret of online learning algorithms by the
quadratic variation in payoffs. For the MAB problem as defined above, we can define the quadratic variation
by:

Q =

T∑
i=1

‖ft − µ‖2,

where µ = 1
T

∑T
t=1 ft is the mean payoff. This is a natural parameter for measuring the difficulty of an

online instance, as argued in [CBMS07], since it is related to the statistical properties of the underlying
payoff sequences. Essentially, we may think of the quadratic variability as the variance in our data, and the
difficulty of learning should be proportional to how much the data deviates from the mean rather than the
length of the prediction sequence. As a special case, Q can be a constant independent of the data sequence,
in which case we would like our regret to remain constant independent of the number of iterations (this is
motivated by financial applications, as in [HK09b]).

Recently, online learning algorithms that bound the regret as a function of Q rather than T have been
developed. For the online linear optimization setting this was obtained in [HK08], and for the MAB setting,
the following theorem was proven in [HK09a]:

Theorem 1 There exists a polynomial-time MAB algorithm whose regret is bounded by O(n2
√
Q log T ).

Since our payoffs are bounded by one, it holds that Q ≤ nT , and hence as T grows large the above bound
is superior to the EXP3 bound (for certain ranges of Q). However, the algorithm used to obtain this bound is
rather complicated: it is based on self-concordant barrier functions as regularizers, which were introduced to
learning theory in [AHR08], and applies to a more general setting of bandit online linear optimization than
MAB. This technology makes the algorithm poly-time, but not nearly linear time and simple as EXP3. More
importantly, the above bound is sub-optimal in terms of n.



The open question is to design a simple, linear-time algorithm for MAB which has a regret bound
of O(

√
Q log T ), hence improving upon EXP3.

We conjecture that such an algorithm exists, and it should not use any self-concordance technology.
Rather, it should be basic, perhaps based on the multiplicative updates method, and bear resemblence to
EXP3. We note that EXP3 itself has Ω(

√
T ) regret, since it mixes with the uniform distribution every iter-

ation to enable sufficient exploration. Hence, the desired algorithm should be a little different from EXP3,
incorporating just enough exploration proportional to the variation in the data.

One possible feature of the new algorithm is to use an unbiased estimator for the payoff vector ft con-
structed by estimating the empirical mean and the deviation from the mean separately, as done in [HK09a].
An unbiased estimator for the mean can be constructed using the reservoir sampling ideas in [HK09a]. The
deviation from the mean can be computed using importance weighted sampling as in EXP3.
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