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Abstract

It is unknown what is the most suitable regularization for rotation matrices and how to maintain
uncertainty over rotations in an online setting. We propose to address these questions by studying
the minimax algorithm for rotations and begin by working out the 2-dimensional case.

The problem of online learning of rotations is defined as follows. In every iteration t = 1, 2, . . . , T , the
learner is given a unit vector xt (‖xt‖ = 1). The learner is then required to predict (deterministically or
randomly), with a rotation matrix Rt ∈ SO(n). The choice of Rt determines the predicted unit vector
ŷt = Rtxt. Finally, the algorithm obtains the “true” rotated unit vector yt and incurs loss

Lt(Rt) =
1

2
E
[
‖Rtxt − yt‖2

]
=

1

2
E[‖Rtxt‖2︸ ︷︷ ︸

1

+ ‖yt‖2︸ ︷︷ ︸
1

−2(Rtxt) · yt] = 1− (E[Rt]xt) · yt,

where · is the dot product, Rt is the distribution over SO(n) from which Rt is drawn, and E[.] is the
expectation wrt RT . We seek on-line algorithms which have small bounded regret

T∑
t=1

Lt(Rt)− min
R∈SO(n)

T∑
t=1

Lt(R)

for arbitrary sequences of examples (xt,yt) of length T . Recently, a regret bound of 2
√
nT has been proven

for a randomized1 algorithm which does a gradient descent step in each iteration and then projects into a
suitable chosen convex set [HKW10]. Even though the regret of this algorithm was shown to be optimal within
a constant factor [HKW10], many questions remain for this archetypical machine learning problem that has
many applications in robotics, vision, matrix completion, subspace tracking, etc (See e.g. [Aro09, HKW10]):

1. We don’t know the proper way to regularize rotations. Is there some kind of entropy defined over
SO(n)? The algorithm of [HKW10] is based on regularizing wrt the squared Euclidean distance, which
does not take the structure of the SO(n) into account.

2. The parameter space SO(n) is not convex and we don’t know the “correct” way to maintain uncertainty
over this space. The algorithm of [HKW10] projects using inequality constraints which means that it
“forgets” information about the past examples.

3. A good on-line algorithm should intuitively exploit the elegant Lie group and Lie algebra connection
(via the exponential map) between SO(n) and skew symmetric matrices, respectively [Aro09].

We propose to resolve some of these issues by finding the minimax algorithm for learning rotations and we
hope that this algorithm will give insights for learning other matrix classes:

Rt = argmin
Rt

max
yt

max
xt+1

min
Rt+1

max
yt+1

. . . max
xT

min
RT

max
yT

(
T∑

q=t

Lq(Rq)− min
R∈SO(n)

T∑
t=1

Lt(R)

)
,
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where the Rq are distributions over SO(n) and the unit vectors xq,yq are chosen deterministically.
So far, we have obtained the following partial result sketched below: If the instances xt are restricted

to be a fixed unit, say e1 = (1, 0, . . . , 0)>, then we can give the minimax algorithm. In the case of n = 2,
the two problems coincide because any black box for solving the fixed instance problem can be used to
solve the variable instance problem with the same regret. This holds because if Rxt

rotates xt onto e1 (i.e.
e1 = Rxt

xt), then processing (xt,yt) is the same as processing (e1,y
′
t), where y′t := Rxt

yt:

‖Rtxt − yt‖ = ‖RtR
−1
xt

e1 − yt‖ = ‖R−1xt
Rte1 − yt‖ = ‖R−1xt

(Rte1 − y′t)‖ = ‖Rte1 − y′t‖.
Note that in the 2nd equality we used RtR

−1
xt

= R−1xt
Rt, which only holds for n = 2.

When xt = e1 for all t, then the loss 1−(E[Rt]e1) ·yt can be rewritten as 1−wt ·yt, where wt = E[Rt]e1
is a new parameter vector which has norm at most 1. With this parameter vector, the regret simplifies to

T∑
t=1

(1−wt · yt)− inf
w:‖w‖≤1

{
T∑

t=1

(1−w · yt)

}
= −

T∑
t=1

wt · yt + w∗ · sT =

T∑
t=1

−wt · yt + ‖sT ‖,

where sT =
∑T

t=1 yt, and w∗ = arg maxw,‖w‖≤1 w ·sT = sT

‖sT ‖ . To find the optimal strategy of the forecaster,

we proceed backwards. Fix sT−1 and w1, . . . ,wT−1. We want to solve the following minimax problem in
the last iteration:

min
w:‖w‖≤1

max
y:‖y‖=1

{−w · y + ‖sT−1 + y‖} . (1)

A more involved analysis reveals that the optimal solution wT must be sT−1 times a shrinking factor:

wT =
sT−1√

‖sT−1‖2 + 1
,

while the optimal (worst-case) outcome yT is orthogonal to sT−1. Plugging wT and yT into (1) and using

yT · sT−1 = yT ·wT = 0 gives the optimal value of the regret increase in the last iteration:
√
‖sT−1‖2 + 1.

In the second to the last step

wT−1 = argmin
w:‖w‖≤1

max
y:‖y‖=1

{
−w · y +

√
‖sT−2 + y‖2 + 1

}
=

sT−2√
‖sT−2‖2 + 2

and yT−1 is orthogonal to sT−2. Plugging wT−1 and yT−1 into the optimized expression leads to the worst-

case regret increase in the last two iterations which is
√
‖sT−2‖2 + 2. Continuing the backward induction,

in the k-th step from the end, we optimize

wT−k+1 = argmin
w:‖w‖≤1

max
y:‖y‖=1

{
−w · y +

√
‖sT−k + y‖2 + k − 1

}
=

sT−k√
‖sT−k‖2 + k

,

and the worst-case regret increase in the last k iterations equals
√
‖sT−k‖2 + k. The value of the minimax

regret can be obtained for k = T and is equal to
√
T .

Summarizing, we were able to prove that when the input xt is restricted to be a fixed vector, then the
minimax regret is

√
T and does not depend on the dimension. The optimal strategy for this case is to

choose wt as the current “sufficient statistic” st−1 =
∑t−1

q=1 yq times a shrinking factor that is related to the
randomization. The worst-case data sequence for minimax algorithm is any sequence where the outcomes
are always orthogonal to the current sufficient statistic (and the vector chosen by the optimal strategy).

For n = 2, the minimax regret for the fixed instance problem coincides with the minimax of the original
rotation problem2 and the open problem is to determine the minimax regret for dimension n > 2.
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