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We present a novel angle for multi-armed bandits (henceforth abbreviated MAB) which follows
from the recent work on MAB mechanisms (Devanur and Kakade, 2009, Babaioff et al., 2009, 2010).
The new problem is, essentially, about designing MAB algorithms under an additional constraint
motivated by their application to MAB mechanisms.

This note is self-contained, although some familiarity with MAB is assumed; we refer the reader
to Cesa-Bianchi and Lugosi (2006) for more background.

1 Problem formulation

We start with a slightly non-standard formalism for MAB.

Definition (MAB). In each round, an algorithm selects among k alternatives (arms), and collects
a reward. The rewards are fixed in advance, but not revealed to the algorithm. Specifically, one
fixes a table whose (i, t)-th entry is the reward of arm i in round t; such table is called a realization
(of the rewards). The realization is generated by a random process (generator). The algorithm only
knows that the generator belongs to some set (of generators) called the MAB domain.1

Two natural special cases are stochastic rewards: for each arm i, the reward of this arm in every
given round is an independent sample from the same distribution Di, and adversarial rewards: the
realization is chosen by an adversary.

Definition (MAB allocation rule). An MAB allocation rule is an MAB algorithm which initially
inputs a vector of bids bi ∈ [0, 1] for each arm i; the rewards received from arm i (raw rewards) are
then scaled by a factor of bi. An MAB allocation rule is called monotone (resp., ex-post monotone)
if for each agent arm i, increasing bi and keeping all other bids fixed cannot decrease the raw reward
from arm i, in expectation over the realization (resp., for every realization).

Now we are ready to state the problem:

Problem 1. For a given MAB domain, design an MAB allocation rule so as to maximize the total
reward subject to the constraint of (ex-post) monotonicity.

It is worth emphasizing that Problem 1 is well-defined for each of the numerous MAB domains
studied in the literature: stochastic or adversarial, with or without priors on rewards, with or without
auxiliary or contextual information, and so forth. For each MAB domain there is a corresponding
version of Problem 1. The main qualitative issue is whether and by how much the additional
constraint of (ex-post) monotonicity impacts performance.

2 Brief motivation

The motivating example is the following idealized model for selling ad slots to potential advertisers.
Several advertisers, each with a single ad, are competing for a single ad slot that is displayed to
multiple users over time. Each advertiser derives value only if her ad is clicked by a user. Thus, each
arm corresponds to an advertiser, the bid corresponds to the value per click, and the raw reward in
each round is 1 if clicked and 0 otherwise.

To motivate the (ex-post) monotonicity property we need to extend the above model to a simple
auction, called MAB auction: first all advertisers submit their bids, then the ad slots are allocated
using an MAB allocation rule, and finally the ad platform assigns how much each agent needs to

1The notation “MAB domain” is not standard; we adopt it here for the ease of presentation.



pay. Crucially, the value per click (vi) is a private information: it is known to the advertiser, but
not to the ad platform. Thus, an advertiser may lie about it (bi 6= vi) if she thinks it may benefit
her. This setting have been defined independently and concurrently in Devanur and Kakade (2009)
and Babaioff et al. (2009), and further studied in Babaioff et al. (2010); see Appendix A for some
background and motivation.

In an MAB auction, the monotonicity property of the MAB allocation rule is necessary and
sufficient (with appropriate payments) to incentivize the advertisers to submit truthful bids. Mono-
tonicity corresponds to incentives in expectation over realizations, whereas a stronger and more
desirable ex-post monotonicity corresponds to incentives for every given realization. The details are
deferred to Appendix A; these details are not necessary for understanding Problem 1.

It is worth noting that the social welfare of an MAB auction – a standard performance benchmark
for auctions – coincides with the total reward of the corresponding allocation rule. Social welfare is
defined as the total utility: the sum of utilities of all advertisers and the utility (profit) of the ad
platform (so payments cancel out).

3 Current status

The problem has been resolved for stochastic rewards in the strongest possible sense: there exists an
ex-post monotone MAB allocation rule whose regret is essentially optimal among all MAB allocation
rules (Babaioff et al., 2010). Moreover, an MAB allocation rule based on (a version of) a well-known
MAB algorithm UCB1 (Auer et al., 2002a) is proved to be monotone; this result extends to a more
general family of MAB allocation rules. However, UCB1-based MAB allocation rule is not ex-post
monotone as is; making it ex-post monotone seems to require significant modifications.

For all other MAB domains the problem is open. One particularly appealing target is adversarial
rewards.2 Babaioff et al. (2009) exhibit an ex-post monotone MAB allocation rule (based on the MAB
algorithm in Awerbuch and Kleinberg (2008)) which separates exploration and exploitation and has

regret Õ(T 2/3). This is in contrast to optimal MAB algorithms such as EXP3 (Auer et al., 2002b) that

achieve regret Õ(
√
T ). We conjecture that EXP3-based MAB allocation rule is not ex-post monotone.

It is not clear whether an MAB allocation rule with regret Õ(
√
T ) can be ex-post monotone.
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A MAB auctions: motivation and background

Sponsored search and MAB auctions. Sponsored search on the Web is a billions dollar market
in which ad slots are sold to potential advertisers. The ad slots are usually sold via auctions, with
numerous auctions running every second. In a given auction, multiple advertisers compete for a
well-defined selection of ad slots, such as ad slots that appear next to search results on a given
keyword. The predominant model, called pay-per-click (PPC ) auctions, is that an advertiser pays
only if her ad is clicked by a user. The underlying assumption here is that an advertiser derives value
only if her ad is clicked, and the PPC model shields advertisers from the risk that the allocation of
ads to ad slots may be suboptimal for a given advertiser. A typical PPC auction proceeds as follows:
advertisers submit their preferences, then the ad platform allocates ad slots between the advertisers,
records the clicks, and then the payments are assigned based on the submitted preferences, the
allocation, and the observed clicks.

In general, optimizing performance in a PPC auction requires knowing or estimating the rates at
which the ads are clicked (click-through rates, or CTRs). Most prior work assumes that these rates
are known or estimated externally (see Babaioff et al. (2009) for a more through discussion).

A recent line of work (Devanur and Kakade, 2009, Babaioff et al., 2009, 2010) considers the
problem of designing truthful PPC auctions when the process of learning the CTRs is explicitly
treated as a part of the game. The motivation is that the self-interested advertisers would take
this process into account, as it influences their utility. These papers are mainly interested in the
interplay of the two key issues: the strategic issue (the issue of incentives) and the issue of learning
CTRs from the clicks that are observed over time. They define and study a clean model, called
MAB auctions, which abstracts these two issues. This model (which we described in Section 2) can
be seen as a natural strategic version of MAB.

Incentives and monotonicity. As we alluded in Section 2, the issue of incentives is crucial.
The goal is to design mechanisms that are incentive-compatible in the following sense: every agent
maximizes her expected utility by bidding truthfully, for any bids of the others. This is a standard
notion in the literature on Mechanism Design.3 A stronger notion, ex-post incentive-compatibility,
is the same for each realization of the clicks (rather than in expectation). Thus, we design MAB
auctions so as to maximize performance subject to the constraint of (ex-post) incentive-compatibility.
Two standard performance measures in the literature are social welfare and total profit.

A well-known general result in Mechanism Design (Myerson, 1981, Archer and Tardos, 2001)
implies that an MAB allocation rule can be “extended” to an (ex-post) incentive-compatible MAB
mechanism if and only if the MAB allocation rule is (ex-post) monotone. However, naively computing
the payments in the “if” direction of this result requires information about the realization that is
not revealed during a given run of the mechanism. Devanur and Kakade (2009) and Babaioff et al.
(2009) show that incomputability of payments is a real obstacle. They show that ex-post truthfulness
implies severe limitations on the structure of a deterministic MAB allocation rule: essentially, it must
separate exploration and exploitation. For the natural example of stochastic clicks it leads to very
suboptimal performance (compared to arbitrary MAB allocation rules), both in terms of social
welfare (Babaioff et al., 2009) and in terms of profit (Devanur and Kakade, 2009).

Babaioff et al. (2010) overcome this obstacle for randomized MAB mechanisms: they provide a
general procedure to transform any (ex-post) monotone MAB mechanism to a randomized (ex-post)
incentive-compatible MAB mechanism with a very minor loss in performance.4 This result motivates
Problem 1.

3Mechanism Design is a branch of Economics that is concerned with, essentially, the design of auctions.
(A mechanism is a slightly more general technical term.) A Computer Science take on Mechanism Design
(termed Algorithmic Mechanism Design) is a design of algorithms whose inputs are provided by self-interested
agents, which brings about additional incentive constraints. For background see the book Nisan et al. (2007)
and a survey Roughgarden (2008).

4The downside of this transformation is a relatively high variance in payments, see Babaioff et al. (2010)
for further discussion. However, a very recent result of Sivan and Wilkens (2010) shows that this amount of
variance is essentially optimal for any such general transformation.
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