
Lower Bounds and Hardness Amplification for
Learning Shallow Monotone Formulas

Vitaly Feldman
IBM Almaden Research Center
vitaly@post.harvard.edu

Homin K. Lee∗
UT Austin

homin@cs.utexas.edu

Rocco A. Servedio†
Columbia University

rocco@cs.columbia.edu

Abstract

Much work has been done on learning various classes of “simple” monotone functions under
the uniform distribution. In this paper we give the first unconditional lower bounds for learning
problems of this sort by showing that polynomial-time algorithms cannot learn shallow monotone
Boolean formulas under the uniform distribution in the well-studied Statistical Query (SQ) model.
We introduce a new approach to understanding the learnability of “simple” monotone functions
that is based on a recent characterization of Strong SQ learnability by Simon (2007) Using the
characterization we first show that depth-3 monotone formulas of size no(1) cannot be learned by
any polynomial-time SQ algorithm to accuracy 1 − 1/(log n)Ω(1). We then build on this result to
show that depth-4 monotone formulas of size no(1) cannot be learned even to a certain 1

2 + o(1)
accuracy in polynomial time. This improved hardness is achieved using a general technique that
we introduce for amplifying the hardness of “mildly hard” learning problems in either the PAC
or SQ framework. This hardness amplification for learning builds on the ideas in the work of
O’Donnell (2004) on hardness amplification for approximating functions using small circuits, and
is applicable to a number of other contexts.
Finally, we demonstrate that our approach can also be used to reduce the well-known open problem
of learning juntas to learning of depth-3 monotone formulas.

1 Introduction
Motivation. Over the past several decades much work in computational learning theory has focused on
developing efficient algorithms for learning monotone Boolean functions under the uniform distribution, (see
e.g., Amano and Maruoka, 2002, Blum et al., 1998, Bshouty and Tamon, 2006, Hancock and Mansour, 1991,
Jackson et al., 2008, Kearns et al., 1994, O’Donnell and Servedio, 2007, O’Donnell and Wimmer, 2009, Sakai
and Maruoka, 2000, Servedio, 2004) and other works. An intriguing question, which has driven much of this
research and remains open, is whether there is an efficient algorithm to learn monotone DNF formulas under
the uniform distribution. Such an algorithm A would have the following performance guarantee: for any
target function f : {0, 1}n → {0, 1} that is a monotone DNF formula with poly(n) terms, given access to
independent uniform random examples (x, f (x)), algorithm A would run in poly(n, 1/ε) time and with high
probability output a hypothesis h that disagrees with f on at most an ε fraction of inputs from {0, 1}n.

Several partial positive results toward learning monotone DNF have been obtained: for constant ε, al-
gorithms are known that can learn 2

√
log n-term monotone DNF (Servedio, 2004) and poly(n)-size monotone

decision trees (O’Donnell and Servedio, 2007) in poly(n) time. Partial negative results have also been given:
Dachman-Soled et al. (2008) has shown that (under a strong cryptographic hardness assumption) for a suffi-
ciently large absolute constant d there is no poly(n)-time algorithm that can learn depth-d, size-no(1) Boolean
formulas that compute monotone functions to a certain accuracy 1

2 + o(1). However no hardness results that
apply to monotone formulas of small constant depth are known.

In this work we give unconditional lower bounds showing that simple monotone functions – computed by
monotone Boolean formulas of depth 3 or 4 and size no(1) – cannot be learned under the uniform distribution
in polynomial time. Of course these results are not in the PAC model of learning from random examples

∗Supported by NSF grant 1019343 subaward CIF-B-108
†Supported by NSF grants CCF-0347282, CCF-0523664 and CNS-0716245, and by DARPA award HR0011-08-1-

0069.

(since unconditional lower bounds in this model would prove P , NP!); our primary lower bounds are for
the closely-related and well-studied Statistical Query learning model, which we describe briefly below.

Statistical Query learning. Kearns (1998) introduced the statistical query (SQ) learning model as a natural
variant of the usual PAC learning model. In the SQ model, instead of having access to independent random
examples (x, f (x)) drawn from distribution D, the learner is only allowed to obtain statistical properties of
examples. Formally, it has access to a statistical query oracle S Q f ,D. The oracle S Q f ,D takes as input a query
function g : X × {+1, -1} → {+1, -1} and a tolerance parameter τ ∈ [0, 1] and outputs a value v such that:

|v − ED[g(x, f (x))]| ≤ τ.

The learner’s goal – to output a hypothesis h such that Prx∼D[h(x) , f (x)] ≤ ε – is the same as in PAC
learning. A poly(n, 1/ε)-time SQ algorithm is only allowed to make queries in which g can be computed by
a poly(n, 1/ε)-size circuit and τ is at most a fixed 1/ poly(n, 1/ε) (and of course the algorithm must run for at
most poly(n, 1/ε) time steps).

The SQ model is an important and well-studied learning model which has received much research atten-
tion in the 15 years since it was introduced. One reason for this intense interest is that any concept class
that is efficiently learnable from statistical queries is also efficiently PAC learnable in the presence of random
classification noise at any noise rate bounded away from 1

2 (Kearns, 1998). In fact, since the introduction of
the SQ-model virtually all known noise-tolerant learning algorithms have been obtained from (or rephrased
as) SQ algorithms1 (Kearns, 1998, Bylander, 1994, 1998, Dunagan and Vempala, 2004).

Even more importantly, and quite surprisingly, all known techniques in PAC learning with the exception
of Gaussian elimination either fit easily into the SQ model or have SQ analogues. Thus the study of SQ
learning is now an integral part of the study of noise-tolerant learning and of PAC learning in general. In
addition, interest in the SQ learning model has been stimulated by recently discovered close connections to
privacy-preserving learning (Blum et al., 2005, Kasiviswanathan et al., 2008), evolvability (Valiant, 2009,
Feldman, 2008, 2010) and communication complexity (Sherstov, 2008).

An important property of the SQ model that we rely on in this work is that it is possible to prove uncondi-
tional information-theoretic lower bounds on learning a class of functions in the SQ model (we will say much
more about this below). Such lower bounds give a very strong indication that the class is unlikely to be effi-
ciently PAC learnable and even less likely to be PAC learnable in the presence of random classification noise.
In particular, it rules out almost all known approaches to the learning problem, including the algorithms that
rely solely on estimates of Fourier coefficients (which is the primary technique for learning over the uniform
distribution (Servedio, 2004, O’Donnell and Servedio, 2007)).

Background on hardness results for SQ learning. In his paper introducing the SQ model, Kearns (1998)
already showed that the class of all parity functions cannot be SQ-learned in polynomial time under the
uniform distribution. Soon after this Blum et al. (1994) characterized the weak learnability of every function
class F in the SQ model in terms of the statistical query dimension of F ; roughly speaking, this is the largest
number of functions from F that are pairwise nearly orthogonal to each other (we give a precise definition
in Section 2). The results of Blum et al. (1994) imply that if a class F has SQ-Dimension nω(1), then no
SQ algorithm can even weakly learn F to any accuracy 1

2 + 1
poly(n) in poly(n) time. This bound was already

used to give SQ hardness results for weak learning classes such as DNF and decision trees in the work of
Blum et al. (1994), and more recently for weak-learning intersections of halfspaces by Klivans and Sherstov
(2006). However, it is well known that the entire class of all monotone Boolean functions over {0, 1}n can be
weakly learned to accuracy 1

2 + 1
poly(n) in poly(n) time (an algorithm that achieves optimal accuracy 1

2 +
Θ(log n)
√

n
was recently given by O’Donnell and Wimmer (2009)), and indeed the class of all monotone functions can
easily be shown to have SQ-dimension O(n). Thus the notion of SQ-dimension alone is not enough to yield
SQ lower bounds on learning monotone functions.

Much more recently, Simon (2007) introduced a combinatorial parameter of a function class F called
its strong Statistical Query dimension, and showed that this parameter at error rate ε characterizes the
information-theoretic strong learnability of F to accuracy 1 − ε. (We give a precise definition of the strong
SQ-dimension in Section 2.) We use this characterization, which was later strengthened and simplified by
Feldman (2010) (and independently by Szörényi, 2009) to obtain the lower bounds, which we now describe.
(Throughout the following description of our results, the underlying distribution is always taken to be uniform
over {0, 1}n.)

Our Results: Unconditional Hardness of Learning Simple Monotone Functions. We give the first strong
SQ-dimension lower bound for a class of “simple” monotone functions. More precisely, as our first main
result, we show that the class of size-no(1), depth-3 monotone formulas has strong SQ-dimension nω(1) at

1One prominent exception is the work of Blum et al. (2003), which gives an algorithm for learning parities which is
tolerant to random noise, although in a weaker sense than the algorithms derived from statistical queries.

2

a certain error rate 1/(log n)Θ(1). By the results of Simon and Feldman, this implies that such formulas
cannot be efficiently learned to accuracy 1 − 1/(log n)Θ(1) by any polynomial-time SQ learning algorithm.
Roughly speaking, our proof works by constructing a class of slice functions of “well-separated” parities
over poly log(n) variables. We show that this class of functions has the combinatorial properties required to
satisfy the strong SQ-dimension criterion, and that every function in the class can be computed by a small
monotone formula of depth 3.

In addition to this result, we show that a variant of the basic idea of our construction can be used to reduce
PAC learning of log n-juntas (or functions that depend on at most log n variables) over k = log2 n/ log log n
variables to learning of depth-3 monotone functions. Learning of juntas is an important open problem in
learning theory (Blum, 2003) for which the best known algorithm achieves only a polynomial factor speed-
up over the trivial brute force algorithm (Mossel et al., 2007). Note that there are nΩ(log log n) juntas in the above
class of functions and therefore our reduction implies that strong learning of monotone depth-3 formulas of
poly(n)-size (even over only k variables) would require a major breakthrough on the problem of learning
juntas over the uniform distribution.

These results are the first lower bounds for learning monotone depth-3 formulas, and leave only the
question of learning monotone DNF formulas (which are of course depth-2 rather than depth-3 monotone
formulas) open. However, these results only say that monotone depth-3 formulas cannot be learned to a
rather high (1 − o(1)) accuracy. Thus a natural goal is to obtain stronger hardness results which show that
simple monotone functions are hard to SQ learn even to coarse accuracy – ideally to some accuracy level
1
2 + o(1) only slightly better than random guessing. Of course, we might expect that to achieve this we must
use somewhat more complicated functions than depth-3 formulas, and this does turn out to be the case – but
only a bit more complicated, as we describe below.

We introduce a general method of amplifying the hardness of a class of functions that are “mildly hard to
learn” (i.e., hard to learn to high accuracy), to obtain a class of functions that are “very hard to learn” (i.e.,
hard to learn to accuracy even slightly better than random guessing). We show that our method, which builds
on O’Donnell’s beautiful hardness amplification for approximating Boolean functions using small circuits
(O’Donnell, 2004), can be applied both within the uniform-distribution PAC model (Th. 12) and within the
uniform-distribution Statistical Query model (Th. 14). The latter is of course our main interest in this paper,
but we believe that the result is of independent interest and therefore present both versions.

We note that while our hardness amplification follows the general approach of O’Donnell, the learning
setting is quite different from approximation of a fixed function by a non-uniform circuit and hence new
technical ideas are required to successfully translate the approach (especially in the SQ case). We defer the
discussion of the proof technique and technical contributions to Section 4.

Using this hardness amplification for SQ learning together with our first main result, we obtain our second
main result: we show that the class of size-no(1), depth-4 monotone formulas cannot be SQ-learned even to
1
2 + 2−(log n)γ accuracy in poly(n) time for any γ < 1/2. We are able to increase the depth by only one (from 3
to 4) by a careful construction of the combining function in our hardness amplification framework; we use a
depth-2 combining function due to Talagrand and the complement of the “tribes” function which have useful
extremal noise stability properties as shown by O’Donnell (2004), Mossel and O’Donnell (2003).

The primary motivating question of learnability of monotone DNF formulas over the uniform distribution
is not resolved in this work. At the same time our results suggest that this long-standing open problem can
be tackled by bounding the strong SQ-dimension of monotone DNF formulas (our own efforts to derive a
non-trivial bound were not successful thus far).

Relation to previous work. To the best of our knowledge even the “mild hardness” result that we prove for
depth-3 monotone formulas is the first unconditional negative result known for learning a class of polynomial-
time computable monotone functions in the uniform-distribution SQ model. We note that the strong 1

2 + o(1)
hardness that we establish for depth-4 monotone formulas is provably near-optimal, since as mentioned earlier
the class of all monotone functions over {0, 1}n can be learned to accuracy 1

2 +
Θ(log n)
√

n in polynomial time
(O’Donnell and Wimmer, 2009).

While the recent work by Dachman-Soled et al. (2008) also gave negative results for learning constant-
depth monotone formulas, those results are different from ours in significant ways. Dachman-Soled et al.
(2008) used a strong cryptographic hardness assumption – that Blum integers are 2nε -hard to factor on average
for some fixed ε > 0 – to show that for some sufficiently large absolute constant d, the class of monotone
functions computed by size-no(1), depth-d formulas cannot be PAC learned, under the uniform distribution, to
a certain accuracy 1

2 +o(1). In contrast, our main hardness result applies to the more restricted classes of size-
no(1), depth-3 and 4 monotone formulas, and gives unconditional hardness for polynomial-time algorithms in
the Statistical Query model.

Our reduction from learning juntas can be thought of as giving a hardness result based on a relatively
strong computational assumption and hence has the same flavor as the result by (Dachman-Soled et al.,

3

2008). In addition to better depth, our reduction is substantially simpler and more direct than the reduction
from factoring Blum integers.

Finally, we remark here that our hardness amplification method for PAC and SQ learning may be viewed
as a significant strengthening and generalization of some earlier results. Boneh and Lipton (1993) described
a form of uniform-distribution hardness amplification for PAC learning based on the XOR lemma; our PAC
hardness amplification generalizes their result and extends to SQ learning. More recently, Dachman-Soled
et al. (2008) used elements of O’Donnell’s technique to amplify information-theoretic hardness of learning.
Specifically, the “mildly hard” class of functions F used by Dachman-Soled et al. (2008) consists of all
functions of the form slice(f), where f may be any Boolean function and slice(f) is the function which agrees
with Majority everywhere except the middle layer of the Boolean hypercube. An easy argument shows that
F is a class of monotone functions that is hard to learn to accuracy 1−Θ(1)/

√
n. Using the fact that a random

function in F is trivial to predict off of the middle layer and is totally random on the middle layer, expected
bias analysis from (O’Donnell, 2004) is used by Dachman-Soled et al. (2008) to derive information-theoretic
hardness of learning the combined function class F g. In contrast, the hardness amplification results of this
paper amplify computational hardness, do not assume any particular structure of the base class F (only that
it is “mildly hard to learn”) and, importantly, apply to learning in the SQ model.

Organization. Section 2 gives background on Statistical Query learning, the SQ-dimension, and the strong
SQ-dimension. In Section 3 we describe our class of depth-3 monotone formulas and show that it is “mildly”
hard to learn in the SQ model by giving a superpolynomial lower bound on its strong SQ-dimension. We
give the reduction from learning juntas in Section 3.3. Section 4 presents our general hardness amplification
results for the uniform-distribution PAC model and the uniform-distribution Statistical Query learning model.
We apply our hardness amplification technique from Section 4 to obtain our second main result, strong SQ
hardness for depth-4 formulas, in Section 5.

2 The Statistical Query Model, SQ-Dimension, and Strong SQ-Dimension
Recall the definition of Statistical Query learning from Section 1. Blum et al. (1994) introduced the notion
of the SQ-dimension of function class F under distribution D, and showed that it characterizes the weak-
learnability of F underD in the SQ model. Bshouty and Feldman (2002) and Yang (2005) later generalized
and sharpened the result of Blum et al. (1994). We will use Yang’s version here extended to sets of arbitrary
real-valued functions. We write “〈 f , g〉D” to denote Ex∼D[f (x)g(x)] and “ ‖ f ‖D” to denote (〈 f , f 〉D)1/2.

Definition 1 Given a set C of real-valued functions, the SQ-dimension of C with respect to D (written
SQ-DIM(C,D)) is the largest number d such that ∃{ f1 , . . . , fd} ⊆ C with the property that ∀i , j,∣∣∣〈 fi, f j〉D

∣∣∣ ≤ 1
d
. (1)

WhenD is the uniform distribution we simply write SQ-DIM(C). We refer to the LHS of Equation (1) as the
correlation between fi and f j underD.

Intuitively, this condition says that C contains d “nearly-uncorrelated” functions. It is easy to see that if
C is a concept class with SQ-DIM(C,D) = d then C can be weakly learned with respect to D to accuracy
1
2 +

Θ(1)
d using d Statistical Queries with tolerance Θ(1)

d ; simply ask for the correlation between the unknown
target function f and each function in the set { f1, . . . , fd}. Since the set is maximal, the target function must
have correlation at least 1/d with at least one of the functions.

Blum et al. showed that the other direction is true as well; if C is efficiently weakly learnable, then Cmust
have small SQ-dimension.

Theorem 2 (Blum et al., 1994, Th. 12) Given a concept class C and a distribution D, let SQ-DIM(C,D) =
d. Then if the tolerance τ of each query is always at least 1/d1/3, at least 1

2 d1/3 − 1 queries are required to
learn C with advantage 1/d3.

As an example, the class PAR of all parity functions over n variables has SQ-DIM(PAR) = 2n, and
thus any SQ algorithm for learning parities over the uniform distribution U to accuracy 1

2 + 1
2O(n) requires

exponential time.

2.1 The Strong SQ-Dimension
The statistical query dimension only characterizes the weak SQ-learnability of a class and is not sufficient to
characterize its strong SQ-learnability. The first characterization of strong SQ learning was given by Simon
(2007), but for our application a subsequent accuracy-preserving characterization by Feldman will be more
convenient to use (Feldman, 2010).

4

Let F ∞1 denote the set of all functions from {0, 1}n → [−1, 1], i.e., all functions with L∞-norm bounded
by 1. For a Boolean function f , we define BD(f , ε) to be {g : {0, 1}n → {−1, 1} : PrD[g , f] ≤ ε}, i.e., the
ε-ball around f , and 0 to be the constant 0 function. The sign function is defined as sign(z) = 1 for z ≥ 0,
sign(z) = −1 for z < 0. Finally, for a set of real-valued functions C, let C − g = { f − g : f ∈ C}.

Definition 3 Given a concept class C and ε > 0, the strong SQ-dimension of C with respect to D is defined
to be:

SQ-SDIM(C,D, ε) = sup
g∈F ∞1

SQ-DIM((C \ BD(sign(g), ε)) − g,D).

Just as for the weak SQ-dimension, the strong SQ-dimension completely characterizes the strong SQ-
learnability of a concept class.

Theorem 4 (Feldman, 2010) Let C be a concept class over {0, 1}n, D be a probability distribution over
{0, 1}n and ε > 0. If there exists a polynomial p(·, ·) such that C is SQ learnable over D to accuracy ε from
p(n, 1/ε) queries of tolerance 1/p(n, 1/ε) then SQ-SDIM(C,D, ε + 1/p(n, 1/ε)) ≤ p′(n, 1/ε) for some poly-
nomial p′(·, ·). Further, if SQ-SDIM(C,D, ε) ≤ q(n, 1/ε) for some polynomial q(·, ·) then C is SQ learnable
overD to accuracy ε from q′(n, 1/ε) queries of tolerance 1/q′(n, 1/ε) for some polynomial q′(·, ·).

Armed with Definition 3 and Theorem 4, we can show that a concept class C is not polynomial-time
learnable to high accuracy by choosing a suitable ε = Ω(1/ poly(n)) and a suitable function g ∈ F ∞1 and
proving that SQ-DIM((C \ BU(sign(g), 2ε)) − g) = nω(1) (we can assume without loss of generality that ε
upper bounds the tolerance of an SQ algorithm). We do just this, for a class of depth-3 monotone formulas,
in the next section.

3 Lower Bounds for Depth-3 Monotone Formulas
In this section we describe our lower bound for SQ learning of depth-3 monotone formulas and the reduction
from learning juntas.

3.1 Strong SQ lower bound
We start be showing a family of monotone functions that cannot be strong SQ-learned in polynomial time
under the uniform distribution. The high-level idea is that we embed a family of non-monotone functions
with high SQ-dimension – a family of parity functions – into the middle level of the k-dimensional Boolean
cube, and thus obtain a class of monotone functions with high strong SQ-dimension.

A k-variable slice function for f , where f is a real-valued function over {0, 1}k, is denoted slice f . For
x ∈ {0, 1}k the value of slice f (x) is 1 if x has more than dk/2e ones, −1 if x has fewer than dk/2e ones, and f (x)
if x has exactly dk/2e ones. The functions we consider will only be defined over the first k out of n variables.
Throughout the rest of this section, without loss of generality, we will always assume that k is even.

Theorem 5 Let P be the class of 2k−1 parity functions χ : {0, 1}k → {+1, -1} over an odd number of the first k
variables. LetM be the class of corresponding k-variable slice functions sliceχ for χ ∈ P. Let k = log2−β(n)
for β any absolute constant in (0, 1). Then for every ε = o(1/

√
k), we have SQ-SDIM(M, ε) = nΘ(log1−β n), and

every function inM is balanced.

Proof: We first show that every function sliceχ ∈ M is balanced, i.e. outputs +1 and −1 with equal probabil-
ity. As k is even, the number of inputs with greater than k/2 ones is the same as the number of inputs with
fewer than k/2 ones. As for the middle layer, given an input with exactly k/2 ones on which χ outputs +1,
flipping all the bits gives another point with exactly k/2 ones on which χ outputs −1 (as χ is a parity on an
odd number of bits). Thus every sliceχ ∈ M is balanced on the middle layer and thus is balanced overall.

Let g = slice0. We will show that SQ-DIM(M\BU(sign(g), 2ε)−g) = nω(1). By Stirling’s approximation,
the middle layer of the k-dimensional hypercube is a λk =

(
k

k/2

)
/2k = Θ(1/

√
k) fraction of the 2k points. Thus

for ε = o(1/
√

k) we have thatM is disjoint from BU(sign(g), 2ε) = ∅ (since sign(g) equals +1 everywhere
on the middle layer and every function inM is balanced on the middle layer), and it is enough to lower-bound
SQ-DIM(M− g) in order to lower-bound the strong SQ-dimension ofM.

The functions in M − g have a nice structure as they output 0 everywhere except the middle layer of
{0, 1}k, where they output ±1. Thus, the correlation between any two functions in M − g depends only on
the values on the middle slice. Let χA, χB ∈ P be the parity functions over the sets of variables A, B ⊆ [k].
Recalling Equation (1),

|〈sliceχA − g, sliceχB − g〉U | = |EU[1|x|=k/2 · χA · χB]| = EU[1|x|=k/2 · χA⊕B] = 1̂|x|=k/2(A ⊕ B)

5

where A⊕B denotes the symmetric difference between the sets A and B, 1|x|=k/2 is the indicator function of the
middle slice, and ĥ(A) is the Fourier coefficient of h with index χA. In other words, the correlation between
(sliceχA − g) and (sliceχB − g) is exactly the Fourier coefficient of 1|x|=k/2 with index A⊕ B. Let s = |A⊕ B|. By
symmetry, all

(
k
s

)
of the degree-s Fourier coefficients of 1|x|=k/2 are the same, and since by Parseval’s identity

the squares of all the Fourier coefficients sum to EU[12
|x|=k/2] = λk, we have |〈sliceχA − g, sliceχB − g〉U | ≤√

λk/
(

k
s

)
≤

(
k
s

)−1/2
.

It remains to identify a large collection of these slice functions such that the pairwise correlations are
small. This can be done easily by picking any χA ∈ P, removing all χB ∈ P such that |A ⊕ B| < [k/3, 2k/3],
and repeating this process. Since each removal step removes at most a 1

2Θ(k) fraction of all 2k−1 elements of
P, in this fashion we can construct a set S of size 2Θ(k). Every pair of parities in S has symmetric difference
s for some s ∈ [k/3, 2k/3], and for such an s we have

(
k
s

)
= 2Θ(k). Thus the set {sliceχ − g}χ∈S is a collection

of 2Θ(k) = nΘ(log1−β n) functions inM− g whose pairwise correlations are each at most 1/2Θ(k) = 1/nΘ(log1−β n),
and thus the SQ-dimension ofM− g is at least nΘ(log1−β n).

3.2 The depth-3 construction
It remains to show that every function inM has a depth-3 monotone formula.

Theorem 6 Let χ be any parity function over some subset of the variables x1, . . . , xk where k = log2−β(n)
for β any absolute constant in (0, 1). Then the k-variable slice function sliceχ is computed by an no(1)-size,
depth-3 monotone formula.

Proof: Let Thk
j be the k-variable threshold function that outputs TRUE if at least j of the k inputs are set to

1, and FALSE otherwise. The threshold function Thk
j can be computed by a monotone formula of size no(1)

and depth 3 using the construction of Klawe et al. (1984).
Let χ be a parity function on j out of the first k variables. For x ∈ {0, 1}k let x1 refer to the j variables of

χ and x2 refer to the remaining k − j variables. We claim that

sliceχ(x) =
∨

odd i< j

[Th j
i (x1) ∧ Thk− j

k/2−i(x2)] .

To see this, note that if an input x has fewer than k/2 ones, then there can be no i such that Th j
i (x1) and

Thk− j
k/2−i(x2) both hold, so this function outputs FALSE as it should. If x has more than k/2 ones, some ` of

them are in x1, and at least k/2 − ` + 1 of them are in x2. If ` is odd then i = ` makes the OR output TRUE,
and if ` is even then i = (` − 1) makes the OR output TRUE. Finally, if x has exactly k/2 ones, and an odd
number of them are in x1, the formula is satisfied; if an even number of them are in χ, the formula is not
satisfied.

Each Th j
i and Thk− j

k/2−i can be computed by a no(1)-size, depth-3 monotone formula with an OR on top

(Klawe et al., 1984). Using the distributive law we can convert Th j
i (x1) ∧ Thk− j

k/2−i(x2) to also be a no(1)-size,
depth-3 monotone formula with an OR on top. This OR can be collapsed with the top d j/2e-wise OR, yielding
a no(1)-size, depth-3 monotone formula for sliceχ.

We have thus established:

Theorem 7 For some ε = 1/(log n)Θ(1), the class of no(1)-size, depth-3 monotone formulas has Strong SQ-
Dimension nω(1).

As an immediate corollary, by Theorem 4 we get:

Corollary 8 The class of no(1)-size, depth-3 monotone formulas is not SQ-learnable to some accuracy 1 −
1/(log n)Θ(1) in poly(n) time.

3.3 Reduction from learning juntas
We now show that ideas from the proof of Theorem 6 can also be used to reduce learning of other non-
monotone function classes to learning of shallow monotone formulas. Namely, we give the following reduc-
tion from learning of juntas over k = log2 n/ log log n variables to learning of depth-3 monotone formulas.
The ith variable of a Boolean function f is said to be relevant if there exist inputs x and y in {0, 1}n that differ
only on the ith coordinate such that f (x) , f (y). A j-junta is a function that has at most j relevant variables.

6

Theorem 9 Let A be a uniform distribution PAC learning algorithm that learns the class of poly(n)-size
depth-3 monotone formulas to accuracy ε in time polynomial in n and 1/ε. Then there exists a uniform-
distribution PAC learning algorithm C that exactly learns the class of log(n)-juntas where the relevant vari-
ables are chosen from the first k = log2(n)/ log log(n) variables in time polynomial in n.

The proof of Theorem 9 appears in the appendix.
We note that Theorem 9 is incomparable to Corollary 8. It is easy to translate Theorem 9 into the SQ

model. As a result we would obtain a superpolynomial lower bound for strong SQ learning monotone depth-3
formulas. This is true since a junta can be a parity function and there are at least

(
log2 n/ log log n

log n

)
= nΩ(log log n)

different parities in the above class of juntas. However both the lower bound and the accuracy parameter
in Corollary 8 are substantially better. The better accuracy parameter is required for hardness amplification
using a single additional level.

In the next section we introduce hardness amplification machinery that will enable us to extend the SQ
learning hardness result to accuracy 1

2 + o(1) (for depth-4 formulas).

4 Hardness Amplification for Uniform Distribution Learning
O’Donnell (2004) developed a general technique for hardness amplification. His approach, which may be
viewed as a generalization of Yao’s XOR lemma, gives a bound on the hardness of g⊗ f = g(f (x1), . . . , f (xk))
where f is a “mildly” hard function and g is an arbitrary k-bit combining function.

At a high-level O’Donnell’s proof has three components. The first component shows the existence of a
circuit weakly approximating f over any δ-fraction of the domain whenever there exists a circuit for g ⊗ f
that outperforms the expected bias of g (see definition below). The second part of O’Donnell’s proof uses
Impagliazzo’s hard-core lemma (Impagliazzo, 1995) to obtain a δ-approximating circuit for f given circuits
that weakly approximate f over any δ-fraction of the domain. The third component is the construction of
combining functions that have the desired expected bias.

The first of the two primary obstacles in translating the result to the learning framework is that the first
component uses non-uniform advice that depends on f . This advice is, in general, not available to the learning
algorithm2. A substantial effort was devoted to obtaining (more) uniform versions of O’Donnell’s result, most
notably by Trevisan (Trevisan, 2003, 2005). Both of his reductions are uniform and do not use access to f
but neither is sufficient for our purposes. The first reduction only amplifies to accuracy 3/4 + o(1) (Trevisan,
2003) and the second reduction uses a specific combining function of non-constant circuit depth (Trevisan,
2005). At the same time a learning algorithm has a form of access to f (either random examples or statistical
queries) and hence hardness amplification need not be independent of f (or “black-box”). Indeed, it is not
hard to show that Trevisan’s simpler and more uniform version of the first component (Trevisan, 2003) can
be simulated using random examples of f in place of non-uniform advice (Trevisan, 2010). However, it is
unclear if this approach can be used with access only to statistical queries. To solve this problem we show
a uniform and general version of the first component, namely an algorithm that given a circuit for g ⊗ f
produces a short list of circuits that, with significant probability, contains a circuit weakly approximating f
over any δ-fraction of the domain chosen in advance (Lem. 11). The algorithm does not use access to f but
can use statistical queries to find the weakly approximating circuit among the candidate circuits.

The second obstacle is the fact that in order to obtain a circuit for g ⊗ f a learning algorithm needs to
simulate a statistical query oracle for g ⊗ f using a statistical query oracle for f (when learning from random
examples simulation of random examples of g ⊗ f is trivial). We show that this is possible by giving a
procedure that uses a function ψ that approximates f in place of f to answer statistical queries for g ⊗ f . To
create such ψ we use a form of gradient descent to f in which the equivalent of the gradient can be generated
whenever ψ cannot be used in place of f to answer a statistical query for g ⊗ f . The number of steps of
the gradient descent is bounded and therefore this method produces correct answers to statistical queries for
g ⊗ f .

We replace the second component (the hard-core lemma) with “smooth boosting,” a technique from com-
putational learning theory which is known to be analogous to hard-core set constructions (Klivans and Serve-
dio, 2003).

Finally, for the third component we need to show that appropriate hardness amplification can be obtained
by using only one additional level of depth. By combining balanced Talagrand CNF and the complement of
the “tribes” DNF with carefully chosen parameters and using analysis from (O’Donnell, 2004, Mossel and
O’Donnell, 2003), we demonstrate hardness amplification from 1− log−α n accuracy to 1/2+2− logβ n accuracy
using a small monotone CNF as a combining function, where α and β are positive constants (Lem. 16).

2To avoid a potential source of confusion we remark that while our SQ learning lower bounds are information-theoretic
and hence allow obtaining an SQ learning algorithm that uses non-uniform advice, such advice cannot depend on f .

7

Notation and Terminology. For g a k-variable Boolean function and f an n-variable Boolean function, we
write g⊗ f to denote the nk-variable function g(f (x1), . . . , f (xk)). For F a class of n-variable functions and g
a fixed k-variable combining function, we write F g to denote the class {g ⊗ f : f ∈ F }.

Let Pk
δ denote the distribution of random restrictions ρ on k coordinates, in which each coordinate is

mapped independently to ? with probability δ, to 0 with probability (1 − δ)/2, and to 1 with probability
(1 − δ)/2. We write hρ for the function given by applying restriction ρ to the function h. For a k-variable
±1-valued function h we write bias(h) to denote max{Pr[h = −1],Pr[h = 1]}. The expected bias of h at δ is
ExpBiasδ(h) = Eρ[bias(hρ)], where ρ is a random restriction from Pk

δ.

4.1 Hardness Amplification in the PAC Setting
The most significant use of non-uniformity in the first component of O’Donnell’s proof is the lemma asserting
that if one can predict a Boolean function on the hypercube noticeably better than the function’s bias then
there exist two adjacent points of the hypercube on which predictions are noticeably different (O’Donnell,
2004). We start by showing an average-case version of this lemma by proving that predictions need to be
different on average over all edges of the hypercube.

Lemma 10 Given two functions h : {0, 1}k → {−1, 1} and p : {0, 1}k → [0, 1], suppose that

1
2k

 ∑
x:h(x)=1

p(x) +
∑

x:h(x)=−1

(1 − p(x))

 ≥ bias(h) + ε . (2)

Then E(x,y)[|p(x) − p(y)|] ≥ 4ε2/k where (x, y) is a randomly and uniformly chosen edge in the Boolean
hypercube {0, 1}k.

Proof: Let us assume without loss of generality that h is biased towards 1. By the Poincaré inequality over
the discrete cube we know that for any function p over {0, 1}k:

Var[p] = E[p2] − E[p]2 ≤
k
4

E(x,y)[(p(x) − p(y))2].

The range of p is [0, 1], so E(x,y)[|p(x) − p(y)|] ≥ E(x,y)[(p(x) − p(y))2] ≥ 4Var[p]/k. It is now sufficient to
prove that Var[p] ≥ ε2.

Let b := bias(h) = Pr[h = 1] ≥ 1/2. We can rewrite Equation 2 as

b + ε ≤
1
2k

 ∑
x:h(x)=1

p(x) +
∑

x:h(x)=−1

(1 − p(x))


= E[h(x)(p(x) − E[p(x)])] + E[p(x)]b + (1 − E[p(x)])(1 − b).

As b ≥ 1/2, bE[p] + (1 − b)(1 − E[p]) < b, and thus E[h(x)(p(x) − E[p(x)])] ≥ ε. Because h(x) ∈ {−1, 1}
we obtain E[|p − E[p]|] ≥ ε. Using the Cauchy-Schwarz inequality, we get Var[p] = E[(p − E[p])2] ≥
E[|p − E[p]|]2 ≥ ε2.

Suppose we are given a circuit C that approximates g⊗ f sufficiently well that it outperforms the expected
bias of g. Roughly speaking, the following lemma shows that for any large enough set S , from C we can
extract a circuit C′ that weakly approximates f over the inputs in S .

Lemma 11 There is a randomized algorithm Extract with the following property: For any:

1. Parameters 0 < ε ≤ 1/2, 0 < η < 1, subset S ⊆ {0, 1}n such that |S | = η2n, Boolean function g over
{0, 1}k, and

2. Boolean function f such that bias(f) ≤ 1/2 + ε/(8k) and bias(f |S) ≤ 1/2 + ε2/(4k),

given a circuit C over {0, 1}k×n s.t.

PrUk [C = g ⊗ f] = Pr(x1,...,xk)∈{0,1}k×n [C(x1, . . . , xk) = g(f (x1), . . . , f (xk))] ≥ ExpBiasη(g) + ε,

the algorithm Extract returns an n-input circuit C′ such that with probability at least ε2/k (over the ran-
domness of Extract) we have Prx∈S [C′(x) = f (x)] ≥ 1/2 + ε2/(2k). The algorithm Extract runs in time
O(nk + |C|) and the circuit C′ is of size at most |C|.

8

The proof of Lemma 11 appears in the appendix.
As we will see below, two key properties of this lemma are that Extract is efficient and is oblivious of

both f and S . The second property is crucial for hardness amplification in the SQ model. In the second part of
the proof, we show how an algorithm A that learns the combined class F g to moderate accuracy can be used
to obtain an algorithm B that learns the original class F to high accuracy. This is exactly the well-studied
“weak learning =⇒ strong learning” paradigm of boosting in computational learning theory (see Schapire,
1990, 2001 for introductions to boosting). Roughly speaking, boosting algorithms are automatic procedures
that can be used to convert any weak learning algorithm (that only achieves low accuracy slightly better than
1/2) into a strong learning algorithm (that achieves high accuracy close to 1). Boosting algorithms work by
repeatedly running the weak learning algorithm under a sequence of carefully chosen probability distributions
D1,D2, . . . , obtaining weak hypotheses h1, h2, If each hypothesis hi has non-negligible accuracy under
the distribution Di that was used to generate it, then the boosting guarantee ensures that the final hypothesis
h (which combines h1, h2, . . .) has high accuracy under the original distribution.

Since we require the set |S | to be “large” (recall the statement of Lemma 11), we will need to use a
so-called “smooth boosting algorithm” such as the algorithm by Servedio (2003). A 1/δ-smooth boosting
algorithm is a boosting algorithm with the following property: if the original distribution is uniform over a
finite domain X (as is the case for us here), then in learning to final accuracy δ, every distributionDi that the
smooth boosting algorithm constructs will be “1/δ-smooth,” meaning that it puts probability weight at most
1
δ
· 1
|X| on any example x ∈ X. Such 1/δ-smooth distributions correspond naturally to large sets S (of size δ2n)

in Lemma 11.
So at a high level, we use a smooth boosting algorithm, and for each smooth distribution that it constructs

we use Extract several times to generate a set of candidate weak hypotheses (recall that Extract constructs
a “good” C′ only with some nonnegligible probability). These hypotheses are then tested using uniform
examples (filtered according to the current smooth distribution; since the distribution is smooth this does not
incur much overhead), and we identify one which has the required nonnegligible accuracy. The boosting
guarantee ensures that the combined hypothesis has accuracy 1 − δ under the original (uniform) distribution.

Having sketched the intuition for the second stage, we now state the main hardness amplification theorem
for PAC learning.

Theorem 12 Let F be a class of functions such that for every f ∈ F , bias(f) ≤ 1/2 + ε/(8k). Let A be a uni-
form distribution PAC learning algorithm that learns F g to accuracy ExpBiasδ(g)+ε. There exists a uniform-
distribution PAC learning algorithm B that learns F to accuracy 1− δ in time O(T1 · T2 · poly(n, k, 1/ε, 1/δ))
where T1 is the time required to evaluate g and T2 is the running time of A.

Proof: Let f denote the unknown target function. We will first simulate A to obtain a circuit C that is
(ExpBiasδ(g) + ε)-close to g⊗ f . To generate a random example of g⊗ f we simply draw k random examples
of f : (x1, `1), . . . , (xk, `k) and give the example ((x1, . . . , xk), g(`1, . . . , `k)) to A.

We now use C to produce weak hypotheses on distributions produced by the 1/δ-smooth boosting algo-
rithm by Servedio (2003) (here δ refers to the desired accuracy parameter).

Let Dt(x) denote the distribution obtained at step t of boosting and let h1, . . . , ht−1 be the hypotheses
obtained in the previous stages of boosting. Let M = 2nL∞(Dt) and let S t denote a set obtained by including
each point x ∈ {0, 1}n randomly with probability Dt(x)/M. As it is easy to see (e.g., Impagliazzo, 1995),
for any function h fixed independently of the random choices that determine S t, with probability at least
1 − 2−n/2 (over the choice of S t) |PrDt [h = f] − PrS t [h = f]| ≤ 2−n/2. Therefore for our purposes we can treat
PrS t [h = f] as equal to PrDt [h = f].

If bias(f |S t) ≥ 1/2 + ε2/(4k) then PrS t [f = b] ≥ 1/2 + ε2/(4k) for b ∈ {−1, 1}. Otherwise, by
Lemma 11, with probability at least ε2/k the algorithm Extract returns a circuit C1 such that PrS t [C1 =
f] ≥ 1/2 + ε2/(2k). As it is easy to see from the analysis by Servedio (2003), the value Dt(x)/M equals
µt(f (x), h1(x), . . . , ht−1(x)) for a fixed function µt defined by the boosting algorithm. This allows the learning
algorithm to generate random examples from Dt(x) by filtering random and uniform examples using µt. In
particular, we can estimate PrDt [h = f] to accuracy ε2/(12k) and confidence 1/2 using Õ(k2/ε4δ) random
and uniform examples in order to test whether either −1, 1 or C′ give a good weak hypothesis (the 1/δ factor
in the number of examples suffices because we are using a 1/δ-smooth boosting algorithm). By repeating the
execution of Extract a total of O(ε−2 · k log (k/εδ)) times we can ensure that with probability at least 2/3
this weak learning step is successful in all O(k2/(ε4δ)) boosting stages that the booster by Servedio (2003)
requires. This implies that the boosting algorithm produces a (1 − δ)-accurate hypothesis with probability at
least 2/3. It is easy to verify that the running time of this algorithm is as claimed.

Remark 13 This hardness amplification also applies to algorithms using membership queries since mem-
bership queries to g ⊗ f can be easily simulated using membership queries to f .

9

4.2 Hardness amplification in the Statistical Query setting
We now establish the SQ version of hardness amplification.

Theorem 14 Let F be a class of functions such that for every f ∈ F , bias(f) ≤ 1/2 + ε/(8k). Let A be
a uniform-distribution SQ-learning algorithm that learns F g to accuracy ExpBiasδ(g) + ε using queries of
tolerance τ. There exists a uniform-distribution SQ learning algorithm B that learns F to accuracy 1 − δ
in time O(T1 · T2 · poly(n, k, 1/ε, 1/δ)) using queries of tolerance Ω(δ · min{τ/k, ε2/k}), where T1 is the time
required to evaluate g and T2 is the running time of A.

Proof: The main challenge in translating the result to SQ-learning is to simulate SQs for g ⊗ f using SQs
for f . Given the circuit C we can proceed exactly as in the proof of Theorem 12 but use SQs of tolerance
Ω(δε2/k) to estimate the bias of f on S t or to test whether the output of Extract is a weak hypothesis.

We now describe how to simulate statistical queries to g ⊗ f . The distribution is known to be uniform
therefore it is sufficient to answer only correlational statistical queries of A (Bshouty and Feldman, 2002),
namely, it is sufficient to be able to estimate EUk [φ · (g ⊗ f)] within τ/2, where φ is a Boolean function over
{0, 1}kn. To estimate EUk [φ ·(g⊗ f)] we plan to use random sampling with an approximation to f used in place
of f . We refer to the approximation as ψr(x). However, before doing so, we first test whether ψr is suitable
to be used as a replacement. In the main technical claim we prove that if ψr(x) cannot be used to replace f
then we can find a way to update ψr to ψr+1 which is closer to f than ψr in L2 distance. The number of such
updates will be bounded and therefore we will eventually obtain ψr that can be used in place of f . Formally,
let ψ0(x) ≡ 0 and for a function ψr(x) ∈ F ∞1 we denote by Ψr(x) the random {−1, 1} variable with expectation
ψr(x). We also denote by g ⊗ Ψr the random variable obtained by applying g to k evaluations of Ψr.

Lemma 15 For i ∈ [k] and y = y1, . . . , yi−1, yi+1, . . . , yk ∈ {0, 1}n and any function φ over {0, 1}kn, we denote
φi,y(xi) = φ(y1, y2, yi−1, xi, yi+1, . . . , yk). Let λ = |EUk [φ · g ⊗ f] − EUk ,Ψ[φ · g ⊗ Ψ]|. Then for randomly and
uniformly chosen i, y, with probability at least λ/(4k), |EU[φi,y(x) · f (x)] − EU[φi,y(x) · ψ(x)]| ≥ λ/(2k).

Proof: First we denote by g⊗ f i,Ψ the i-th hybrid between g⊗ f and g⊗Ψ. Namely, the randomized function
g ⊗ f i,Ψ(x) = g(f (x1), . . . , f (xi),Ψ(xi+1), . . . ,Ψ(xk)). Now, g ⊗ f k,Ψ = g ⊗ f and g ⊗ f 0,Ψ = g ⊗ Ψ. Hence we
can write,∣∣∣EUk [φ · g ⊗ f] − EUk ,Ψ[φ · g ⊗ Ψ]

∣∣∣ = k ·
∣∣∣∣Ei∈[k]

[
EUk ,Ψ[φ · g ⊗ f i,Ψ] − EUk ,Ψ[φ · g ⊗ f i−1,Ψ]

]∣∣∣∣
We now split the random and uniform choice over {0, 1}kn into choosing y = y1, . . . , yi−1, yi+1, . . . , yk ∈ {0, 1}n
and xi ∈ {0, 1}n randomly and uniformly.∣∣∣∣Ei∈[k],y

[
EU,Ψ[(φ · g ⊗ f i,Ψ)i,y(xi)] − EU,Ψ[(φ · g ⊗ f i−1,Ψ)i,y(xi)]

]∣∣∣∣ ≥ λ/k . (3)

We claim that

EU,Ψ[(φ · g ⊗ f i,Ψ)i,y(xi)] = EU
[
φi,y · EΨ[(g ⊗ f i,Ψ)i,y(xi)]

]
= EU[φi,y · (αi,y f (xi) + βi,y)] .

Here αi,y and βi,y are constants in [−1, 1].
To see this assume for simplicity that Ψ is deterministic. Then

(g ⊗ f i,Ψ)i,y(xi) = g(f (y1), . . . , f (yk−1), f (xi), f (yk−1), . . . , f (yk)) .

All the variables of g are fixed except for the i-th and therefore this restriction of g equals 1,−1, f (xi) or
− f (xi). This corresponds to αi,y, βi,y ∈ {−1, 0, 1} and exactly one of them is non-zero. For randomized Ψ we
obtain a fixed convex combination of the deterministic cases that can be represented by αi,y, βi,y ∈ [−1, 1].
Similarly,

EU,Ψ[(φ · g ⊗ f i−1,Ψ)i,y(xi)] = EU[φi,y · (αi,yψ(xi) + βi,y)] .
By substituting this into equation (3), we obtain∣∣∣∣αi,y · Ei∈[k],y

[
EU[φi,y · f (xi)] − EU[φi,y · ψ(xi)]

]∣∣∣∣ ≥ λ/k .
By the averaging argument, we obtain that with probability at least λ/(4k) over the choice of i and y, |EU[φi,y ·

f (xi)] − EU[φi,y · ψ(xi)]| ≥ λ/(2k).

If |EUk [φ·g⊗ f]−EUk ,Ψr [φ·g⊗Ψr]| ≥ τ/3 then with probability at least τ/(12k) for a randomly chosen φi,y,
|EU[φi,y · f (xi)]−EU[φi,y ·ψ(xi)]| ≥ τ/(6k). Let τ′ = τ/(6k). Now we sample φi,y and test if |EU[φi,y · f (xi)]−
EU[φi,y · ψ(xi)]| ≤ 2τ′/3 using a single SQ of tolerance τ′/6 and an estimate of EU[φi,y · ψ(xi)] within τ′/6
obtained using random sampling. It is easy to see that by repeating this procedure O(k log (1/∆)/τ) times and
using O(k log (1/∆)/τ) random samples we can ensure that with probability at least 1−∆ some φi′,y′ will pass

10

the test whenever |EUk [φ ·g⊗ f]−EUk ,Ψr [φ ·g⊗Ψr]| ≥ τ/3 and also that |EU[φi′,y′ · f (xi′)]−EU[φi′,y′ ·ψ(xi′)]| ≥
2τ′/3 − τ′/3 = τ′/3 whenever φi′,y′ passes the test.

If the test was not passed then we estimate EUk ,Ψ[φ · g⊗Ψ] within τ/6 using random sampling and return
the estimate as the answer to the query. Using O(k log (1/∆)/τ) random samples we can ensure that with
probability 1 − 2∆ the returned estimate is τ/2 close to EUk [φ · g ⊗ f].

Otherwise, we use such φi′,y′ to update ψr using the idea from Feldman’s (2010, Th.3.5) strong SQ char-
acterization: ψr+1 = P1(ψr + (τ′/3) · φi′,y′). Here P1(a) is the function that equals a when a ∈ [−1, 1] and
equals sign(a) otherwise.

As is proved by Feldman (2010, Cl.3.6), |EU[φi′,y′ · (f (xi′)−ψ(xi′)]| ≥ τ′/3 implies that EU[(f −ψr+1)2] ≤
EU[(f − ψr)2] − (τ′/3)2. Therefore at most O(k2/τ2) such updates are possible giving an upper bound on
the additional time required to produce the desired estimates to all the SQs of A (a similar bound can also be
obtained using a different update method of Trevisan et al. (2009)). For an appropriate ∆ = poly(k, 1/τ) we
can make sure that the success probability is at least 2/3.

5 Amplified Hardness for SQ Learning of Depth-4 Monotone Formulas
We begin this section by showing how a refinement of the constructions and analysis from (O’Donnell,
2004, Mossel and O’Donnell, 2003) can be used to obtain a small monotone CNF with low expected bias.
Specifically, we prove the following lemma.

Lemma 16 For every 0 < γ < 1/2, there exists a circuit Ck,m over k variables such that:

ExpBias1/
√

m(Ck,m) ≤
1
2

+ 2−(log n)γ ,

where k = 2(log n)α and m = log2−β(n) for γ < α < β/2 < 1/2, and Ck,m is computable by a monotone CNF of
size no(1).

The lemma is proved in the appendix.
Coupled with our hardness result for depth-3 monotone formulas, Lemma 16 gives the claimed lower

bound for depth-4 monotone formulas.

Theorem 17 For every 0 < γ < 1/2, the class of no(1)-size, depth-4 monotone formulas is not SQ-learnable
to accuracy 1

2 + 2−(log n)γ in poly(n) time.

Proof: LetM be the class from Theorem 5 that is defined over log2−β(n) variables, let Ck,m be the function
from Lemma 29 defined over k = 2(log n)α for m = log2−β(n), and let γ < α < β/2 < 1/2, c < β/2.

Let δ = 1/ log(n)1−c. As δ = o(1/
√

m) = o(1/ log1−β/2(n)), by Theorem 4 and Theorem 5, there is no
poly(n)-time algorithm that can SQ-learn the class M (of m-variable functions) to accuracy 1 − δ. Every
function inM has bias 1/2. Thus, by Theorem 14 and Lemma 16, there is no poly(n)-time algorithm that can
SQ-learn the classMCk,m to accuracy

ExpBiasδ(Ck,m) ≤
1
2

+ O(2−(log n)γ).

Combining the size-no(1), depth-2 monotone formulas constructed in Lemma 16 with ORs on the bottom
layer with k copies of the size-no(1), depth-3 monotone formulas constructed in Theorem 6 with ORs on the
top layer gives us a no(1)-size, depth-4 monotone formula as required.

References
K. Amano and A. Maruoka. On learning monotone boolean functions under the uniform distribution. In

Proceedings of the 13th International Conference on Algorithmic Learning Theory (ALT), pages 57–68,
2002.

Avrim Blum. Learning a function of r relevant variables. In Proc. of the 16th Annual Conference on Com-
putational Learning Theory (COLT), volume 2777 of Lecture Notes in Computer Science, pages 731–733.
Springer-Verlag, 2003.

Avrim Blum, Merrick L. Furst, Jeffrey Jackson, Michael J. Kearns, Yishay Mansour, and Steven Rudich.
Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In Proc. 26th
Annual ACM Symposium on Theory of Computing (STOC), pages 253–262. ACM Press, 1994.

11

Avrim Blum, Carl Burch, and John Langford. On learning monotone boolean functions. In Proc. 39th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 408–415. IEEE Computer Society Press,
1998.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical
query model. Journal of the ACM, 50(4):506–519, July 2003. Prelim. ver. in Proc. of STOC’00.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ framework.
In PODS, pages 128–138, 2005.

D. Boneh and R. Lipton. Amplification of weak learning over the uniform distribution. In Proceedings of the
Sixth Annual Workshop on Computational Learning Theory, pages 347–351, 1993.

Nader H. Bshouty and Vitaly Feldman. On using extended statistical queries to avoid membership queries.
Journal of Machine Learning Research, 2:359–395, 2002. Prelim. ver. in Proc. of COLT’01.

Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone functions. Journal of the
ACM, 43(4):747–770, 2006.

T. Bylander. Learning noisy linear threshold functions. Available at:
http://ringer.cs.utsa.edu/research/AI/bylander/pubs/pubs.html, 1998.

Tom Bylander. Learning linear threshold functions in the presence of classification noise. In Proc. of the 7th
Annual Conference on Computational Learning Theory (COLT), pages 340–347, 1994.

D. Dachman-Soled, H. Lee, T. Malkin, R. Servedio, A. Wan, and H. Wee. Optimal cryptographic hardness
of learning monotone functions. In Proc. 35th International Colloquium on Algorithms, Languages and
Programming (ICALP), pages 36–47, 2008.

John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm for solving linear pro-
grams. In Proc. 36th Annual ACM Symposium on Theory of Computing (STOC), pages 315–320. ACM
Press, 2004.

V. Feldman. A complete characterization of statistical query learning with applications to evolvability. CoRR,
abs/1002.3183, 2010. Prelim. ver. in Proc. of FOCS’09.

Vitaly Feldman. Evolvability from learning algorithms. In Proc. 40th Annual ACM Symposium on Theory of
Computing (STOC). ACM Press, 2008.

T. Hancock and Y. Mansour. Learning monotone k-µ DNF formulas on product distributions. In Proceedings
of the Fourth Annual Conference on Computational Learning Theory, pages 179–193, 1991.

R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of the Thirty-Sixth
Annual Symposium on Foundations of Computer Science, pages 538–545, 1995.

Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. Learning random monotone DNF.
In 11th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems
and 12th International Workshop on Randomization and Computation (RANDOM-APPROX), pages 483–
497. Springer-Verlag, 2008.

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. What
can we learn privately? In FOCS, pages 531–540, 2008.

Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):
983–1006, 1998. Prelim. ver. in Proc. of STOC’93.

Michael J. Kearns, Ming Li, and Leslie G. Valiant. Learning Boolean formulas. Journal of the ACM, 41(6):
1298–1328, 1994. Prelim. ver. in Proc. of STOC’87.

Maria M. Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On monotone formulae
with restricted depth. In Proc. 16th Annual ACM Symposium on Theory of Computing (STOC), pages
480–487. ACM Press, 1984.

Adam Klivans and Rocco A. Servedio. Boosting and hard-core sets. Machine Learning, 53(3):217–238,
2003. Prelim. ver. in Proc. of FOCS’99.

12

Adam R. Klivans and Alexander A. Sherstov. Unconditional lower bounds for learning intersections of
halfspaces. In Proc. of the 19th Annual Conference on Computational Learning Theory (COLT), 2006.

E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random Structures and
Algorithms, 23(3):333–350, 2003.

Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k relevant variables. SIAM
Journal on Computing, 37(3):421–434, 2007. Prelim. ver. in Proc. of STOC’03.

R. O’Donnell and R. Servedio. Learning monotone decision trees in polynomial time. SIAM J. Comput., 37
(3):827–844, 2007.

Ryan O’Donnell. Hardness amplification within NP. Journal of Computer and System Sciences, 69(1):68–94,
2004. Prelim. ver. in Proc. of STOC’02.

Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and monotone nets. In Proc. 50th IEEE Sympo-
sium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, 2009.

Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under the uniform distribution. Theory
of Computing Systems, 33:17–33, 2000.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990. Prelim. ver. in
Proc. of FOCS’1989.

Robert E. Schapire. The boosting approach to machine learning: An overview. In MSRI Workshop on
Nonlinear Estimation and Classification, 2001.

R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:
633–648, 2003.

R. Servedio. On learning monotone DNF under product distributions. Information and Computation, 193(1):
57–74, 2004.

Alexander A. Sherstov. Communication complexity under product and nonproduct distributions. Com-
putational Complexity, Annual IEEE Conference on, 0:64–70, 2008. ISSN 1093-0159. doi: http:
//doi.ieeecomputersociety.org/10.1109/CCC.2008.10.

Hans Ulrich Simon. A characterization of strong learnability in the statistical query model. In Proc. 24th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 393–404, 2007.

B. Szörényi. Characterizing statistical query learning:simplified notions and proofs. In ALT, pages 186–200,
2009.

M. Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243–258, 1996.

Luca Trevisan. List decoding using the XOR lemma. In Proc. 44th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 126–135. IEEE Computer Society Press, 2003.

Luca Trevisan. On uniform amplification of hardness in NP. In Proc. 37th Annual ACM Symposium on
Theory of Computing (STOC), pages 31–38. ACM Press, 2005.

Luca Trevisan. Personal communication, 2010.

Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Regularity, boosting, and efficiently simulating every
high-entropy distribution. In Proc. 24th Annual IEEE Conference on Computational Complexity (CCC),
pages 126–136. IEEE Computer Society Press, 2009.

Leslie G. Valiant. Evolvability. Journal of the ACM, 56(1):3.1–3.21, 2009.

Ke Yang. New lower bounds for statistical query learning. Journal of Computer and System Sciences, 70(4):
485–509, 2005. Prelim. ver. in Proc. of COLT’02.

13

Appendix

6 Proof details
6.1 Proof of Lemma 9
Theorem 18 (Restated 9) Let A be a uniform distribution PAC learning algorithm that learns the class of
poly(n)-size depth-3 monotone formulas to accuracy ε in time polynomial in n and 1/ε. Then there exists
a uniform-distribution PAC learning algorithm C that exactly learns the class of log(n)-juntas where the
relevant variables are chosen from the first k = log2(n)/ log log(n) variables in time polynomial in n.

The proof of this theorem has two components. The first one is to show that the slice function of any
DNF formula of polynomial size on k = log2(n)/ log log(n) variable can be expressed as depth-3 monotone
formula of polynomial size. This allows us to express juntas on up to log(n) variables using a polynomial-size
depth-3 monotone formula. The second component is the algorithm that reconstructs a junta function exactly
given the slice function of the junta. This is possible since for every combination of values of the relevant
variables, the points in the middle slice that have this combination of values constitute an inverse polynomial
fraction of the domain.

We now provide the proof of the first component.

Lemma 19 Let f = T1 , . . . ,Tt be a DNF formula over some subset of the variables x1, . . . , xk where t = nO(1)

and k = log2(n)/ log log(n). Then the k-variable slice function slice f is computable by an nO(1)-size, depth-3
monotone formula.

Proof: As in the proof of Theorem 6 let Thk
j be the k-variable threshold function that outputs TRUE if at

least j of the k inputs are set to 1, and FALSE otherwise. The threshold function Thk
j can be computed by a

monotone formula of size nO(1) and depth 3 using the construction of Klawe et al. (1984).
Given a term Ti of f , let Ai be the set of unnegated variables in Ti and let Bi be the set of negated variables

in Ti. Let xB̄i refer to x restricted to variables outside of Bi.
We claim that

slice f (x) = Thk
k/2+1(x) ∨

t∨
i=1

Thk−|Bi |

k/2 (xB̄i) ∧
∧
j∈Ai

x j

 ,
where each Thk−|Bi |

k/2 is TRUE whenever there are at least k/2 ones in the variables outside of Bi.
If an input x has more than k/2 ones, the first threshold function will output TRUE, and if x has fewer

than k/2 ones, every threshold function (Thk
k/2+1 and Thk−|Bi |

k/2 for all i) will output FALSE. If x has exactly
k/2 ones Thk−|Bi |

k/2 will output 1 only if all the variables in Bi are 0. Thus, each Thk−|Bi |

k/2 (x) ∧
∧

j∈Ai
x j correctly

computes Ti on the middle slice.
The functions Thk

k/2+1 and each Thk−|Bi |

k/2 can be computed by an nO(1)-size, depth-3 monotone formula with
an OR on top (Klawe et al., 1984). Using the distributive law we can convert Thk−|Bi |

k/2 (x) ∧
∧

j∈Ai
x j to also be

a no(1)-size, depth-3 monotone formula with an OR on top. This OR can be collapsed with the (t + 1)-wise
OR yielding a nO(1)-size, depth-3 monotone formula for slice f .

We are now ready to prove Th. 9 by describing the second component.
Proof: Any j-junta can be represented by a DNF formula with 2 j terms, and hence nO(1)-size DNF formulas
over k = log2(n)/ log log(n) can represent any log(n)-junta f over the first k variables. Thus, by Lemma 19,
slice f can be computed by an nO(1)-size, depth-3 monotone formula.

Let j = log(n) (for simplicity we ignore the insignificant rounding errors for j and k). Given examples
from a j-junta f , the algorithm C will generate examples for slice f and run the learning algorithm A with
ε = 1/n3. Let h be the ε-accurate hypothesis returned by algorithm A.

Let z ∈ {0, 1} j be a setting of the j relevant variables of f , and let i be the number of ones in z. Then the
fraction of the points in the middle slice that equals to z when restricted to the relevant variables is(

k − j
k/2 − i

)
/

(
k

k/2

)
≥

(
k − j

k/2 − j

)
/

(
k

k/2

)
=

(k/2) · · · (k/2 − j + 1)
k · · · (k − j + 1)

>

(
k/2 − j + 1

k

) j

≥ 2− j(1 −
2 j
k

) j

≥
e−4 j2/k

2 j = Ω(
1

n log n
) (4)

By Stirling’s approximation the weight of the whole middle slice is Ω(1/
√

k) = Ω(1/ log n) and therefore the
points in the middle equal to z on the relevant variables comprise Ω(1

n log2 n
) > 2/n3/2 fraction of the domain

14

(for sufficiently large n). The same is also true for every setting of j + 1 variables since by equation (4),
e−4(j+1)2/k

2 j+1 = Ω(1
n log n).

Thus, by our choice of ε = 1/n3, the hypothesis h output by A, will output a correct answer with proba-
bility at least 1 − δ for δ = 1/(2n3/2) when restricted to points in the middle slice that match the setting z of
the relevant variables.

To find the relevant variables of the junta, C will do the following for all k(k − 1)/2 unordered pairs of
variables {xa, xb}. It will choose a random x in the middle slice where xa = 0 and xb = 1 or xa = 1 and
xb = 0, and then compare the output of h(x) and h(x′) where x′ is x with the variables xa and xb flipped. It is
important to note that x′ remains in the middle slice. We call pairs that contain at least one relevant variable
“candidates”.

If xa is relevant then x will match the setting z for which xa changes the value when xa is flipped with
probability at least p′ · 4/n3/2. This is true since there are two restriction of j + 1 variables that will be
included in the part of the middle slice from which we sampled randomly, each occurring with probability at
least 2/n3/2. Hence if xa is relevant and xb is not, then h(x) , h(x′) with probability at least p′(1−2δ) ≥ 2/n3/2.
If both xa and xb are not relevant to the junta, then the probability that h(x) , h(x′) < 2δ = 1/n3/2. Thus,
given poly(n) examples we can identify all the candidate pairs. A relevant variable xa is occurs in at least k− j
candidate pairs whereas an irrelevant one can only appear in at most j < k − j candidate pairs. Hence C can
identify all the relevant variables for the junta. Finally, C can try all 2 j = n different settings of the relevant
variables and find the corresponding value of the target junta by taking the majority of values of h on random
points in the middle slice with the corresponding setting of the relevant variables. Our analysis of the error
on such restrictions implies that the correct truth table of the junta will be obtained with high probability. It
is easy to verify that the running time of C is polynomial in n.

6.2 Proof of Lemma 11
Lemma 20 (Restated 11) There is a randomized algorithm Extract with the following property: For any:

1. Parameters 0 < ε ≤ 1/2, 0 < η < 1, subset S ⊆ {0, 1}n such that |S | = η2n, Boolean function g over
{0, 1}k, and

2. Boolean function f such that bias(f) ≤ 1/2 + ε/(8k) and bias(f |S) ≤ 1/2 + ε2/(4k),

given a circuit C over {0, 1}k×n s.t.

PrUk [C = g ⊗ f] = Pr(x1,...,xk)∈{0,1}k×n [C(x1, . . . , xk) = g(f (x1), . . . , f (xk))] ≥ ExpBiasη(g) + ε,

the algorithm Extract returns an n-input circuit C′ such that with probability at least ε2/k (over the ran-
domness of Extract) we have Prx∈S [C′(x) = f (x)] ≥ 1/2 + ε2/(2k). The algorithm Extract runs in time
O(nk + |C|) and the circuit C′ is of size at most |C|.

Proof: The algorithm Extract is very simple: it chooses i ∈ [k] and x1, x2 , . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n
randomly and uniformly. With probability 1/2 Extract outputs the circuit C1 such that C1(xi) = C(x1, x2 , . . . , xi−1,
xi, xi+1, . . . , xk), and with probability 1/2 it outputs the circuit −C1.

We first assume for simplicity that f is unbiased on {0, 1}n and S , and consequently also on {0, 1}n \S . For
a given restriction ρ ∈ Pk

η, we say that an input (x1 , . . . , xk) matches ρ if for all i we have xi ∈ S ⇒ ρ(i) = ?,
and xi < S ⇒ ρ(i) = f (xi). Since we assumed that f is unbiased, the probability that x matches ρ is exactly
the probability of ρ in Pk

η. Let cρ be the probability that C correctly computes g ⊗ f conditioned on the event
that (x1 , . . . , xk) matches ρ. Then, by definition, Eρ[cρ − bias(gρ)] = PrUk [C = g⊗ f]−ExpBiasη(g) ≥ ε. Let
advρ denote max{0, cρ − bias(gρ)}. Clearly, Eρ[advρ] ≥ ε. For a given ρ let Iρ = {i | ρ(i) = ?} and let kρ = |Iρ|.
For y ∈ {−1, 1}kρ , let pρ(y) be the probability that C(x) = 1 conditioned on the event that (x1 , . . . , xk) matches
ρ and f (xi) = yi for each i such that ρ(i) = ? (we refer to this condition as x matching (ρ, y)). We index the
bits of y with subscripts from Iρ. Note that under our assumption of f being unbiased on S the probability of
x matching (ρ, y) is exactly 2−kρPk

η(ρ).
Then it follows that:

cρ = 2−kρ

 ∑
y:gρ(y)=1

pρ(y) +
∑

y:gρ(y)=−1

(1 − pρ(y))

 .
If advρ > 0 then cρ = bias(gρ) + advρ, and we can invoke Lemma 10 on gρ(y) and pρ(y). By this lemma, the
expected value of |pρ(z)− pρ(zi)| for a random edge (z, zi) in {−1, 1}kρ is at least 4adv2

ρ/kρ ≥ 4adv2
ρ/k. (Here zi

is z with the bit zi flipped, where i is an element of Iρ.) Therefore we have

Eρ,i∈Iρ,z∈{−1,1}kρ [|pρ(z) − pρ(zi)|] ≥ Eρ,i∈Iρ,z∈{−1,1}kρ [4adv2
ρ/k] = 4Eρ[adv2

ρ]/k ≥ 4ε2/k , (5)

15

where we used Eρ[advρ] ≥ ε and the Cauchy-Schwartz inequality to obtain the last inequality. We now
observe that |pρ(z) − pρ(zi)| is the expected correlation of C(x) and f (xi) when conditioned on x matching
either (ρ, z) or (ρ, zi). Specifically,∣∣∣EUk [C(x) · f (xi) | x matches (ρ, z) or (ρ, zi)]

∣∣∣
=

∣∣∣EUk [C(x) | x matches (ρ, z)] − EUk [C(x) | x matches (ρ, zi)]
∣∣∣ = 2 · |pρ(z) − pρ(zi)|.

We denote by x(i) = x1, . . . , xi−1, xi+1, . . . , xk and let z′ be equal to z without the i-th bit. With this notation

EUk [C(x) · f (xi) | x matches (ρ, z) or (ρ, zi)] = EUk−1

[
Exi∈S [C(x) · f (xi)] | x(i) matches (ρ, z′)

]
and hence

EUk−1

[∣∣∣Exi∈S [C(x) · f (xi)]
∣∣∣ | x(i) matches (ρ, z′)

]
≥ 2 · |pρ(z) − pρ(zi)|.

By combining this with equation (5) we obtain:

Eρ,i∈Iρ,z∈{−1,1}kρ
[
EUk−1

[∣∣∣Exi∈S [C(x) · f (xi)]
∣∣∣ | x(i) matches (ρ, z′)

]]
≥ 8ε2/k ,

which is equivalent to

Ei∈[k],x(i)∼Uk−1

[∣∣∣Exi∈S [C(x) · f (xi)]
∣∣∣] ≥ 8ε2/k .

This implies that for randomly chosen i and x(i), with probability at least 4ε2/k, we have that C1(xi) =

C(x1, x2 , . . . , xi−1, xi, xi+1, . . . , xk) satisfies
∣∣∣Exi∈S [C1(xi) · f (xi)]

∣∣∣ ≥ 4ε2/k. Hence either PrS [C1 = f] ≥ 1/2 +

2ε2/k or PrS [−C1 = f] ≥ 1/2 + 2ε2/k. This means that with probability at least 2ε2/k the output of our
algorithm satisfies PrS [C′ = f] ≥ 1/2 + 2ε2/k. Thus we have proved the lemma under the additional
assumption that f is unbiased on {0, 1}n and on S .

We now show that a similar but slightly weaker bound can obtained even when f is slightly biased. Let
X′ = {0, 1}n ∪ Z for a set Z of size ε2k/(4k). Let f ′ be a function over X′ such that f ′|{0,1}n = f and f ′|Z is
defined in any way that makes f ′ balanced over X′. This is possible since bias(f) ≤ 1/2 + ε/(8k). Further
let S ′ be S ∪ S Z where S Z ⊆ X′ is a set (disjoint from S) of size at most |S |ε2/(2k) defined so as to make
f ′ balanced on S ′. This is possible since f ′ is balanced on X′ and bias f ′|S ≤ 1/2 + ε2/(4k). Let Ca be the
circuit over X′k that equals to C on {0, 1}nk and 1 everywhere else. We now apply our argument to Ca and f ′.

First,

Pr
U′k

[Ca = g ⊗ f ′] ≥ Pr
U′k

[x ∈ {0, 1}nk] · Pr
Uk

[C = g ⊗ f] ≥ (1 − ε/(4k))k(ExpBiasη(g) + ε)

≥ ExpBiasη(g) + 3ε/4 ≥ ExpBiasη′ (g) + 3ε/4 ,

where U′ denotes the uniform distribution over X′ and η′ = |S ′|/|X′| ≤ 1+ε2/(2k)
1+ε/(4k) η ≤ η. Note that here

we used the fact that for every function g, ExpBiasη(g) is a monotone function of η (O’Donnell, 2004).
Therefore Extract applied to Ca over X′k gives us a circuit C′a such that with probability at least 2(3ε/4)2/k,
we have PrS ′ [C′a = f ′] ≥ 1/2 + 2(3ε/4)2/k. There are at most |S |ε2/(2k) points in S ′ \ S and therefore
PrS [C′a|S = f] ≥ 1/2 + 2(3ε/4)2/k − ε2/(2k) > 1/2 + ε2/(2k). Finally, let D′ denote the distribution over
C′a|S that is produced when Extract is applied to Ca over X′ conditioned on C′a not hardwiring any x j to an
element of Z. We observe thatD′ is exactly the same as the distribution that Extract produces when applied
to C over {0, 1}n. However, if PrS [C′a|S = f] > 1/2 + ε2/(2k) then C′a cannot have any x j hardwired to an
element of Z, since, by definition of Ca, hardwiring x j to an element of Z turns the circuit into the constant-1
function, whereas we know that PrS [1 = f] ≤ bias(f |S) < 1/2 + ε2/(2k). We can therefore conclude that
Extract applied to C over {0, 1}n will output C′ that with probability at least 2(3ε/4)2/k > ε2/k (over the
randomness of Extract) satisfies PrS [C′ = f] ≥ 1/2 + ε2/(2k).

6.3 Proof of Lemma 16
Lemma 21 (Restated 16) For every 0 < γ < 1/2, there exists a circuit Ck,m over k variables such that:

ExpBias1/
√

m(Ck,m) ≤
1
2

+ 2−(log n)γ ,

where k = 2(log n)α and m = log2−β(n) for γ < α < β/2 < 1/2, and Ck,m is computable by a monotone CNF of
size no(1).

16

Before we prove Lemma 16 we review some of the constructions and tools from (O’Donnell, 2004,
Mossel and O’Donnell, 2003).

As described by O’Donnell (2004), instead of calculating the expected bias of a function directly, one
can use noise stability to estimate the expected bias. For x ∈ {0, 1}n, let Nδ(x) be a random variable in {0, 1}n
obtained by flipping each bit of x independently with probability δ.

Definition 22 The noise stability of f at noise rate δ is:

NoiseStabδ(f) = E[f (x) · f (Nδ(x))],

where the probability is taken over the noise and a uniform choice of x.

The following two facts about the noise stability will be useful in proving Lemma 16.

Fact 23 If f is a balanced function and g is any function, then

NoiseStabδ(g ⊗ f) = NoiseStab 1−NoiseStabδ (f)
2

(g).

The noise stability of a function provides a bound on its expected bias.

Lemma 24 (O’Donnell, 2004) ExpBias2δ(f) ≤ 1
2 + 1

2

√
NoiseStabδ(f).

The first class of functions we consider are the Talagrand functions. Talagrand’s function is a randomly
constructed CNF formula on n inputs (Talagrand, 1996). Specifically, it has 2

√
n clauses of size

√
n, where

the
√

n variables of each clause are selected independently and uniformly at random from [n]. We write Tn to
denote this probability distribution over n-variable CNFs. Mossel and O’Donnell showed that these functions
are somewhat sensitive to very small amounts of noise. They prove:

Lemma 25 (Mossel and O’Donnell, 2003) For infinitely many values of n, there is a function Tn in the
support of Tn such that NoiseStab1/

√
n(Tn) ≤ 1 −Ω(1).

The functions of Lemma 25 are not necessarily balanced. We show that there is a balanced version of Tn
that can be computed by a slightly larger CNF formula while preserving its noise stability.

Lemma 26 Let f be a monotone function over n variables represented by a size-s CNF, and let 0 < η < 1/2
be such that Pr[f (x) , f (Nη(x))] ≥ δ. Then there exists a balanced monotone function g over n + 2 variables
represented by a size-(s + n) CNF formula such that Pr[g(x) , g(Nη(x))] ≥ δ/16.

Proof: Our proof is a simple refinement of the proof by Mossel and O’Donnell (2003) that shows the exis-
tence of a balanced version of Tn (not necessarily computable by a “small” CNF).

The new function g will be defined on x and on two extra variables z1 and z2. Let ma(x) be the monotone
function that checks if the number represented by x in binary is at least the number represented by a. Let
ga(zx) = (f (x) ∨ z1) ∧ (ma(x) ∨ z2). Note that ga(01x) = f (x), ga(10x) = ma(x), and g(11x) = TRUE. The
function g0n is biased towards TRUE and g1n is biased towards FALSE and for consecutive a and a′, ga differs
from ga′ on exactly one point. Therefore there exists a value of a such that ga is perfectly balanced. The
function ma(x) can be represented as a short CNF as follows ∧i:ai=1(xi ∨ j: j<i,a j=0 x j). Thus ga(x) has at most n
more clauses than f .

Finally, we have

Pr[g(zx) , g(Nη(zx))] ≥ Pr[z1 = 0 ∧ z2 = 1 ∧ Nη(z) = 01] · Pr[f (x) , f (Nη(x))] ≥ δ/16,

and thus the noise stability of the function is preserved.

Applying Lemma 26 to the appropriate Talagrand function chosen from Tn−2 gives us the following corol-
lary.

Corollary 27 There exists an infinite family of balanced monotone functions Taln : {0, 1}n → {+1, -1} with
NoiseStabn−1/2 (Taln) ≤ 1 −Ω(1), that can be represented by a (2

√
n + n)-size monotone CNF.

The second function we consider is the “tribes” function, which is sensitive to moderate noise. Given a
positive integer b, let n = nb be the smallest positive integral multiple of b such that (1 − 2−b)n/b ≤ 1/2, so n
is roughly (ln 2)b2b and b equals log n − log ln n + o(1). The “tribes” function on n variables is the read-once
n/b-term monotone b-DNF

(x1 ∧ · · · ∧ xb) ∨ (xb+1 ∧ · · · ∧ x2b) ∨ · · · ∨ (xn−b+1 ∧ · · · ∧ xn).

17

Lemma 28 (Mossel and O’Donnell, 2003, O’Donnell, 2004) Let Tribesn : {0, 1}n → {+1, -1} denote the
n-variable tribes function. For every constant 0 < δ < 1, we have

NoiseStabδ[Tribesn] = O(n−cδ)

where cδ > 0 is a constant depending only on δ.

We will use the function Tribes†n which is the monotone complement of Tribes (i.e., ¬Tribes(¬x)) which
is given by a n/b-clause b-CNF and has the same noise stability as Tribesn by Boolean duality.

Now we will combine the tribes function with the balanced Talagrand function to obtain a function that
is sensitive to very small amounts of noise, using the following lemma to bound its noise stability.

Lemma 29 For infinitely many values of k,m with m < k, the function Ck,m := Tribes†k/m ⊗Talm on k variables
has:

NoiseStab1/
√

m(Ck,m) ≤ O
((m

k

)c)
where c > 0 is some absolute constant.

Proof: By Corollary 27 we know that Talm is balanced so we can use Fact 23 to combine the noise stabilities
of Talm and Tribes†k/m (Lemma 28).

The function Ck,m can in fact be computed by a small monotone CNF formula.

Lemma 30 Let Ck,m := Tribes†k/m ⊗Talm. The function Ck,m can be computed by a monotone CNF formula of

size k
mb · (2

√
m + m)b, where b = log(k/m) − log ln(k/m) + o(1).

Proof: Ck,m can be represented as a depth-4 monotone formula by combining the k/(mb)-clause monotone
b-CNF formula for the Tribes†k/m function with the (2

√
m + m)-clause monotone CNF for the Talm function.

Using the distributive rule we can rewrite the b-wise ORs at the bottom of the Tribes†k/m function with the
(2
√

m + m)-wise ANDs of the Talm functions to get (2
√

m + m)b-wise ANDs followed by b-wise ORs. Now
the two adjacent levels of ANDs and the two adjacent levels of ORs can be collapsed to obtain a size-
(k

mb · (2
√

m + m)b), monotone CNF formula.

We are now ready to prove Lemma 16.

Proof: Let Ck,m be the function from Lemma 29. Combining Lemmas 29 and 24, we can bound the expected
bias by

1
2

+ O
((m

k

)c)
=

1
2

+ O
(
logc(2−β)+α(n) · 2−c(log n)α

)
=

1
2

+ O(2−(log n)γ),

recalling that γ < α < β/2 < 1/2.
By Lemma 30, we know that Ck,m can be computed by a monotone CNF formula of size k

mb · (2
√

m + m)b,
where b = log(k/m) − log ln(k/m) + o(1). Therefore, for our setting of k and m, the CNF formula will have
size at most 2(log n)1−β/2+α+(log n)α = no(1).

18

	Introduction
	The Statistical Query Model, SQ-Dimension, and Strong SQ-Dimension
	The Strong SQ-Dimension

	Lower Bounds for Depth-3 Monotone Formulas
	Strong SQ lower bound
	The depth-3 construction
	Reduction from learning juntas

	Hardness Amplification for Uniform Distribution Learning
	Hardness Amplification in the PAC Setting
	Hardness amplification in the Statistical Query setting

	Amplified Hardness for SQ Learning of Depth-4 Monotone Formulas
	Proof details
	Proof of Lemma 9
	Proof of Lemma 11
	Proof of Lemma 16

