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Abstract

We study the average cost Linear Quadratic (LQ) problem with unknown model parame-
ters, also known as the adaptive control problem in the control community. We design an
algorithm and prove that its regret up to time T is O(

√
T ) apart from logarithmic factors.

Unlike many classical approaches that use a forced-exploration scheme to provide the suf-
ficient exploratory information for parameter estimation, we construct a high-probability
confidence set around the model parameters and design an algorithms that plays optimisti-
cally with respect to this confidence set. The construction of the confidence set is based
on the new results from online least-squares estimation and leads to improved worst-case
regret bound for the proposed algorithm. To best of our knowledge this is the the first time
that a regret bound is derived for the LQ problem.

1 Introduction

The Linear Quadratic problem is probably the most widely studied problem in the control literature.
The problem is to minimize the average cost of a controller that operates in an environment whose
dynamics is linear, while the costs are a quadratic function of the state and the control. The optimal
solution is a linear feedback controller which can be explicitly computed from the matrices describing
the dynamics and the cost. In the learning problem, the topic of this paper, the dynamics of the
environment is unknown. The problem then becomes more challenging since the control actions
influence both the cost and the rate at which the dynamics is learned, resulting in a so-called
learning, or adaptive controller. The objective in this case is to minimize the regret of the controller,
i.e. to minimize the difference between the average cost of the learning controller and that of the
optimal controller. In this paper, for the first time, we show an adaptive controller and we prove
that the expected regret of this controller is bounded by O(

√
T ). We build on recent works in online

linear estimation and also in the adaptive controller literature, the latter of which we survey next.

When the model parameters are known and the state is fully observed, one can use the principles
of dynamic programming to obtain the optimal controller, which is known as the Linear Quadratic
Regulator (LQR). As mentioned before, the version of the problem that deals with the unknown
model parameters is called the adaptive control problem. The early attempts to solve this problem
relied on the certainty equivalence principle. The idea was to estimate the unknown parameters from
observations and then use the estimated parameters as if they are the true parameters to design
a LQR. It was soon realized that the certainty equivalence principle does not necessarily provide
enough information to reliably estimate the parameters and the estimated parameters can converge
to incorrect values with positive probability. This in turn might lead to a suboptimal performance.

In order to avoid this identifiably problem, researchers developed methods that actively explore
the environment to gather information (Lai and Wei, 1982, 1987, Chen and Guo, 1987, Chen and
Zhang, 1990, Fiechter, 1997, Lai and Ying, 2006, Bittanti and Campi, 2006). However, only asymp-
totic results are proven for these methods. One exception is the work of Fiechter (1997) that proposes
an algorithm for the “discounted” LQ problem and analyzes its performance in a PAC framework.



Another problem with most of the aforementioned methods is that they use forced-exploration
schemes to provide the sufficient exploratory information. The idea is to take exploratory actions
with a fixed and appropriately designed rate. However, the forced-exploration schemes lack strong
worst case regret bounds, even in the simplest problems (Langford and Zhang, 2007). Unlike the
preceding methods, Bittanti and Campi (2006) proposes an algorithm that uses the Optimism in
the Face of Uncertainty (OFU) principle, which goes back to the work of Lai and Robbins (1985),
to deal with the exploration/exploitation dilemma. The idea behind the OFU principle, applied
to the adaptive control problem, is to construct high-probability confidence sets around the model
parameters, find the optimal controller for each member of the confidence set, and finally choose the
controller that gives the smallest cost among these controllers. However, Bittanti and Campi (2006)
only show that the average cost of the algorithm converges to that of the optimal policy in the limit.
We extend their work to derive a finite time regret bound for the LQ problem. Our proof is based
on the proof Bittanti and Campi (2006), although with significant differences, due to the difference
in the goals of the papers.

Note that the OFU principle has been applied very successfully to a number of challenging
learning and control situations. Lai and Robbins (1985), who invented the principle, used it to
address learning in bandit problems (i.e., when there is no state) and later this work was picked up
and modified by Auer et al. (2002) to make it work in nonparametric bandits. The OFU principle
has also been applied to learning in finite Markov Decision Processes, both in a regret minimization
(see Bartlett and Tewari 2009, Auer et al. 2010 and the references therein) and in a PAC-learning
setting (see (Kearns and Singh, 1998, Brafman and Tennenholtz, 2002, Kakade, 2003, Strehl et al.,
2006, Szita and Szepesvári, 2010) and the refererences therein). In the PAC-MDP framework there
has been some work to extend the OFU principle to infinite Markov Decision Problems under various
assumptions. For example, Lipschitz assumptions have been used by Kakade et al. (2003), while
Strehl and Littman (2008) explored linear models. However, these works do not consider both
continuous state and action spaces. (Continuous action spaces in the context of bandits have been
explored in a number of works, such as the works of Kleinberg (2004), Auer et al. (2007), Kleinberg
et al. (2008) and in a linear setting by Auer (2003), Dani et al. (2008) and Rusmevichientong and
Tsitsiklis (2010).)

As far as we know the regret criterion has not been considered previously in this literature in the
continuous state (and control) setting. Although the class of systems considered here in this paper
is simple, we think that this class is interesting enough on its own due to its numerous practical
applications and, in fact, its simplicity. In fact, we find it remarkable that no regret bounds have been
available for this simple setting so far, though we explain this that until the recent works of Dani
et al. (2008) and Rusmevichientong and Tsitsiklis (2010), the understanding of linear estimation
with dependent covariates was not very well developed. In fact, our work also builds upon on these
works, although we use a more recent, improved confidence bound (see Theorem 1).

Further, we think that our work might have implications beyond the problem considered here, as
it clearly demonstrates that the OFU principle can be successfully applied even to continuous space
and action control problems.

2 Notation and conventions

We use ‖ · ‖ to denote the 2-norm. For a positive definite matrix A ∈ Rd×d, the weighted 2-norm
is defined by ‖x‖2A = x>Ax, where x ∈ Rd. The inner product is denoted by 〈·, ·〉 and the weighted
inner-product x>Ay = 〈x, y〉A. We use λmin(A) to denote the minimum eigenvalue of the positive
definite matrix A. We use A � 0 to denote that A is positive definite, while we use A � 0 to denote
that it is positive semidefinite. The same notation is used to denote the Loewner partial order of
matrices. We shall use ei to denote the ith unit vector, i.e., for all j 6= i, eij = 0 and eii = 1.

3 The Linear Quadratic Problem

We consider the discrete-time infinite-horizon linear quadratic (LQ) control problem:

xt+1 = A∗xt +B∗ut + wt+1

ct = x>t Qxt + u>t Rut,
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where ut ∈ Rd is the control at time t, xt ∈ Rn is the state at time t, A∗ ∈ Rn×n and B∗ ∈ Rn×d
are unknown matrices and Q ∈ Rn×n and R ∈ Rd×d are known (positive definite) matrices. At time
zero, for simplicity, x0 = 0. Let

Θ>∗ = (A∗ , B∗) and zt =

(
xt
ut

)
.

Thus, the state transition can be written as

xt+1 = Θ>∗ zt + wt+1 .

The objective is to minize the average cost

J(u0, u1, . . . ) = lim sup
T→∞

1

T

T∑
t=0

E [ct] . (1)

Our assumption on the data is as follows:

Assumption A1 Let (Ft) be a filtration such that for the random variables (z0, x1), . . ., (zt, xt+1)
the following hold:

(i) (zt, xt+1) ∈ Rn+d × Rn;

(ii) zt, xt are Ft-measurable;

(iii) for Θ∗ ∈ R(n+d)×n, for any t ≥ 0,

E [xt+1|Ft] = z>t Θ∗ ,

i.e., wt+1 = xt+1 − z>t θ∗ is a martingale difference sequence (E [wt+1|Ft] = 0, t = 0, 1, . . .);

(iv) E
[
wt+1w

>
t+1 | Ft

]
= In;

(v) The random variables wt are component-wise sub-Gaussian in the sense that there exists a
known R > 0 such that for any γ ∈ R, and index j,

E [exp(γwt+1,j)|Ft] ≤ exp(γ2R2/2) .

Our assumptions on the system uncertainty under which we will prove our regret bounds is as
follows:

Assumption A2 The unknown parameter is such that Θ∗

trace(Θ>∗ Θ∗)
1/2 ≤ S (2)

with S > 0 known. Further, for all Θ = (A,B) ∈ S, (A,B) is reachable and (A,Q1/2) is observable.

We will denote the set of parameters Θ∗ such that (2) holds by S:

S = {Θ∗ : trace(Θ>∗ Θ∗)
1/2 ≤ S } .

In what follows we shall always assume that the above two assumptions are valid.

The assumption E
[
wt+1w

>
t+1 | Ft

]
= In makes the analysis clean and simple. However, we shall

show it later that it is in fact not necessary. If the second assumption can be removed (or relaxed)
is left for future work. We think that this might be possible by using a dove-tailing technique.
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3.1 Parameter estimation

Define

e(Θ) = λ trace(Θ>Θ) +

t−1∑
s=0

trace((xs+1 −Θ>zs)(xs+1 −Θ>zs)
>).

Let Θ̂t be the `2-regularized least-squares estimate of Θ∗ with regularization parameter λ > 0:

Θ̂t = argmin
Θ

e(Θ) = (Z>Z + λI)−1Z>X, (3)

where Z and X are the matrices whose rows are z>0 , . . . , z
>
t−1 and x>1 , . . . , x

>
t , respectively. With an

argument similar to the one used in Abbasi-Yadkori et al. (2011), we can construct a high-probability
confidence set around Θ∗:

Theorem 1. Let (z0, x1), . . . , (zt, xt+1), zi ∈ Rn+d, xi ∈ Rn satisfy the linear model Assumption A1
with some R > 0, Θ∗ ∈ R(n+d)×n and let (Ft) be the associated filtration. Consider the `2-regularized

least-squares parameter estimate Θ̂t with regularization coefficient λ > 0 (cf. (3)). Let Vt = λI +∑t−1
i=0 ziz

>
i be the regularized design matrix underlying the covariates. Then, for any 0 < δ < 1, any

stopping time τ ≥ 1 w.r.t. (Ft), with probability at least 1− δ,

trace((Θ̂τ −Θ∗)
>Vτ (Θ̂τ −Θ∗)) ≤

(
nR

√
2 log

(
det(Vτ )1/2 det(λI)−1/2

δ

)
+ λ1/2 S

)2

. (4)

Also, when the covariates satisfy ‖zt‖ ≤ cm, t ≥ 0 with some cm > 0 w.p.1 then, with probability at
least 1− δ,

trace((Θ̂τ −Θ∗)
>Vτ (Θ̂τ −Θ∗)) ≤

(
nR

√
(n+ d) log

(
1 + τcm

λ

δ

)
+ λ1/2 S

)2

.

In what follows we shall denote the left-hand side of (4) by βτ (δ):

βτ (δ) =

(
nR

√
2 log

(
det(Vτ )1/2 det(λI)−1/2

δ

)
+ λ1/2 S

)2

.

We see from this theorem that the confidence about Θ∗ depends on the behavior of the ratio of
two determinants. The following two technical lemmas will be useful in dealing with these terms.
The lemmas are taken from Abbasi-Yadkori et al. (2011).

Lemma 2. The following holds for any t ≥ 1:

t−1∑
k=0

(
‖zk‖2V −1

k
∩ 1
)
≤ 2 log

det(Vt)

det(λI)
.

Further, when the covariates satisfy ‖zt‖ ≤ cm, t ≥ 0 with some cm > 0 w.p.1 then

2 log
det(Vt)

det(λI)
≤ 2(n+ d) log

(
λ(n+ d) + tc2m

λ(n+ d)

)
.

Lemma 3. Let A, B and C be positive semi-definite matrices such that A = B+C. Then, we have
that

sup
X 6=0

∥∥X>AX∥∥
‖X>BX‖

≤ det(A)

det(B)
.

3.2 The controller

The objective (1) for the system with parameters Θ = (A,B) can also be written as (Chen and Guo,
1987)

J(u0, u1, . . . ) = trace(P (Θ)) + lim sup
T→∞

1

T

T∑
t=0

(ut −K(Θ)xt)
>(R+B>P (Θ)B)(ut −K(Θ)xt), (5)

4



Inputs: T, S > 0, δ > 0, Q,R.
Set V0 = I and Θ̂0 = 0.
(Ã0, B̃0) = Θ̃0 = argminΘ∈C0 J(Θ).
for t := 0, 1, 2, . . . do

if det(Vt) > 2 det(V0) then

Calculate Θ̂t by (3).

Θ̃t = argminΘ∈Ct J(Θ).
Let V0 = Vt.

else
Θ̃t = Θ̃t−1.

end if
Calculate ut based on the current parameters, ut = K(Θ̃t)xt.
Execute control, observe new state xt+1.
Save (zt, xt+1) into the dataset, where z>t = (x>t , u

>
t ).

Vt+1 := Vt + ztz
>
t .

end for

Table 1: The proposed adaptive algorithm for the LQR problem

where P (Θ) is the unique solution to the Ricatti equation

P (Θ) = Q+A>P (Θ)A−A>P (Θ)B(B>P (Θ)B +R)−1B>P (Θ)A

and the gain matrix K(Θ) is defined by

K(Θ) = −(B>P (Θ)B +R)−1B>P (Θ)A.

Let J(Θ) denote the optimal average cost if the model parameters were Θ. From (5), it is clear
that J(Θ) = trace(P (Θ)). Thus, as it is well known (e.g., Bertsekas, 2001) the optimal control law
for a system with parameters Θ is

ut = K(Θ)xt . (6)

In particular, the average cost of this control law with Θ = Θ∗ is the optimal average cost J∗ =
J(Θ∗) = trace(P (Θ∗)). The regret up to time T of a controller which suffers a cost of ct at time t is
defined by

R(T ) =

T∑
t=0

(ct − J∗) .

Minimizing the regret is equivalent to minimizing J(u0, u1, . . . ) and the regret measures the cost of
not knowing the system dynamics.

From Theorem 1, we can obtain the following (1− δ)-probability confidence set around Θ∗:

Ct(δ) =
{

Θ ∈ S : trace
{

(Θ− Θ̂t)
>Vt(Θ− Θ̂t)

}
≤ βt(δ)

}
. (7)

The algorithm that we propose implements the OFU principle at follows: At time t, the algorithm
chooses a parameter Θ from Ct(δ) and then uses the optimal feedback controller (6) underlying
the chosen parameter. The actual algorithm that we propose differs from this controller in that
it changes controllers only after the current parameter estimates are significantly refined. This
prevent too frequent changes to the controller (which might harm performance) and it also saves
computation. The pseudocode of our proposed algorithm is shown as Algorithm 1.

4 Analysis

In this section we give our main result and the proof of this result, where we bound the regret of
Algorithm 1 with high probability.

However, first we need some additional preparation. In particular, in addition to the assumption
we made before, we shall also assume that the following assumption holds true in the rest of the
article:
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Assumption A3 Let ρ = supΘ∈S ‖A+BK(Θ)‖. Thenρ < 1. Further, there exists a positive ε
such that λd(R) > ε, or equivalently, there exist C > 0 such that supΘ∈S ‖K(Θ)‖ < C.

Note that this assumption was used before by Bittanti and Campi (2006) and other works which
considered asymptotic consistency.By the boundedness of S from this assumption, we also obtain
the boundedness of P (Θ). The corresponding constant will be denoted by D:

Θ ∈ S =⇒ ‖P (Θ)‖ ≤ D .

We will choose two error probabilities, δE > 0 and δF > 0. Given these, we define two “good
events” in the probability space Ω. In particular, we define the event that the confidence sets hold
for s = 0, . . . , t,

E(t, δE) = {ω ∈ Ω : ∀s ≤ t, Θ∗ ∈ Cs(δE) } ,
and the event that the state vector stay “small”:

F (t, δF , δE) = {ω ∈ Ω : ∀s ≤ t, ‖xs‖ ≤ αT (δF , δE) }
where

αt(δF , δE) =
1√

1− ρ2
(8(n+ d)βt(δE) log(det(Vt)))

1/2
+

R

1− ρ
√

2n log(nt/δF ) .

In what follows, we let E = E(T, δE) and F = F (T, δF ), where δE > 0, δF > 0 will be chosen later.

Our main result is the following theorem:

Theorem 4. With probability at least 1− δ, the regret of Algorithm 1 is bounded as follows:

R(T ) = Õ
(√

T log(1/δ)
)
,

where the constant hidden is a problem dependent constant.1

Remark 5. The assumption E
[
wt+1w

>
t+1|Ft

]
= In makes the analysis clean and simple. Alterna-

tively, we could assume that E
[
wt+1w

>
t+1|Ft

]
= G∗ and G∗ be unknown. Then the optimal average

cost becomes J(Θ∗, G∗) = trace(P (Θ∗)G∗). The only change in Algorithm 1 is in the computation

of Θ̃t, which will have the following form:

(Θ̃t, G̃) = argmin
(Θ,G)∈Ct

J(Θ),

where Ct is now a confidence set over Θ∗ and G∗. The rest of the analysis remains identical, provided
that an appropriate confidence set is constructed.

4.1 Proof

From average cost dynamic programming (Bertsekas, 1987)[Volume 2, pages 228–229] we have that

J(Θ̃t) + x>t P (Θ̃t)xt = min
u
{x>t Qxt + u>Ru+ E

[
x̃uTt+1P (Θ̃t)x̃

u
t+1|Ft

]
}

= x>t Qxt + u>t Rut + E
[
x̃utT
t+1P (Θ̃t)x̃

ut
t+1|Ft

]
,

where x̃ut+1 = Ãtxt + B̃tu+ wt+1. Hence,

J(Θ̃t) + x>t P (Θ̃t)xt = x>t Qxt + u>t Rut + E
[
(Ãtxt + B̃tut + wt+1)>P (Θ̃t)(Ãtxt + B̃tut + wt+1)|Ft

]
= x>t Qxt + u>t Rut + E

[
(Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)|Ft
]

+ E
[
w>t+1P (Θ̃t)wt+1|Ft

]
= x>t Qxt + u>t Rut + E

[
(Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)|Ft
]

+ E
[
x>t+1P (Θ̃t)xt+1|Ft

]
− E

[
(A∗xt +B∗ut)

>P (Θ̃t)(A∗xt +B∗ut)|Ft
]

= x>t Qxt + u>t Rut + E
[
x>t+1P (Θ̃t)xt+1|Ft

]
+ (Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)− (A∗xt +B∗ut)
>P (Θ̃t)(A∗xt +B∗ut),

1Here, Õ hides logarithmic factors.
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where in the equality before the last one we have used xt+1 = A∗xt + B∗ut + wt+1 and the fact

that E
[
x>t+1P (Θ̃t)xt+1|Ft

]
= E

[
(A∗xt +B∗ut)

>P (Θ̃t)(A∗xt +B∗ut)|Ft
]

+E
[
w>t+1P (Θ̃t)wt+1|Ft

]
.

Hence,
T∑
t=0

J(Θ̃t) +R1 =

T∑
t=0

(
x>t Qxt + u>t Rut

)
+R2 +R3,

where

R1 =

T∑
t=0

(x>t P (Θ̃t)xt − E
[
x>t+1P (Θ̃t+1)xt+1|Ft

]
) (8)

and

R2 =

T∑
t=0

E
[
x>t+1(P (Θ̃t)− P (Θ̃t+1))xt+1|Ft

]
(9)

and

R3 =

T∑
t=0

(
(Ãtxt + B̃tut)

>P (Θ̃t)(Ãtxt + B̃tut)− (A∗xt +B∗ut)
>P (Θ̃t)(A∗xt +B∗ut)

)
. (10)

Thus,

T∑
t=0

(x>t Qxt + u>t Rut) =

T∑
t=0

J(Θ̃t) +R1 −R2 −R3

≤ TJ(Θ∗) +R1 −R2 −R3.

Thus,
R(T ) ≤ R1 −R2 −R3 ≤ I{E∩F}(R1 −R2 −R3) + I{E∪F}(R1 −R2 −R3). (11)

First we prove the following lemmas that will be used in the proof of Theorem 4.

Lemma 6. Consider Algorithm 1. Assume that E(T, δE) holds. Then we have

T∑
t=0

∥∥∥(Θ∗ − Θ̃t)
>zt

∥∥∥2

≤ 8(n+ d)βT (δE) log(det(VT )).

Proof. Consider timestep t. Let st = (Θ∗ − Θ̃t)
>zt. Let τ ≤ t be the last timestep when we have

changed the policy. So st = (Θ∗ − Θ̃τ )>zt. We have

‖st‖ ≤
∥∥∥(Θ∗ − Θ̂τ )>zt

∥∥∥+
∥∥∥(Θ̂τ − Θ̃τ )>zt

∥∥∥ .
For all Θ ∈ Cτ , ∥∥∥(Θ− Θ̂τ )>zt

∥∥∥ ≤ ∥∥∥V 1/2
t (Θ− Θ̂τ )

∥∥∥ ‖zt‖V −1
t

≤
∥∥∥V 1/2

τ (Θ− Θ̂τ )
∥∥∥√ det(Vt)

det(Vτ )
‖zt‖V −1

t

≤
√

2
∥∥∥V 1/2

τ (Θ− Θ̂τ )
∥∥∥ ‖zt‖V −1

t

≤
√

2βτ (δE) ‖zt‖V −1
t

,

where the first step follows from Cauchy-Schwartz inequality, the second step follows from Lemma 3,
the third step follows from the fact that at iteration t we have det(Vt) < 2 det(Vτ ), and the last step
follows from the definition of βτ (δE) and the fact that λmax(M) ≤ trace(M) for M � 0. Thus,

‖st‖2 ≤ 8βτ (δE) ‖zt‖V −1
t

.

Now, we have that

‖zt‖2V −1
t

= z>t (Vt−1 + ztz
>
t )−1zt ≤ z>t (λI + ztz

>
t )−1zt.
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We also have that

z>t (λI + ztz
>
t )−1zt = trace(z>t (λI + ztz

>
t )−1zt)

= trace((λI + ztz
>
t )−1(ztz

>
t + λI − λI))

= trace(I − λ(λI + ztz
>
t )−1)

= n+ d− λ trace((λI + ztz
>
t )−1) ≤ n+ d.

Thus, ‖zt‖2V −1
t
≤ n+ d and, also, ‖zt‖2V −1

t
≤ min{‖zt‖2V −1

t
, n+ d}. It follows then that

‖zt‖2V −1
t
≤ (n+ d) min{‖zt‖2V −1

t
, 1}.

As a result,

T∑
t=0

‖st‖2 ≤ 8(n+ d)βT (δE)

T∑
t=0

min{‖zt‖2V −1
t

, 1}

≤ 8(n+ d)βT (δE) log(det(VT )).

Lemma 7. P (E ∩ F ) ≥ 1− (δE + δF ).

Proof. Define

st = (A∗ − Ãt)xt + (B∗ − B̃t)ut = (Θ∗ − Θ̃t)
>zt,

rt = st + wt+1,

ρt = Ãt + B̃tK(Θ̃t),

ck =

k−1∏
s=0

ρt−s−1.

Therefore, we can write

xt = ρt−1xt−1 + rt−1 = ρt−1ρt−2xt−2 + rt−1 + ρt−1rt−2 = ... =

t−1∑
k=0

rt−k−1

k−1∏
s=0

ρt−s−1 =

t−1∑
k=0

ckrt−k−1.

Thus,

‖xt‖ ≤

∥∥∥∥∥
t−1∑
k=0

ckst−k−1

∥∥∥∥∥+

∥∥∥∥∥
t−1∑
k=0

ckwt−k

∥∥∥∥∥ . (12)

The first term on the right hand side can be bounded as follows:∥∥∥∥∥
t−1∑
k=0

ckst−k−1

∥∥∥∥∥ ≤
t−1∑
k=0

ρk ‖st−k−1‖

≤ 1√
1− ρ2

(
t−1∑
k=0

‖sk‖2
)1/2

≤ 1√
1− ρ2

(8(n+ d)βT (δE) log(det(VT )))
1/2

,

where the second step follows from the Cauchy-Schwarz Inequality and the third step holds on E
and follows from Lemma 6.

In order to bound the second term on the right hand side of (12), notice that from Assumption A1,
we have that for any index 1 ≤ i ≤ n and any time k,

|wi,k| ≤ R
√

2 log(1/δ) .
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Thus, ‖ckwk,i‖ ≤ ρk ‖wk,i‖ ≤ Rρk
√

2n log(nT/δ) holds for all i, k, with probability 1 − δ. As a
result, on an event G with P (G) ≥ 1− δF ,∥∥∥∥∥

t−1∑
k=0

ckwk,i

∥∥∥∥∥ ≤ R
√

2n log(nT/δF )

1− ρ
.

Now, on G ∩ E,

‖xt‖ ≤
1√

1− ρ2
(8(n+ d)βT (δE) log(det(VT )))

1/2
+

R

1− ρ
√

2n log(nT/δF ) .

Thus, we have G ∩ E ⊂ F ∩ E. Since, by the union bound, P (G ∩ E) ≥ 1− δE − δF , the lemma is
proved.

Lemma 8. On the event E∩F , Algorithm 1 changes the policy at most (n+d) log(TαT (δF , δE)2(1+
C2)) times up to time T .

Proof. If we have changed the policy K times up to time T , then we should have that det(VT ) ≥ 2K .
On the other hand, we have

λ1(VT ) ≤
T−1∑
t=0

‖zt‖2 ≤ TαT (δF , δE)2(1 + C2).

Thus, it holds that
2K ≤ (TαT (δF , δE)2(1 + C2))n+d.

As a result, we have
K ≤ (n+ d) log(TαT (δF , δE)2(1 + C2)).

Next, we bound I{E∩F}R1. However, before doing this we need a bound on I{F}max1≤t≤T ‖xt‖.

Lemma 9. We have, for appropriate constants C1 > 0, C2 > 0 which depend on n, d, λ, ρ only, that
for any t ≥ 0, I{F}max1≤s≤t ‖xs‖ ≤ Xt where

Xt
def
= max(e, λ(n+ d)(e− 1), 4(C1 log(1/δ) + C2 log(t/δ)) log2(4(C1 log(1/δ) + C2 log(t/δ))) .

Proof. Consider events on F . Let c = max(1,max1≤s≤t ‖xs‖).2 Assume that t ≥ λ(n + d). By the
construction of F , Lemma 2, tedious, but elementary calculations, it can then be shown that

c ≤ A log2(c) +Bt, (13)

where A = C1 log(1/δ) and Bt = C2 log(t/δ). From this, further elementary calculations show that
the maximum value that c can take on subject to the constraint (13) is bounded from above by the
statement.

Now, let us return to bounded I{E∩F}R1.

Lemma 10. Let R1 be as defined by (8). With probability at least 1− δ/2,

I{E∩F}R1 ≤ D(XT ∨ αT (δF , δE)2)(
√

8T log 2/δ + 2).

Proof. Write

I{E∩F}R1 = I{E∩F}(x>0 P (Θ̃0)x0 − x>T+1P (Θ̃T+1)xT+1)

+ I{E∩F}
T∑
t=1

(
x>t P (Θ̃t)xt − E

[
x>t P (Θ̃t)xt|Ft−1

] )
.

2We use both max and ∨ to denote the maximum.
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By the boundedness of P , the first term is bounded by 2DαT (δF , δE)2. Define Et = E(t, δE),
Ft = F (t, δF ). Note that Et+1 ⊂ Et and Ft+1 ⊂ Ft, and so I{Et+1∩Ft+1} ≤ I{Et∩Ft}, and in
particular, since E = ET , F = FT , I{E∩F} ≤ I{Et∩Ft} holds for any t ≤ T . Now, the second term is
bounded as follows:

I{E∩F}
T∑
t=1

(
x>t P (Θ̃t)xt − E

[
x>t P (Θ̃t)xt|Ft−1

] )
≤

T∑
t=1

I{Et∩Ft}

(
x>t P (Θ̃t)xt − E

[
x>t P (Θ̃t)xt|Ft−1

] )
.

Define the martingale

Mτ =

τ∑
t=1

I{Et∩Ft}

(
x>t P (Θ̃t)xt − E

[
x>t P (Θ̃t)xt|Ft−1

])
, M0 = 0 .

This is a martingale, since Et and Ft are Ft−1 measurable. We have that

|Mτ −Mτ−1| ≤ I{Et∩Ft}

∣∣∣x>τ P (Θ̃τ )xτ − E
[
x>τ P (Θ̃τ )xτ |Fτ−1

]∣∣∣
≤ 2DI{Et∩Ft} ‖xt‖

2

≤ 2DI{Et∩Ft}Xt .

≤ 2DXT .

By Azuma’s inequality, P (MT −M0 ≥ ε) ≤ exp(− ε2

8TD2X2
T

). Thus, w.p. at least 1− δ/2,

I{E∩F}R1 ≤ D(XT ∨ αT (δF , δE)2) (
√

8T log 2/δ + 2).

Next, we bound I{E∩F} |R3|.

Lemma 11. Let R3 be as defined by Equation (10). Then we have

I{E∩F} |R3| ≤ (8(n+ d)βT (δE) log(det(VT )))
1/2

(2αT (δF , δE)
√
DT ).

Proof. We have that

I{E∩F} |R3| ≤ I{E∩F}
T∑
t=0

∣∣∣∣∥∥∥P (Θ̃)1/2Θ̃>zt

∥∥∥2

−
∥∥∥P (Θ̃)1/2Θ>∗ zt

∥∥∥2
∣∣∣∣

≤ I{E∩F}

(
T∑
t=0

(∥∥∥P (Θ̃)1/2Θ̃>zt

∥∥∥− ∥∥∥P (Θ̃)1/2Θ>∗ zt

∥∥∥)2
)1/2

×

(
T∑
t=0

(∥∥∥P (Θ̃)1/2Θ̃>zt

∥∥∥+
∥∥∥P (Θ̃)1/2Θ>∗ zt

∥∥∥)2
)1/2

≤ I{E∩F}

(
T∑
t=0

∥∥∥P (Θ̃t)
1/2(Θ̃t −Θ∗)

>zt

∥∥∥2
)1/2

×

(
T∑
t=0

(∥∥∥P (Θ̃)1/2Θ̃>zt

∥∥∥+
∥∥∥P (Θ̃)1/2Θ>∗ zt

∥∥∥)2
)1/2

≤ (8(n+ d)βT (δE) log(det(VT )))
1/2

(2αT (δF , δE)
√
DT ),

where the first step holds by the Cauchy-Schwarz Inequality, the second step holds by the triangle
inequality, and the third step holds by Lemma 6 and boundedness of the matrices.

Now we are ready to prove Theorem 4.
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Proof of Theorem 4. We have at most (n+ d) log(TαT (δF , δE)2(1 +C2)) policy changes up to time
T . So |R2| ≤ (n+d) log(TαT (δF , δE)2(1 +C2)). By (11) and Lemmas 10 and 11, we have that with
probability at least 1− δ/2,

I{E∩F}(R1 −R2 −R3) ≤ (n+ d) log(TαT (δF , δE)2(1 + C2)) +D(XT ∨ αT (δF , δE)2) (
√

8T log 2/δ + 2)

+ (8(n+ d)βT (δE) log(det(VT )))
1/2

(2αT (δF , δE)
√
DT ).

Thus, on E ∩ F ,

R(T ) ≤ (n+ d) log(TαT (δ/4, δ/4)2(1 + C2)) +D(XT ∨ αT (δ/4, δ/4)2) (
√

8T log 2/δ + 2)

+ (8(n+ d)βT (δ/4) log(det(VT )))
1/2

(2αT (δ/4, δ/4)
√
DT )

Further, on E ∩ F , by Lemma 2 and our earlier bound on max1≤t≤T ‖xt‖, log detVT ≤ (n +

d) log
(
λ(n+d)+TX2

T

λ(n+d)

)
+ log detλI. Plugging in this and the definition of XT gives the final bound,

which, by Lemma 7, holds with probability 1− δ, provided that we choose δE = δF = δ/4.
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