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Abstract

We study online learnability of a wide class of problems, extending the results of [21] to
general notions of performance measure well beyond external regret. Our framework si-
multaneously captures such well-known notions as internal and general Φ-regret, learning
with non-additive global cost functions, Blackwell’s approachability, calibration of fore-
casters, and more. We show that learnability in all these situations is due to control of
the same three quantities: a martingale convergence term, a term describing the ability to
perform well if future is known, and a generalization of sequential Rademacher complexity,
studied in [21]. Since we directly study complexity of the problem instead of focusing on
efficient algorithms, we are able to improve and extend many known results which have
been previously derived via an algorithmic construction.

1 Introduction

In the companion paper [21], we analyzed learnability in the Online Learning Model when the value
of the game is defined through minimax regret. However, regret (also known as external regret) is
not the only way to measure performance of an online learning procedure. In the present paper, we
extend the results of [21] to other performance measures, encompassing a wide spectrum of notions
which appear in the literature. Our framework gives the same footing to external regret, internal
and general Φ-regret, learning with non-additive global cost functions, Blackwell’s approachability,
calibration of forecasters, and more. We recover, extend, and improve some existing results, and
(what is more important) show that they all follow from control of the same quantities. In particular,
sequential Rademacher complexity, introduced in [21], plays a key role in our derivations.

A reflection on the past two decades of research in learning theory reveals (in our somewhat
biased view) an interesting difference between Statistical Learning Theory and Online Learning.
In the former, the focus has been primarily on understanding complexity measures rather than
algorithms. There are good reasons for this: if a supervised problem with i.i.d. data is learnable,
Empirical Risk Minimization is the algorithm that will perform well if one disregards computational
aspects. In contrast, Online Learning has been mainly centered around algorithms. Given an
algorithm, a non-trivial bound serves as a certificate that the problem is learnable. This algorithm-
focused approach has dominated research in Online Learning for several decades. Many important
tools (such as optimization-based algorithms for online convex optimization) have emerged, yet the
results lacked a unified approach for determining learnability.

With the tools developed in [21], the question of learnability can now be addressed in a variety
of situations in a unified manner. In fact, [21] presents a number of examples of provably learnable
problems for which computationally feasible online learning methods have not yet been developed.
In the present paper, we show that the scope of problems whose learnability and precise rates
can be characterized is much larger than those defined in [21] through external regret. Within
this circle of problems are such well-known results as Blackwell’s approachability and calibration
of forecasters. For instance, our complexity-based (rather than algorithm-based) approach yields a
proof of Blackwell’s approachability in Banach spaces without ever mentioning an algorithm. Let us
remark that Blackwell’s approachability has been a key tool for showing learnability [6]; as our results
imply approachability, they can be utilized whenever Blackwell’s approachability has been successful.
The results can also be used in situations where phrasing a problem as an approachability question



is not necessarily natural. In Section 4.2, we discuss the relation of our results to approachability in
greater detail. Our contributions can be broken down into three parts:

1. We formulate the online learning problem, with a performance measure (a form of regret),
defined in terms of certain payoff transformations. While this formulation might appear unusual,
we show that it is general enough to encompass many seemingly different frameworks, yet specific
enough that we can provide generic upper bounds.

2. We develop upper and lower bounds on the value of the game under various natural assump-
tions. These tools allow us to deal with performance measures well beyond the standard additive
notion of external regret. Such performance measures include smooth non-additive functions of
payoffs, generalizing the “cumulative payoff” notion often considered in the literature. The abstract
definition in terms of payoff transformations lets us consider rich classes of mappings whose com-
plexity can be studied through random averages, covering numbers, and combinatorial parameters.

3. We apply our machinery to a number of well-known problems. Unfortunately, in this extended
abstract we are not able to fit all the details. We refer the reader to [22]. (a) For the usual notion
of external regret, the results boil down to those of [21]. (b) For the more general Φ-regret (see
e.g. [23, 12, 13]), we recover and improve several known results. In particular, for convergence to
Φ-correlated equilibria, we improve upon the results of Stoltz and Lugosi [23]. (c) We study the
game of Blackwell’s approachability [3] in (possibly infinite-dimensional) separable Banach spaces.
Specifically, we show that variation of the worst-case martingale upper and lower-bounds (to within a
constant) the rate of convergence to the set. (d) We also consider the game of calibrated forecasting.
We improve upon the results of Mannor and Stoltz [17] and prove (to the best of our knowledge)
the first known O(

√
T ) rates for calibration with more than 2 outcomes. Our approach is markedly

different from those found in the literature. (e) We use our framework to study games with global
cost functions and as an example we extend the bounds recently obtained by Even-Dar et al [8]. (f)
We provide techniques for bounding notions of regret where algorithm’s performance is measured
against a time-varying comparator (see e.g. [14, 5, 24]).

The intent of this paper is to provide a framework and tools for studying problems that can be
phrased as repeated games. However, unlike much of existing research in online learning, we are not
solving the general problem by exhibiting an algorithm and studying its performance. Rather, we
proceed by directly attacking the value of the game. Alas, the value is a complicated object, and
the non-invitingly long sequence of infima and suprema can single-handedly extinguish any desire
to study it. Our results attest to the power of symmetrization, which emerges as a key tool for
studying the value of the game. In the literature, symmetrization has been used for i.i.d. data [10].
In [21, 1], it was shown that symmetrization can also be used in situations beyond the traditional
setting. What is even more surprising, we are able to employ symmetrization ideas even when the
objective function is not a summation of terms but rather a global function of many variables. We
hope that these tools can have an impact not only on online learning but also on game theory.

We believe that there are many more examples falling under the present framework. We only
chose a few to demonstrate how upper and lower bounds arise from the complexity of the problem.
Along with an upper bound, a (computationally inefficient) algorithm can always be recovered from
the minimax analysis. Finding efficient algorithms is often a difficult enterprise, and it is important
to be able to understand the inherent complexity even before focusing on computation.

2 The Setting

At a very abstract level, the problem of online learning can be phrased as that of optimization of a
given function RT (f1, x1, . . . , fT , xT ) with coordinates being chosen sequentially by the player and
the adversary. Of course, at this level of generality not much can be said. Hence, we make some
minimal assumptions on the function RT which lead to meaningful guarantees on the online opti-
mization process.1 These assumptions are satisfied by a number of natural performance measures,
as illustrated by the examples below.

Let F and X be the sets of moves of the learner (player) and the adversary, respectively. Gener-
alizing the Online Learning Model considered in [21], we study the following T -round interaction
between the learner and the adversary: On round t = 1, . . . , T , the learner chooses a mixed strategy
qt (distribution on F), the adversary picks xt ∈ X , the learner draws ft ∈ F from qt and receives
payoff (loss) signal `(ft, xt) ∈ H.

1The question of general conditions on the function under which such sequential minimization is possible
was put forth by Peter Bartlett a few years ago in a coffee conversation. This paper paves way towards
addressing this question.
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We would like to specify that we are in the full information setting and that at the end of each
round both the player and the adversary observe each other’s moves ft, xt. The payoff space H is a
(not necessarily convex) subset of a separable Banach space B. Both the player and the adversary
can be randomized and adaptive. The goal of the learner is to minimize the following general form

RT = B(`(f1, x1), . . . , `(fT , xT ))− inf
φ∈ΦT

B(`φ1(f1, x1), . . . , `φT (fT , xT )) (1)

of performance measure, where
(1) The function ` : F × X 7→ H is an H-valued payoff (or loss) function.
(2) The function B : HT 7→ R is a (not necessarily additive or convex) form of cumulative payoff.
(3) The set ΦT consists of sequences φ = (φ1, . . . , φT ) of measurable payoff transformation map-

pings φt : HF×X 7→ HF×X that transform the payoff function ` into a payoff function `φt .
The goal of the adversary is to maximize the same quantity (1), making it a zero-sum game.

This paper is concerned with learnability and with identifying complexity measures that govern
learnability. But complexity of what should we focus on? After all, the general online learning
problem is defined by the choice of five components: B, `,F ,X , and ΦT . In [21], the choice was
easy: it should be the complexity of the function class F that plays the key role. That was natural
because the payoff was written as `(f, x) = f(x), which suggested that the function class F is
the object of study. The present formulation, however, is much more general. When this work
commenced, it seemed likely that complexity of the problem will be some interaction between the
complexity of ΦT and complexity of F . As we show below, one may just focus on the complexity
of ΦT , while F and X are now on the same footing. For instance, even if it might seem unusual
at first, we will introduce a notion of a cover of the set of sequences of payoff transformations ΦT .
In summary, while all five components B, `,F ,X , and ΦT play a role in determining learnability,
we will mainly refer to the complexity of the payoff mapping ` and the payoff transformation ΦT
without an explicit reference to F , X , and B. We emphasize that most flexibility comes from the
payoff mapping ` and from the transformations ΦT of the payoffs.

Important classes of payoff transformation mappings are those that transform the payoff function
` by acting only on the first argument of `, i.e. only modifying the player’s action. Formally, a class
of sequences of payoff transformations ΦT is said to be a departure mapping class if there exists a
class Φ′T of sequences φ′ = (φ′1, . . . , φ

′
T ) with φ′i : F 7→ F such that for each φ ∈ ΦT there exists a

φ′ ∈ Φ′T with `φt(f, x) := `(φ′t(f), x) that for all t ∈ [T ], f ∈ F and x ∈ X . We shall slightly abuse
notation and use ΦT to represent both the class of payoff transformation and the class of departure
mappings from F to itself. Another class of interest are payoff transformations that do not vary
with time. We say that ΦT is time-invariant if all sequences of payoff transformation are constant
in time: ΦT = {(φ, . . . , φ) : φ ∈ Φ}, where Φ is a “basis” class of mappings HF×X 7→ HF×X .

In the following, we assume that F and X are subsets of a separable metric space. Let Q and
P be the sets of probability distributions on F and X , respectively. Assume that Q and P are
weakly compact. From the outset, we assume that the adversary is non-oblivious (that is, adaptive).
Formally, define a learner’s strategy π as a sequence of mappings πt : (P ×F ×X )t−1 7→ Q for each
t ∈ [T ]. The form (1) of the performance measure gives rise to the value of the game:

VT (`,ΦT ) (2)
= inf

q1
sup
x1

E
f1∼q1

. . . inf
qT

sup
xT

E
fT∼qT

sup
φ∈ΦT

{B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))}

where qt and xt range over Q and X , respectively. With this definition of a value, the (deterministic)
strategy of the adversary is a sequence of mappings (Q×F ×X )t−1×Q 7→ X for each t ∈ [T ]. The
problem is said to be online learnable if lim supT→∞ VT (`,ΦT ) = 0.

The value of the game is defined as an expected performance measure. As such, it yields “in
probability” statements. While beyond the scope of this paper, we can also define the value of the
game using a high probability performance measure, leading to “almost sure” convergence [22].

2.1 Examples
A reader might wonder why we have defined the game in terms of abstract payoff transformation
mappings. It turns out that with this definition, various seemingly different frameworks become
nothing but special cases, as illustrated by the following examples.
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Example 1 (External Regret Game, Section 4.1.1) Let H = R, let B(z1, . . . , zT ) = 1
T

∑T
t=1 zt,

and ΦT = {(φf , . . . , φf ) : f ∈ F and φf : F 7→ F is a constant mapping φf (g) = f ∀g ∈ F}. It
is easy to see that (1) becomes external regret:

RT =
1
T

T∑
t=1

`(ft, xt)− inf
f∈F

1
T

T∑
t=1

`(f, xt).

Example 2 (Φ-Regret, Section 4.1) Let H = R, let B(z1, . . . , zT ) = 1
T

∑T
t=1 zt, and ΦT =

{(φ, . . . , φ) : φ ∈ Φ} for a fixed family Φ of F 7→ F mappings. Performance measure in (1) becomes

RT =
1
T

T∑
t=1

`(ft, xt)− inf
φ∈Φ

1
T

T∑
t=1

`(φ(ft), xt). (3)

This example covers a variety of notions such as external, internal, and swap regrets.

Example 3 (Blackwell Approachability, Section 4.2) Let H a subset of a Banach space B,
S ⊂ B be a closed convex set, and B(z1, . . . , zT ) = infc∈S

∥∥∥ 1
T

∑T
t=1 zt − c

∥∥∥. The set ΦT contains
sequences (φ1, . . . , φT ) such that `φt(f, x) = ct ∈ S for all f ∈ F , x ∈ X , and 1 ≤ t ≤ T . Eq. (1)
becomes the distance to the set S:

RT = inf
c∈S

∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)− c

∥∥∥∥∥ (4)

Example 4 (Calibration of Forecasters, Section 4.3) Let H = Rk, F the k-dimensional prob-
ability simplex, and X the vertices of F . Define `(f, x) = 0. Further, B(z1, . . . , zT ) = −

∥∥∥ 1
T

∑T
t=1 zt

∥∥∥
for some norm ‖ · ‖ on Rk, and ΦT = {(φp,λ, . . . , φp,λ) : p ∈ ∆(k), λ > 0} contains time-invariant
mappings defined by `φp,λ(f, x) = 1 {‖f − p‖ ≤ λ}·(f−x). Performance measure in (1) then becomes

RT = sup
λ>0

sup
p∈∆(k)

∥∥∥∥∥ 1
T

T∑
t=1

1 {‖ft − p‖ ≤ λ} · (ft − xt)

∥∥∥∥∥ . (5)

Example 5 (Global Cost Online Learning Game [8], Section 4.4) Let H = Rk, X = [0, 1]k,
F = ∆(k), `(f, x) = f � x = (f1 · x1, . . . , fk · xk). Let B(z1, . . . , zT ) =

∥∥∥ 1
T

∑T
t=1 zt

∥∥∥ and ΦT =
{(φf , . . . , φf ) : f ∈ F and φf : F 7→ F is a constant mapping φf (g) = f ∀g ∈ F}. Then

RT =

∥∥∥∥∥ 1
T

T∑
t=1

ft � xt

∥∥∥∥∥− inf
f∈F

∥∥∥∥∥ 1
T

T∑
t=1

f � xt

∥∥∥∥∥ . (6)

2.2 Notation
Ex∼p denotes expectation w.r.t. a random variable x with a distribution p. For random variables
x1, . . . , xT with distributions p1, . . . , pT , we will use the shorthand Ex1:T∼p1:T to denote expectation
w.r.t. all these variables. Let q and p be distributions on F and X , respectively. We define a
shorthand `(q, p) = Ef∼q,x∼p`(f, x) and `φ(q, p) = Ef∼q,x∼p`φ(f, x). The Dirac delta distribution is
denoted by δx. A Rademacher random variable is symmetric {±1}. The notation xa:b denotes the
sequence xa, . . . , xb. The indicator of an event A is denoted by 1 {A}. The set {1, . . . , T} is denoted
by [T ], while the k-dimensional probability simplex is denoted by ∆(k). The set of all functions from
X to Y is denoted by YX , and the t-fold product is denoted by X t. Whenever a supremum (infimum)
is written as supa without a being quantified, it is assumed that a ranges over the set of all possible
values which will be understood from the context. For a separable Banach space B equipped with
a norm ‖ · ‖, let B‖·‖ be the unit ball. Let B∗ denote the dual space and B‖·‖∗ the corresponding
dual ball. For a ∈ B∗, ‖a‖∗ = supb∈B‖·‖ | 〈a, b〉 |. For b ∈ B, we write 〈a, b〉 = a(b) for the continuous
linear functional a ∈ B∗ on B. Let φid be identity payoff transformation `φid(f, x) = `(f, x) for all
f ∈ F , x ∈ X . The singleton set containing the time-invariant sequence of identity transformations
is denoted by I = {(φid, . . . , φid)}. Following [21], we define binary trees as follows. Given some set
Z, a Z-valued tree of depth T is a sequence (z1, . . . , zT ) of T mappings zi : {±1}i−1 7→ Z. The root
of the tree z is the constant function z1 ∈ Z. Unless specified otherwise, ε = (ε1, . . . , εT ) ∈ {±1}T
will define a path. Slightly abusing the notation, we will write zt(ε) instead of zt(ε1:t−1).
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3 General Upper Bounds

This section is devoted to upper bounds on the value of the game. We start by introducing the
Triplex Inequality, which requires no assumptions beyond those described in Section 2. Under the
additional weak assumption of subadditivity of B, we can perform symmetrization and further
upper bound two of the three terms in Triplex Inequality by a non-additive version of sequential
Rademacher complexity [21]. As we progress through the section, we make additional assumptions
and specialize and refine the upper bounds. The following definition generalizes the notion of
sequential Rademacher complexity, introduced in [21], to “global” functionsB of the payoff sequence.

Definition 1 The sequential complexity with respect to the payoff function ` and payoff transfor-
mation mappings ΦT is defined as

RT (`,ΦT ,B) = sup
f ,x

Eε1:T sup
φ∈ΦT

B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
where the outer supremum is taken over all (F × X )-valued trees of depth T and ε = (ε1, . . . , εT ) is
a sequence of i.i.d. Rademacher random variables.

Whenever B is clear from the context, we will omit it from the notation: RT (`,ΦT ). If ΦT is
a set of sequences of time-invariant transformations obtained from the base class Φ, we will simply
write RT (`,Φ). Let us remark that the moves of the player and the adversary appear “on the same
footing” in RT and in the above definition of sequential complexity. The “asymmetry” of sequential
Rademacher complexity [21] (where the supremum is taken over the player’s best choice) arises
precisely from the asymmetry of the notion of external regret, which, in turn, is due to ΦT acting on
the player choice only. In Section 4.1.1, we show that the notion studied in [21] is indeed recovered
for the case of external regret. An equivalent way to write sequential complexity is

RT (`,ΦT ,B) = sup
f1,x1

Eε1 sup
f2,x2

Eε2 . . . sup
fT ,xT

EεT sup
φ∈ΦT

B
(
ε1`φ1(f1, x1), . . . , εT `φT (fT , xT )

)
(7)

where the supremum on t-th step is over ft ∈ F , xt ∈ X .

3.1 Triplex Inequality

The following theorem is the starting point for all further analysis. Because of its importance, we
shall call it the Triplex Inequality. The three terms in the upper bound of the theorem are the three
key players in the process of online learning: martingale convergence, the ability to perform well if
the future is known, and complexity of the class in terms of sequential complexity.

Theorem 2 (Triplex Inequality) The following 3-term upper bound on the value of the game
holds:

VT (`,ΦT ) (8)

≤ sup
p1,q1

E
x1,f1

. . . sup
pT ,qT

E
xT ,fT

{
B(`(f1, x1), . . . , `(fT , xT ))− E

x′1:T ,f
′
1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))
}

+ sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

E
x1:T ,f1:T

{
B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))

}
+ sup
p1,q1

E
x1,f1

. . . sup
pT ,qT

E
xT ,fT

sup
φ∈ΦT

{
E

x′1:T ,f
′
1:T

B
(
`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T )
)
−B

(
`φ1(f1, x1), . . . , `φT (fT , xT )

)}
In the statement of the theorem, the random variables ft, f ′t have distribution qt while xt, x′t have
distribution pt. We remark that convexity of B is not required for the Triplex Inequality to hold.
Under a subadditivity condition, the following result gives upper bounds on the first and third terms.

Theorem 3 If B is subadditive, then the last term in the Triplex Inequality is upper bounded by
twice the sequential complexity, 2RT (`,ΦT ,B), and the first term is bounded by 2RT (`, I,B) where
I is the singleton set consisting of the identity mapping. Similarly, if −B is subadditive, then the
last term is upper bounded by 2RT (`,ΦT ,−B) and the first term is bounded by 2RT (`, I,−B).
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Discussion of Theorem 2 and Theorem 3 We note that the first and the third terms are
similar in their form. In fact, the first term can be equivalently written in a form similar to the
third term, with only one difference that φ belongs to a singleton set I containing the identity
mapping. If I ⊆ ΦT , then, trivially, RT (`, I,B) ≤ RT (`,ΦT ,B) and, therefore, an upper bound on
the third term yields and upper bound on the first. However, in some situations ΦT is “simpler” or
incomparable to I and, hence, the first and the third term in the Triplex Inequality are distinct.

What exactly is achieved by Theorem 3? Let us compare the third term in the Triplex Inequal-
ity to its sequential complexity upper bound given by Eq. (7). Both quantities involve interleaved
suprema and expected values. However, in the former, the suprema are over the choice of distri-
butions pt, qt and the expected values are draws of xt, ft from these mixed strategies. In contrast,
sequential complexity, as written in Eq. (7), contains suprema over the choices xt, ft followed by
a random draw of the next sign εt. Crucially, it is easier to work with the sequential complexity
as opposed to the third term in the Triplex Inequality since in the former the only randomness
comes from the random signs. In mathematical terms, the σ-algebra is generated by {εt} rather
than a complicated stochastic process arising from the Triplex Inequality. This is one of the key
observations of the paper.

Depending on a particular problem, some of the terms in the Triplex Inequality might be easier
to control than others. However, it is often the case that the first term is the easiest, as it naturally
leads to the question of martingale convergence. The second term is typically bounded by providing
a specific response strategy for the player if the mixed strategy of the adversary is known. This
response strategy is similar to the so-called Blackwell’s condition for approachability (see Section 4.2
for further comparison). The third term is arguably the most difficult as it captures complexity of
the set of payoff transformations ΦT . Under the subadditivity assumption on B, Theorem 3 upper
bounds the first and third terms by the sequential complexity.

The following observation gives us a simple condition under which we can replace B with some
other B′, and we shall find it useful in scenarios when it is difficult to directly deal with B. If
B : HT 7→ R and B′ : HT 7→ R are such that ∀z1, . . . , zT ∈ H, B(z1, . . . , zT ) ≤ B′(z1, . . . , zT ) then
we have that for any class of transformations ΦT , RT (`,ΦT ,B) ≤ RT (`,ΦT ,B′).

This completes our discussion of the main theorems. We now turn to the question of upper
bounding the terms in the Triplex Inequality. To this end, we need to define the notion of a smooth
function. A function g : H 7→ R is said to be (σ, p)-uniformly smooth for some p ∈ (1, 2] and σ ≥ 0
if for all z, z′ ∈ H we have, g(z) ≤ g(z′) + 〈∇g(z′), z − z′〉+ σ

p ‖z − z
′‖p. We say that g is uniformly

smooth if there exist finite σ and p such that g is (σ, p)-uniformly smooth. We say that a norm ‖ · ‖
is (σ, p)-smooth if ‖ · ‖p/p is a (σ, p)-smooth function.

A function B which is smooth in its arguments can be “sequentially linearized”, with additional
second-order terms appearing as norms of the increments. Informally, the smoothness assumption
provides a link from a “global” function B of coordinates to a sum of its parts. From the point of
view of online learning, this is very promising, as it appears to be difficult to sequentially optimize
a “global” function of many decisions. Due to limited space in this extended abstract, we will not
present the most general bounds based solely on smoothness of B (We refer the reader to [22] for
these results). However, we will state bounds for a smooth function of the average of coordinates.

3.2 When B is a Function of the Average

For the rest of this sub-section we assume that B = G
(

1
T

∑T
t=1 zt

)
, where (some power of) G is

an appropriately smooth function on the convex set conv(H). This form of B occurs naturally in
many games including Blackwell’s approachability and calibration. Among the most basic smooth
functions are powers of norms. For the `q norms, the following smoothness results are known.
For any q ∈ (1, 2], G(z) = ‖z‖qq is (q, q)-uniformly smooth and for any q ∈ [2,∞) the function
G(z) = ‖z‖2q is (2(q− 1), 2)-uniformly smooth. The `∞ cannot be made smooth by raising it to any
finite power s. However, for any z ∈ H and any q′ ∈ (1,∞), ‖z‖∞ ≤ ‖z‖q′ . Hence as discussed above,

RT (`,ΦT ,B) ≤ RT (`,ΦT ,B′) where B′(z1, . . . , zT ) =
∥∥∥ 1
T

∑T
t=1 zt

∥∥∥
q′

. By choosing q′ appropriately

and using the smoothness of the `q′ norm we can provide upper bounds for the value of the game.
Similarly to `∞, no finite power of the `1 norm is smooth. However if H ⊆ Rd, we can upper bound
the `1 norm by, say, `2 norm multiplied by a factor

√
d. Smoothness of this latter norm can then be

used. This is indeed the approach that is employed for proving rates for calibration.
The following result shows that if G is 1-Lipschitz and G2 is 2-smooth, we obtain a O(1/

√
T )

convergence rate whenever ΦT is a finite set. We refer to [22] for the case when G is not Lipschitz,
as well as for the case of a (γ, p)-smooth function G for 1 < p ≤ 2.
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Lemma 4 Let ΦT be a finite set of payoff transformations. Let B(z1, . . . , zT ) = G
(

1
T

∑T
t=1 zt

)
where G is 1-Lipschitz with respect to a norm ‖ · ‖ and G(0) = 0. Suppose that G2 is (γ, 2)-smooth
function on the convex set conv(H). Further, suppose that for any x ∈ X , f ∈ F , φ ∈ ΦT and
t ∈ [T ], it is true that ‖`φt(f, x)‖ ≤ η. Then it holds that

RT (`,ΦT ) ≤
√
γη2 log(2|ΦT |)

T

Having a bound on the complexity of a finite set of payoff transformations, we seek to extend
the results to infinite sets. A natural approach is to pass to a finite cover of the set at an expense of
losing an amount proportional to the resolution of the cover. The following definition can be seen
as a generalization of the corresponding notion introduced in [21]. We remark that the object, for
which we would like to provide a cover, is the set ΦT . Whenever payoff transformations are simply
constant time-invariant departure mappings, complexity of ΦT identical to that of F , yielding the
online cover of class F . In general, however, the set of payoff transformations can be much more
complex than (or not even comparable to) F .

Definition 5 A set V of H-valued trees of depth T is an α-cover (with respect to `p-norm) of ΦT
on an (F × X )-valued tree (f ,x) of depth T if

∀φ ∈ ΦT , ∀ε ∈ {±1}T ∃v ∈ V s.t.
1
T

T∑
t=1

‖vt(ε)− `φt(ft(ε),xt(ε))‖
p ≤ αp (9)

The covering number of the set of payoff transformations ΦT on a given tree (f ,x) is defined as

Np(α,ΦT , (f ,x)) = min{|V | : V is an α-cover w.r.t. `p-norm of ΦT on (f ,x) tree}.

Further define Np(α,ΦT , T ) = sup(f ,x)Np(α,ΦT , (f ,x)), the maximal `p covering number of ΦT .

In sections that follow, we specialize this definition to fit particular assumptions on ΦT . The next
theorem shows that sequential complexity can be bounded above in terms of the covering number,
integrated over all the scales. This is a generalization of the analogous result in [21].

Theorem 6 Assume that B(z1, . . . , zT ) = G
(

1
T

∑T
t=1 zt

)
where G is 1-Lipschitz with respect to a

norm ‖ · ‖ and G(0) = 0. Suppose that G2 is (γ, 2)-smooth function on the convex set conv(H).
Further, suppose that for any x ∈ X , f ∈ F , φ ∈ ΦT and t ∈ [T ], it is true that ‖`φt(f, x)‖ ≤ η.
Then it holds that

RT (`,ΦT ) ≤ 4 inf
α>0

{
α+ 3

√
γ

T

∫ η

α

√
logN∞(β,ΦT , T )dβ

}
3.3 General Bounds Under Linearity Assumptions on B
The general results of the previous section can be restated in simpler terms if more assumptions are
made. In particular, some of the terms in the Triplex Inequality can be dropped as soon as B is
linear. While some of the results below can be repeated for a more general form of B, for simplicity
we assume that B is an average of its arguments and that H ⊆ R: B(z1, . . . , zT ) = 1

T

∑T
t=1 zt .

Corollary 7 The following statements hold: (a) The first term in the Triplex Inequality is zero.
(b) If ΦT is a class of departure mappings, then the second term in the Triplex Inequality is non-
positive. Hence,

VT (`,ΦT ) ≤ 2RT (`,ΦT ).
(c) For H ⊆ [−1, 1], and assuming |`(f, x)| ≤ η for any x ∈ X and f ∈ F ,

RT (`,ΦT ) ≤ 4 inf
α≥0

{
α+ 3

√
2
∫ η

α

√
logN∞(δ,ΦT , T )

T
dδ

}
.

Experts in the area will notice the use of `∞ (as opposed to `2 in the classical Dudley integral bound)
covering numbers in the two results above. This can certainly be done [22] for Corollary 7 and most
probably even for the more general Theorem 6. However, in applications, one seldom loses more
than a mild logarithmic factor (in T ) due to the use of `∞ covering numbers.
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When B is the average of its coordinates, the sequential complexity takes on a familiar form:

RT (`,ΦT ) = sup
f ,x

Eε1:T

{
sup

φ∈ΦT

1
T

T∑
t=1

εt`φt(ft(ε),xt(ε))

}
.

Further, for H ⊆ R, Eq. (9) in definition of the cover becomes

∀φ ∈ ΦT , ∀ε ∈ {±1}T ∃v ∈ V s.t.
1
T

T∑
t=1

|vt(ε)− `φt(ft(ε),xt(ε))|
p ≤ αp

where V is now a set of R-valued trees. A further simplification of various notions is obtained for
time-invariant payoff transformations. Moreover, for time-invariant payoff transformations we can
define combinatorial parameters, generalizing the Littlestone’s [16, 2] and (online) fat-shattering
dimensions [21]. This is the subject of the next section.

3.3.1 Combinatorial Parameters for Time-Invariant Payoff Transformations
Assume H ⊆ R. Consider time-invariant payoff transformations generated from some base class of
payoff transformations Φ. That is, ΦT = {(φ, . . . , φ) : φ ∈ Φ}. We have the following definition of a
generalized shattering dimension.

Definition 8 Let H = {±1}. An (F × X )-valued tree (f ,x) of depth d is shattered2 by a payoff
transformation class Φ if for all ε ∈ {±1}d, there exists φ ∈ Φ such that `φ(ft(ε),xt(ε)) = εt for all
t ∈ [d]. The shattering dimension Sdim(Φ) is the largest d such that Φ shatters an (F × X )-valued
tree of depth d.

We can also define the scale-sensitive version of the shattering dimension, generalizing the fat-
shattering dimension of [21].

Definition 9 An (F × X )-valued tree (f ,x) of depth d is α-shattered by a payoff transformation
class Φ, if there exists an R-valued tree s of depth d such that

∀ε ∈ {±1}d, ∃φ ∈ Φ s.t. ∀t ∈ [d], εt
(
`φ(ft(ε),xt(ε))− st(ε)

)
≥ α/2

The tree s is called the witness to shattering. The fat-shattering dimension fatα(Φ) at scale α is the
largest d such that Φ α-shatters an (F × X )-valued tree of depth d.

Slightly abusing notation, we write Np(α,Φ, (f ,x)) instead of Np(α,ΦT , (f ,x)) whenever ΦT
consists of sequences of time-invariant payoff transformations with a base class Φ.

The combinatorial parameters are useful if they can be shown to control problem complexity
through, for instance, covering numbers. We state the following two results without proofs, as the
arguments are identical to the ones given in [21]. To be precise, the (f ,x) tree here plays the role of
the x tree in [21], `φ for φ ∈ Φ plays the role of f ∈ F in [21].

Theorem 10 Let H ⊆ {0, . . . , k} and fat2(Φ) = d2, fat1(Φ) = d1. Then

N∞(1/2,Φ, T ) ≤
d2∑
i=0

(
T

i

)
ki ≤ (ekT )d2 , N (0,Φ, T ) ≤

d1∑
i=0

(
T

i

)
ki ≤ (ekT )d1 .

In particular, the result holds for binary-valued payoffs (k = 1), in which case fat1(Φ) = Sdim(Φ).
We now show that the covering numbers are bounded in terms of the fat-shattering dimension.

Corollary 11 Suppose H ⊆ [−1, 1]. Then for any α > 0, any T > 0, and any (F × X )-valued tree
(f ,x) of depth T ,

N1(α,Φ, (f ,x)) ≤ N2(α,Φ, (f ,x)) ≤ N∞(α,Φ, (f ,x)) ≤
(

2eT
α

)fatα(Φ)

The generality of these results is evident, as both the combinatorial parameters and covering
numbers are defined for any performance measure (1) with time-invariant payoff transformations.
In particular, this includes Φ-regret (see Section 4.1).

2As an aside, the term “shattered set” was introduced by J. Michael Steele in his Ph.D. thesis in 1975.
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3.4 Covering Number Bounds for Slowly-Varying Payoff Transformations

In this subsection, we lift the assumption of time-invariance and observe that size of ΦT or an
appropriately behaving covering number N (α,ΦT , T ) is key for bounding the sequential complexity.
If payoff transformations change wildly in time, there is little hope of getting non-trivial bounds.
Under some assumptions on the variability of the sequences in ΦT , we can get a bound on the
covering number of ΦT . It has been shown in [14, 5] that it is possible to have small external regret
against comparators that change a limited number of times. In [24], dynamic regret is defined with
respect to a comparator whose path length is bounded. In general, one can consider situations
where we would like to compete with a budgeted comparator. We now show that the assumptions
of slowly-varying or budgeted comparators are naturally captured by our framework through the
notion of slowly-changing payoff transformations ΦT . Furthermore, the control of covering numbers
of ΦT becomes transparent under such assumptions. Our goal here is not to provide a comprehensive
list of possible results, but rather to show versatility of our framework.

Suppose ΦT consists of payoff transformations (φ1, . . . , φT ) which are “almost” time-invariant
within each of k + 1 intervals. Consider the following definition:

Φk,αT =
{

(φ1, . . . , φT ) : 1 = i0 ≤ . . . ≤ ik ≤ T, sup
f,x
‖`φt(f, x)− `φt′ (f, x)‖ ≤ α if is ≤ t ≤ t′ < is+1 for s ≥ 0

}
.

One can think of the time-invariant segments as “accumulation points” where the payoff transfor-
mations do not vary much. This, of course, includes the case when ΦT is constant over the k + 1
intervals by setting α = 0. The following result controls the covering number of Φk,αT .

Lemma 12 If N∞(α,Φ, T ) is finite, N∞(2α,Φk,αT , T ) ≤
(
T
k

)
· N∞(α,Φ, T )k+1.

Further extending the above results, we will now study the size of an online cover if ΦT consists
of payoff transformations of bounded length. In general, “length” can be defined as some budget
given by the setting at hand. Here, we present a straightforward approach without an attempt to
give very general and tight bounds. The length of a sequence (φ1, . . . , φT ) of payoff transformations
(with respect to L∞ distance) is defined as len(φ1, . . . , φT ) :=

∑T−1
t=1 supf,x

∥∥`φt(f, x)− `φt+1(f, x)
∥∥.

Lemma 13 Assume that for all (φ1, . . . , φT ) ∈ ΦT , we have len(φ1, . . . , φT ) ≤ L. Then, we have,

N∞(2α,ΦT , T ) ≤
(
T

L/α

)
· N∞(α,Φ, T )L/α+1,

4 Examples and Comparison to Known Results

We now turn to several specific settings studied in the literature and look at them through the prism
of our general results. While we believe that online learnability in many different scenarios can be
established through our framework, we decided to focus on several major problems. On the surface,
these problems are quite different; yet, through our unified approach we show that learnability can be
seamlessly established for all of them. The unification not only leads to simpler proofs and sharper
results, but also yields insight into the inherent complexity of problems.

4.1 Φ-Regret

In this section, we consider a particular notion of performance measure, known as Φ-regret [23,
12, 13]. In our framework, this means that we restrict ourselves to only time-invariant departure
mapping classes ΦT specified by a base class Φ of mappings from F to itself. The particular choices
of Φ lead to various notions, such as external, internal, swap regret, and more. To define Φ-regret, we
fix a set Φ of departure mappings which map F to F and define the set of time-invariant departure
mappings ΦT := {(φ, . . . , φ) : φ ∈ Φ}. Then the measure of performance becomes Φ-regret (Eq.
(3)). Since B is the average of its arguments, Corollary 7 implies that in the setting of Φ-regret,
VT (`,Φ) ≤ 2R(`,Φ). Specializing the definition of sequential complexity to Φ-regret, we obtain:

Definition 14 The sequential complexity for Φ-regret is defined as

RT (`,Φ) = sup
(f ,x)

Eε1:T sup
φ∈Φ

1
T

T∑
t=1

εt`(φ ◦ ft(ε),xt(ε)) . (10)
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Sequential complexity for Φ-regret enjoys some of the nice properties of the sequential Rademacher
complexity [21]. Suppose ` is convex in the first argument and conv(Φ) maps F into F . Then
RT (`, conv(Φ)) = RT (`,Φ). This allows us to obtain bounds for convex hulls of finite sets Φ.

To capture complexity via covering numbers, Definition 5 can be specialized to the case of Φ-
regret:

Definition 15 A set V of R-valued trees of depth T is an α-cover (with respect to `p-norm) of ΦT
on the F × X -valued tree (f ,x) of depth T if

∀φ ∈ Φ, ∀ε ∈ {±1}T ∃v ∈ V s.t.
1
T

T∑
t=1

|vt(ε)− `(φ ◦ ft(ε),xt(ε))|p ≤ αp

4.1.1 External Regret
External regret is the simplest example of Φ-regret. We separate it from the general discussion in
order to show that for external regret the various notions introduced in this paper reduce to the ones
proposed in [21]. Considering the definitions in Example 1, notice that the time-invariant departure
mappings class ΦT is chosen to be the class of sequences of constant mappings {(φf , . . . , φf ) : f ∈
F and φf (g) = f ∀g ∈ F}. It is precisely because of this constancy of φ that the dependence
on the F-valued tree f disappears from all the definitions and results. Further, because of the
obvious bijection between elements of ΦT and F , minimization (maximization) over ΦT can be
written as minimization (maximization) over F . Notice that the action of φf on the payoff is
`φf (ft, xt) = `(f, xt). Let us turn to Definition 14 of the sequential complexity for Φ-regret. Because
each φf ∈ Φ is a constant mapping, we have

RT (`,Φ) = sup
f ,x

Eε1:T sup
f∈F

1

T

T∑
t=1

εt`(f,xt(ε)) = sup
x

Eε1:T sup
f∈F

1

T

T∑
t=1

εt`(f,xt(ε)). (11)

If payoff is written as `(f, x) = f(x), this is precisely the sequential Rademacher complexity defined
in [21]. Next, we show that Definition 15 reduces to the definition of online covering given in [21].
Indeed, `φf (ft(ε),xt(ε)) = `(f,xt(ε)) for the constant mappings φ = (φf , . . . , φf ). Further, the
payoff space H ⊆ R. With these simplifications, the closeness to a covering element in Definition 15
becomes

∀f ∈ F , ∀ε ∈ {±1}T ∃v ∈ V s.t.
1
T

T∑
t=1

|vt(ε)− `(f,xt(ε))|p ≤ αp

where V is a set of R-valued trees. It is then immediate that Corollary 7 recovers the corresponding
result of [21]. For a detailed study of external regret, we refer to the companion paper [21].

4.1.2 Internal and Swap Regret
Assume the cardinality N = |F| is finite. For internal regret, Φ is the set of mappings {φf→g :
φf→g(f) = g and φf→g(h) = h ∀h 6= f, h ∈ F}. For swap regret [4, 6], Φ contains all NN

functions from F to itself. It is easy to see that applying Corollary 7 in the finite class case
(|ΦT | < ∞) immediately recovers the O(

√
T logN) bound for internal and external regret and the

O(
√
TN logN) bound for the swap regret [6]. Our general tools, however, allow us to go well beyond

finite sets of departure mappings. In the following sections, we consider several examples of infinite
classes of departure mappings which have been considered in the literature. In some of these cases,
an explicit strategy requires computation of a fixed-point [9, 13, 12]. Since we are not providing
efficient algorithms in order to obtain bounds, we are able to get sharp results by directly focusing
on the complexity of these infinite classes of departure mappings.

4.1.3 Convergence to Φ-correlated Equilibria
A beautiful result of Foster and Vohra [9] shows that convergence to the set of correlated equilibria
can be achieved if players follow internal regret minimization strategies. What is surprising, no
coordination is required to achieve this goal. Stoltz and Lugosi [23] extended this result to compact
and convex sets of strategies in normed spaces. In this section we show that their results can be
improved in certain situations. Let us consider their setting in a bit more detail. Suppose there
are N players each playing in a strategy set F . We could make the strategy set player dependent
but it only complicates notation. There are N loss functions mapping a strategy profile (f1, . . . , fN )
to {`k(f1, . . . , fN )}Nk=1, the losses for each of the N players. Consider a set of departure mappings
Φ ⊆ {φ : F → F}. A Φ-correlated equilibrium is a distribution π over strategy profiles such that
if the player jointly play according to it, no player has an incentive to unilaterally transform its
action using a mapping from Φ. That is, E(f1,...,fN )∼π [`k(fk, f−k)] ≤ E(f1,...,fN )∼π [`k(φ(fk), f−k)]
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for all k ∈ [N ], φ ∈ Φ. Theorem 18 in [23] shows the following. If F is convex compact subset of
a normed vector space, `k’s are continuous and Φ is a separable subset of C(F)3, then there exist
regret minimizing algorithms such that, if every player follows the algorithm then the sequence of
empirical plays jointly converges to the set of Φ-correlated equilibria.

Consider the case where F is some compact subset of the unit ball in some normed space with
a norm ‖ · ‖, the loss function `k is a 1-Lipschitz convex function, and the class Φ of departure
functions has finite metric entropy Nmetric(Φ, α) for all α > 0. Metric entropy is simply the log
covering number where covers of Φ are built for the supremum norm ‖φ‖∞ = supf∈F ‖φ(f)‖. Let
us consider a typical situation where Nmetric(Φ, α) = Θ(1/αp). The adversary’s set X here is simply
{f 7→ `k(f, g) : g ∈ Fk−1}, where g is a strategy profile over the remaining k− 1 players. To upper
bound the Φ-regret we can always make the set of adversary’s moves larger. In fact, we may set
X = CF , where CF = {x : F → R : x convex and 1-Lipschitz}. Moreover, the value of the convex-
Lipschitz game is equal to the value of the linear game (see [22]): VT (CF ,F ,Φ) = VT (LF ,F ,Φ)
where LF = {x : F → R is linear and 1-Lipschitz}. Then the sequential complexity bound is

sup
(f ,x)

Eε1:T sup
φ∈Φ

1

T

T∑
t=1

εt 〈φ(ft(ε)),xt(ε)〉 . (12)

Note that the set X is now just the set of 1-Lipschitz linear functions. Since ‖φ1−φ2‖∞ ≤ α implies
|〈φ1(f), x〉 − 〈φ2(f), x〉| ≤ α for any x ∈ X , we can use metric entropy inside Dudley’s integral to
upper bound the sequential complexity by c infα{αT +

√
T
∫ 1

α′=α

√
1/α′pdα′}. This behaves as

O(
√
T ), if p < 2, as O(

√
T log(T )) if p = 2, and as O(T (p−1)/p) if p > 2. These are better than the

O(T (p+1)/(p+2)) bound (derived using an explicit learning algorithm) given in Example 23 of [23].

4.2 Blackwell’s Approachability

Blackwell’s Approachability Theorem [3, 18, 15, 6] is a fundamental result for repeated two-player
zero-sum games. By means of this Theorem, learnability (Hannan consistency) can be established
for a wide array of problems, as illustrated in [6]. For instance, existence of calibrated forecasters
can be deduced from Blackwell’s Approachability Theorem [17, 9]. Let us first discuss the relation
of our results to Blackwell’s Theorem. A proof of Blackwell’s Theorem (e.g. [6]) reveals that (a)
martingale convergence has to take place in the payoff space, and (b) the so-called Blackwell’s one-
shot approachability condition has to be satisfied. The former is closely related to the first term in our
Triplex Inequality, while the latter is related to the second term (ability to play well if the next move
is known). What is interesting, in the literature, Blackwell’s Theorem is applied by embedding the
problem at hand into an often high-dimensional space. The dimensionality represents the complexity
of the problem, but this embedding is often artificial. In contrast, the problem complexity is captured
by the third term of our decomposition, the sequential complexity, and it is explicitly written as a
complexity measure rather than an embedding into some other space. The ability to upper bound
problem complexity with tools similar to those developed in [21] (e.g. covering numbers) means that
learnability can be established for a wide class of problems. In this section we show that Blackwell’s
approachability can be viewed as an online game with a particular performance measure (distance
to the set). Using the techniques developed in this paper, we prove Blackwell’s approachability in
Banach spaces for which martingale convergence holds (Theorem 16). We also show that martingale
convergence is necessary for the result to hold (Theorem 17). To the best of our knowledge, both
of these results are novel. To define the problem precisely, suppose H a subset of a Banach space B
and S ⊂ B is a closed convex set. For the moves f ∈ F of the player and x ∈ X of the adversary,
`(f, x) ∈ H is a Banach space valued signal. The goal of the player is to keep the average of the
signals 1

T

∑T
t=1 `(ft, xt) close to the set S. By defining B as in Example 3, RT becomes distance of

the average payoff to the set (see Eq. (4)). The comparator term is zero by our assumption that ΦT
contains sequences (φ1, . . . , φT ) of constant mappings which transform our actions to a point inside
S: `φt(f, x) = ct ∈ S for all f ∈ F , x ∈ X , and 1 ≤ t ≤ T .

The Blackwell’s approachability game is said to be one shot approachable if for every mixed
strategy p of the adversary, there exists a mixed strategy q for a player such that `(q, p) ∈ S. This
condition says that the player should be able to choose a “good” mixed strategy q in response to
a given adversarial strategy p. Recall that `(q, p) is simply a short-hand for the expected payoff
Ef∼q,x∼p`(f, x) (we make no assumptions about linearity of `). Blackwell’s one-shot approachability
condition is akin the second term in the Triplex Inequality, where the order of who plays first is
switched. If the one-shot condition is satisfied, it remains to check martingale convergence. We now

3The set of continuous functions on F equipped with the supremum norm.
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show that, under the one-shot approachability condition, a variation of the worst-case martingale in
the subset of the Banach space provides an upper bound on the distance to the set.

Theorem 16 For any game that is one shot approachable, we have that

VT (`,ΦT ) ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

where sup is over distributions M of conv(H
⋃
−H)-valued martingale difference sequences {dt}t∈N.

The notion of approachability considered in this paper corresponds to weak approachability.
Extending the techniques of this work to a slightly different notion of a value (see [22]), we can
guarantee almost sure convergence and, hence, strong approachability.

It is straightforward that for any Blackwell’s approachability game to have vanishing regret,
one shot approachability for the game is a necessary condition. We now show that martingale
convergence in the space of payoffs is necessary for Blackwell’s approachability. To the best of our
knowledge, this result has not appeared in the literature.

Theorem 17 For every symmetric convex set H there exists a one shot approachable game with
payoff’s mapping to H such that

VT (`,ΦT ) ≥ 1

2
sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

where sup is over distributions M of H-valued martingale difference sequences {dt}t∈N.

4.3 Calibration
Calibration is an important notion for forecasting binary sequences [7]. Example 4 corresponds to
the notion of λ-calibration for {1, . . . , k}-valued sequences [6] and defines the measure of performance
R. We are interested in sharp rates on the value of the calibration game and compare our results
with the recent work of Mannor and Stoltz [17]. Note that the definition of value allows the worst
scale λ to be chosen at the end of the game, making it a stronger requirement than what is required
for building a well calibrated forecaster. Using our techniques, for the `1-calibration game with k
outcomes, for T ≥ 3 and some absolute constant c, we show that VT (`,ΦT ) ≤ ck2 ((log T )/T )1/2 .

That is, the rate of calibration is Õ(T−1/2). For k > 2, the best rates known to us (due to [17])
deteriorate with k because the authors in fact calibrate with respect to all Borel sets.

4.4 External Regret with Global Costs
Let us first state a more general setting where the (vector) loss is `(f, x) rather than the specific
choice f � x in Example 5. To state the result we need the following Assumption.

Assumption 1 For any p1, p2, inff ‖`(f, p1) + `(f, p2)‖ ≥ inff ‖`(f, p1)‖+ inff ‖`(f, p2)‖.
Theorem 18 For the setting of Example 5 with vector valued loss `(f, x), under Assumption 1 :

VT ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

+ 2 sup
x

Eε1:T sup
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

εt`(f,xt(ε))

∥∥∥∥∥ , (13)

where sup is over distributions M of conv(H
⋃
−H)-valued martingale difference sequences {dt}t∈N.

Let us see what this implies in a specific case of Example 5, the setting studied in Even-Dar et
al [8], i.e. `(f, x) = f � x. Let us first verify if Assumption 1 holds here. By linearity of the vector
loss, we just have to verify whether, for arbitrary p1, p2, we have

inf
q∈∆(k)

∥∥q � p1 + q � p2

∥∥ ≥ inf
q∈∆(k)

∥∥q � p1

∥∥+ inf
q∈∆(k)

∥∥q � p2

∥∥ .

where the notation pi stands for the mean of the distribution pi. This is equivalent to asking whether
the function x 7→ inff∈F ‖f � x‖ is concave. Lemma 21 in the appendix proves that it is. Note that
in [8], it is shown that the above function is concave for the `p norms (including p = ∞). It turns
out that it remains concave no matter what norm is chosen. Thus, the general upper bound (13)
holds. In the case we are considering, we can further massage the second term in that upper bound.
Note that for any f and y, ‖f � y‖ ≤ ‖f‖∞‖y‖ ≤ ‖y‖. Using this in (13) we see that

VT ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

+ 2 sup
x

Eε1:T

∥∥∥∥∥ 1

T

T∑
t=1

εtxt(ε)

∥∥∥∥∥ ≤ 6 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

where the last inequality is because (εtxt(ε))Tt=1 is a martingale difference sequence. In the last
inequality the supremum is over distributions M of [−1, 1]k-valued martingale difference sequences
{dt}t∈N. For `p norms we recover the rates in [8], specifically for `∞ norm the bound is 6

√
log(k)/T
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Appendix

A Proofs for General Upper Bounds (Section 3)

Proof of Theorem 2: The value of the game, defined in (2), is

VT (`,ΦT ) = inf
q1

sup
p1

E
f1∼q1
x1∼p1

. . . inf
qT

sup
pT

E
fT∼qT
xT∼pT

sup
φ∈ΦT

{B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))}

= sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

sup
φ∈ΦT

{B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))}

via an application of the minimax theorem. Adding and subtracting terms to the expression above
leads to

VT (`,ΦT ) = sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

B(`(f1, x1), . . . , `(fT , xT ))− E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))

+ sup
φ∈ΦT

 E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))




≤ sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

B(`(f1, x1), . . . , `(fT , xT ))− E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))

+ sup
φ∈ΦT

E
f ′1:T∼q1:T
x′1:T∼p1:T

{
B(`(f ′1, x

′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))
}

+ sup
φ∈ΦT

 E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))




At this point, we would like to break up the expression into three terms. To do so, notice that
expectation is linear and sup is a convex function, while for the infimum,

inf
a

[C1(a) + C2(a) + C3(a)] ≤
[
sup
a
C1(a)

]
+
[
inf
a
C2(a)

]
+
[
sup
a
C3(a)

]
for functions C1, C2, C3. We use these properties of inf, sup, and expectation, starting from the
inside of the nested expression and splitting the expression in three parts. We arrive at

VT (`,ΦT )

≤ sup
p1

sup
q1

E
f1∼q1
x1∼p1

. . . sup
pT

sup
qT

E
fT∼qT
xT∼pT

[
B(`(f1, x1), . . . , `(fT , xT ))− E

f ′1:T∼q1:T
x′1:T∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))
]

+ sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

 sup
φ∈ΦT

E
f ′1:T∼q1:T
x′1:T∼p1:T

{
B(`(f ′1, x

′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))
}

+ sup
p1

sup
q1

E
f1∼q1
x1∼p1

. . . sup
pT

sup
qT

E
fT∼qT
xT∼pT

 sup
φ∈ΦT

 E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))




The replacement of infima by suprema in the first and third terms appears to be a loose step and,
indeed, one can pick a particular response strategy {q∗t } instead of passing to the supremum. For
instance, this can be the best-response strategy for the second term. However, in the examples we
have considered so far, passing to the supremum still yields the results we need. This is due to the
fact that the online learning setting is worst-case.
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Consider the second term in the above decomposition. We claim that

sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

 sup
φ∈ΦT

E
f ′1:T∼q1:T
x′1:T∼p1:T

[B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))]


= sup

p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

E
f1:T∼q1:T
x1:T∼p1:T

[B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))]

because the objective

E
f ′1:T∼q1:T
x′1:T∼p1:T

[B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))]

does not depend on the random draws f1, x1, . . . , fT , xT . We then rename f ′t , x
′
t into ft, xt. This

concludes the proof of the Triplex Inequality.

Proof of Theorem 3: We turn to the third term in the Triplex Inequality. If B is subadditive,

E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))

≤ E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`φ1(f ′1, x
′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )).

If, on the other hand, −B is subadditive,

E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))

≤ − E
f ′1:T∼q1:T
x′1:T∼p1:T

B(`φ1(f1, x1)− `φ1(f ′1, x
′
1), . . . , `φT (fT , xT )− `φT (f ′T , x

′
T )). (14)

Below assume that B is subadditive, and the proof of the other case is identical.
To prove the bound on the third term in terms of twice sequential complexity, we proceed as in

[21], applying the symmetrization technique from inside out. To this end, first note that,

sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

sup
φ∈ΦT

E
f ′1∼q1,...,f ′T∼qT
x′1∼p1,...x

′
T
∼pT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )

)
≤ sup
p1,q1

E
f1,f ′1∼q1
x1,x

′
1∼p1

. . . sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )

)
the above is true because the expectations are pulled outside the suprema, thus resulting in an upper
bound. Now notice that conditioned on history fT , f ′T are distributed identically and independently
drawn from qT . Similarly xT , x

′
T are also identically distributed conditioned on history. Hence

renaming them we see that

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )

)
= E
f ′T ,fT∼qT
x′
T
,xT∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (fT , xT )− `φT (f ′T , x

′
T )
)

= E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . ,−(`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
where only the last argument of B is changing sign. Thus,

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )

)
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= EεT E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
where εT is a Rademacher random variable. Furthermore,

sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )

)
= sup
pT ,qT

E
f ′T ,fT∼qT
x′
T
,xT∼pT

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
≤ sup
xT ,x′T∈X
fT ,f

′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
Proceeding similarly notice that since given history xT−1, x

′
T−1 and fT−1, f

′
T−1 are distributed in-

dependently and identically we have,
sup

pT−1,qT−1

E
fT−1,f

′
T−1∼qT−1

xT−1,x
′
T−1∼pT−1

sup
xT ,x

′
T
∈X

fT ,f
′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT−1(f ′T−1, x

′
T−1)− `φT−1(fT−1, xT−1), εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
= sup
pT−1,qT−1

E
fT−1,f

′
T−1∼qT−1

xT−1,x
′
T−1∼pT−1

EεT−1 sup
xT ,x

′
T
∈X

fT ,f
′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT−1(`φT (f ′T−1, x

′
T−1)− `φT−1(fT−1, xT−1)), εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
≤ sup
xT−1,x

′
T−1∈X

fT−1,f
′
T−1∈F

EεT−1 sup
xT ,x

′
T
∈X

fT ,f
′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT−1(`φT−1(f ′T−1, x

′
T−1)− `φT−1(fT−1, xT−1)), εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
Proceeding in similar fashion introducing Rademacher random variables all the way to ε1 we arrive

at

sup
p1,q1

E
f1,f ′1∼q1
x1,x

′
1∼p1

. . . sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )

)
≤ sup
x1,x′1∈X
f1,f

′
1∈F

Eε1 . . . sup
xT ,x′T∈X
fT ,f

′
T
∈F

EεT sup
φ∈ΦT

B
(
ε1(`φ1(f ′1, x

′
1)− `φ1(f1, x1)), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
Subadditivity of B implies B(a− b) ≤ B(a) +B(−b), and thus

B
(
ε1(`φ1(f ′1, x

′
1)− `φ1(f1, x1)), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
≤ B

(
ε1`φ1(f ′1, x

′
1), . . . , εT `φT (f ′T , x

′
T )
)

+B
(
− ε1`φ1(f1, x1), . . . ,−εT `φT (fT , xT )

)
We, therefore, arrive at

sup
x1,x′1∈X
f1,f

′
1∈F

Eε1 . . . sup
xT ,x′T∈X
fT ,f

′
T
∈F

EεT sup
φ∈ΦT

B
(
ε1(`φ1(f ′1, x

′
1)− `φ1(f1, x1)), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)

≤ 2 sup
f1∈F,x1∈X

Eε1 . . . sup
fT∈F,xT∈X

EεT sup
φ∈ΦT

B
(
ε1`φ1(f1, x1), . . . , εT `φT (fT , xT )

)
= 2 sup

(f ,x)

Eε1:T sup
φ∈ΦT

B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
where in the last step we passed to the supremum over (F × X )-valued trees. This concludes the
proof for the case of B being subadditive. Starting from Eq. (14), the proof for the case of −B
being subadditive and convex in each of its coordinates leads to the bound of

2 sup
(f ,x)

Eε1:T sup
φ∈ΦT

−B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
.
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The complete proof can be repeated for the first term in the Triplex Inequality in order to bound it
by 2RT (`, I,B) (or respectively 2RT (`, I,−B)).

Proof of Lemma 4: The lemma follows directly from a result on concentration of 2-smooth
functions of martingales, due to Pinelis [19]. A detailed proof appears in [22].

Proof of Theorem 6: Define β0 = η and βj = 2−j . For a fixed tree (f ,x) of depth T , let Vj be an
`∞-cover at scale βj . For any path ε ∈ {±1}T and any φ ∈ ΦT , let v[φ, ε]j ∈ Vj a βj-close element
of the cover in the `∞ sense. Now, for any φ ∈ ΦT ,

G

(
1
T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)

≤ G

(
1
T

T∑
t=1

εt(`φt(ft(ε),xt(ε))− v[φ, ε]Nt )

)
+

N∑
j=1

G

(
1
T

T∑
t=1

εt

(
v[φ, ε]jt − v[φ, ε]j−1

t

))

≤

∥∥∥∥∥ 1
T

T∑
t=1

εt(`φt(ft(ε),xt(ε))− v[φ, ε]Nt )

∥∥∥∥∥+
N∑
j=1

G

(
1
T

T∑
t=1

εt

(
v[φ, ε]jt − v[φ, ε]j−1

t

))

≤ T
max
t=1

∥∥`φt(ft(ε),xt(ε))− v[φ, ε]Nt
∥∥+

N∑
j=1

G

(
1
T

T∑
t=1

εt(v[φ, ε]jt − v[φ, ε]j−1
t )

)
Thus,

sup
φ∈ΦT

G

(
1
T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)
≤ βN + sup

φ∈ΦT


N∑
j=1

G

(
1
T

T∑
t=1

εt(v[φ, ε]jt − v[φ, ε]j−1
t )

)
We now proceed to upper bound the second term. Consider all possible pairs of vs ∈ Vj and
vr ∈ Vj−1, for 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|, where we assumed an arbitrary enumeration of
elements. For each pair (vs,vr), define a real-valued tree w(s,r) by

w(s,r)
t (ε) =

{
vst (ε)− vrt (ε) if there exists φ ∈ ΦT s.t. vs = v[φ, ε]j ,vr = v[φ, ε]j−1

0 otherwise.

for all t ∈ [T ] and ε ∈ {±1}T . It is crucial that w(s,r) can be non-zero only on those paths ε for
which vs and vr are indeed the members of the covers (at successive resolutions) close in the `2
sense to some φ ∈ ΦT . It is easy to see that w(s,r) is well-defined. Let the set of trees Wj be defined
as

Wj =
{

w(s,r) : 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|
}

Using the above notations we see that

Eε

[
sup
φ∈ΦT

G

(
1
T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)]
≤ βN + Eε

 sup
φ∈ΦT


N∑
j=1

G

(
1
T

T∑
t=1

εt(v[φ, ε]jt − v[φ, ε]j−1
t )

)


≤ βN + Eε

 N∑
j=1

sup
wj∈Wj

G

(
1
T

T∑
t=1

εtw
j
t (ε)

) (15)

Similarly to the corresponding proof in [21], we can show that maxTt=1 ‖w
j
t (ε)‖ ≤ 3βj for any

wj ∈ Wj and any path ε. Using concentration inequalities for 2-smooth functions in Banach spaces
(see [19] or the full version [22]of this extended abstract), we get

Eε

[
sup
φ∈ΦT

G

(
1
T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)]
≤ βN +

N∑
j=1

βj

√
γ log(2|Wj |

T

≤ βN +
N∑
j=1

βj

√
γ log(2|Vj | · |Vj−1|

T

17



≤ βN +
6
√
γ

√
T

N∑
j=1

βj

√
log(|Vj |)

≤ βN +
12
√
γ

√
T

N∑
j=1

(βj − βj+1)
√

logN∞(βj ,ΦT , T ) .

Using standard arguments, this gives the bound,

inf
α

4α+
12
√
γ

√
T

∫ η

α

√
logN∞(β,ΦT , T )dβ .

Proof of Corollary 7: The first statement is trivially verified. In fact, for this to hold we only
require that B is subadditive, affine in its arguments, and B(0, . . . , 0) = 0. Indeed, the expectations
can be sequentially moved inside of B, making the coordinates of B zero, and making the suprema
over the distributions irrelevant.

For the second claim, consider the second term in (8), specialized to the case of departure
mappings:

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

E
f1:T∼q1:T
x1:T∼p1:T

{
1
T

T∑
t=1

`(ft, xt)− `(φt(ft), xt)

}
(16)

Pick a particular (sub)optimal response qt which puts all mass on f∗t = arg minf∈F Ex∼pt`(f, x). It
follows that `(ft, xt)− `(φt(ft), xt) ≤ 0, ensuring that the quantity in (16) is non-positive.

The third claim is a straightforward consequence of Theorem 6. Indeed, H ⊂ [−η, η] and G is
the identity mapping, hence G2 is (2, 2)-smooth.

Proof of Lemma 12: Fix an (F×X )-valued tree (f ,x) of depth T . Let (i0, . . . , ik) be the sequence
which defines intervals of time-invariant mappings for the sequence (φ1, . . . , φT ). Fix ε ∈ {±1}T .
Let vi0 , . . . ,vik ∈ V be the elements of the L∞ cover closest to φi0 , . . . , φik , respectively, on the
path ε. That is, for any a ∈ {i0, . . . , ik},

max
t
‖`φa(ft(ε),xt(ε))− vat (ε)‖ ≤ α.

By our assumption, on any interval I, defined by the endpoints a = ij and b = ij+1,

max
t∈{a,...,b−1}

‖`φa(ft(ε),xt(ε))− `φt(ft(ε),xt(ε))‖ ≤ α,

Hence,
max

t∈{a,...,b−1}
‖`φt(ft(ε),xt(ε))− vat (ε)‖ ≤ 2α

Denoting by a(t) ∈ {i0, . . . , ik} the left endpoint of an interval to which t belongs,

max
t∈{1,...,T}

‖`φt(ft(ε),xt(ε))− va(t)
t (ε)‖ ≤ 2α

It is then clear that to construct a 2α-cover for Φk,αT in L∞ norm, it is enough to concatenate trees
in V . More precisely, this is done as follows. Construct a set V k of H-valued trees as

V k = {v′ = v′
(
v0, . . . ,vk, i0, . . . , ik

)
: 1 = i0 ≤ i1 ≤ . . . ≤ ik ≤ T, v0, . . . ,vk ∈ V }

and v′ = v′
(
v0, . . . ,vk, i0, . . . , ik

)
is defined as a sequence of T mappings

v′t(ε) = va(t)
t (ε) t ∈ Ia(t)

for any ε ∈ {±1}T . Here Ia = {ij , . . . , ij+1 − 1} and a(t) is the index of the interval to which t
belongs. In plain words, we consider all ways of partitioning {1, . . . , T} into k + 1 intervals and
defining a new set of trees out of V in such a way that within the interval, the values are given by
a fixed tree from V . As before, it is clear that

N∞(2α,Φk,αT , T ) = |V k| ≤
(
T

k

)
· N∞(α,Φ, T )k+1,
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providing a control on the complexity of Φk,αT .

Proof of Lemma 13: We claim that by choosing k large enough, the set of covering trees V k
defined in the proof of Lemma 12 provides a cover for ΦT at a given scale α > 0. Consider any
(φ1, . . . , φT ) ∈ ΦT . We construct the nondecreasing sequence i1, . . . , ij , . . . ∈ {1, . . . , T} of “change-
points” as follows: increase t until the next payoff transformation is farther than α from the payoff
transformation at ij :

ij+1 = inf
t>ij

{
sup
f,x

∥∥∥`φij (f, x)− `φt(f, x)
∥∥∥ ≥ α}

Let k be the length of the largest such sequence for all elements of ΦT . We have simply reduced
the problem to the one studied in Lemma 12: within each block, all the payoff transformations are
close. Clearly, k = k(α) ≤ L/α, but can potentially be smaller under additional assumptions on ΦT .
We then have a bound on the size of a 2α-cover of ΦT :

N∞(2α,ΦT , T ) ≤
(

T

k(α)

)
· N∞(α,Φ, T )k(α)+1 ≤

(
T

L/α

)
· N∞(α,Φ, T )L/α+1 .

B Techniques for Lower Bounds

It is well-known that an equalizing strategy (i.e. a strategy that makes the move of the other player
“irrelevant”) can often be shown to be minimax optimal. In this section, we define a notion of an
equalizer for our repeated game and show that it can be used to prove lower bounds on the value
of the game. While existence of an equalizer has to be established for particular problems at hand,
the lower bounds below hold whenever such an equalizer exists.

Definition 19 A strategy {p∗t } for the adversary is said to be an equalizer strategy if
E

x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

RT ((f1, x1), . . . , (fT , xT )) = E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

RT ((f1, x1), . . . , (fT , xT ))

for all strategies {q∗t } and
{
q∗t
}

of the player. Here RT is defined as in (1).

Using the above definition of an equalizer we have the following proposition as an immediate
consequence.

Proposition 20 For any Equalizer strategy {p∗t } we have that for any f ∈ F ,

VT (`,ΦT ) ≥ E
x1∼p1

. . . E
xT∼pT

[
B (`(f, x1), . . . , `(f, xT ))− inf

φ∈ΦT
B (`φ1(f, x1), . . . , `φT (f, xT ))

]
where pt = p∗t

(
{fs = f, xs}t−1

s=1

)
Remark 1 For many interesting games we consider it is often the case that for any x1, . . . , xT and
any f1, . . . , fT , f

′
1, . . . , f

′
T ,

inf
φ∈ΦT

B (`φ1(f1, x1), . . . , `φT (fT , xT )) = inf
φ∈ΦT

B (`φ1(f ′1, x1), . . . , `φT (f ′T , xT ))

In these cases since the player’s actions do not even affect the second term of the regret, to check if
a strategy {p∗t } is an equalizer or not we only need to check if

E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

B (`(f1, x1), . . . , `(fT , xT )) = E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

B (`(f1, x1), . . . , `(fT , xT ))

for all strategies {q∗t } and {q∗t } of the player.

Interestingly enough, many of the existing lower bounds in online learning literature are, in fact,
equalizers (see e.g. [6, p. 252]). In particular, in [1], a lower bound on the value of the game
was derived by looking at a certain face of a convex hull of loss vectors. The face, supported by a
probability distribution p, corresponds to the set of functions with the same expected loss under the
distribution p. Hence, p is an equalizing strategy for those functions. Since these functions are the
“best” with respect to this distribution, a lower bound in terms of complexity of this set was derived
in [1]. Furthermore, (Lee, Bartlett and Williamson, 1998) shows that a lower bound on the rate of
convergence in the i.i.d. setting is achieved when there are two distinct minimizers of expected error
for a given distribution. Again, this distribution can be viewed as an equalizer for the non-singleton
set of minimizers of expected error.
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C Proofs for Blackwell Approachability (Section 4.2)

Proof of Theorem 16: Now we apply Theorem 2 to the Blackwell Approachability game. Note
that for any sequence (φ1, . . . , φT ), φt maps the payoff to some element of S. Hence,

B(`φ1(f1, x1), . . . , `φT (fT , xT )) = 0

for any f1, . . . , fT ∈ F , x1, . . . , xT ∈ X . We then conclude that

VT (`,ΦT ) ≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

{
B(`(f1, x1), . . . , `(fT , xT ))− E

f ′1:T∼q1:T
x′1:T∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))
}

(17)
+ sup

p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

B(`(f1, x1), . . . , `(fT , xT )) .

We remark for the upper bound to hold it is enough to assume that ΦT contains some sequence that
maps the payoffs to some element of S.

Consider the two terms in the above bound separately. The first term can be written as

sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

E
f ′1:T∼q1:T
x′1:T∼p1:T

{
inf
c∈S

∥∥∥∥∥c− 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
c′∈S

∥∥∥∥∥c′ − 1
T

T∑
t=1

`(f ′t , x
′
t)

∥∥∥∥∥
}

≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

E
f ′1:T∼q1:T
x′1:T∼p1:T

{∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)−
1
T

T∑
t=1

`(f ′t , x
′
t)

∥∥∥∥∥
}

≤ sup
p1,q1

E
f1,f ′1∼q1
x1,x

′
1∼p1

. . . sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

{∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)−
1
T

T∑
t=1

`(f ′t , x
′
t)

∥∥∥∥∥
}

where in the first inequality we used infa[C1(a)] − infa[C2(a)] ≤ supa[C1(a) − C2(a)] along with a
triangle inequality. This is now bounded by

2 sup
M

E

[∥∥∥∥∥ 1
T

T∑
t=1

dt

∥∥∥∥∥
]

where the supremum is over distributions M of martingale difference sequences {dt}t∈N such that
each dt ∈ conv(H

⋃
−H).

The second term in Eq. (17) is

sup
p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

B(`(f1, x1), . . . , `(fT , xT ))

= sup
p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

inf
c∈S

∥∥∥∥∥c− 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
≤ sup

p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

inf
c∈S

{∥∥∥∥∥c− 1
T

T∑
t=1

`(qt, pt)

∥∥∥∥∥+

∥∥∥∥∥ 1
T

T∑
t=1

`(qt, pt)−
1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
}

≤ sup
p1

inf
q1
. . . sup

pT

inf
qT

 inf
c∈S

∥∥∥∥∥c− 1
T

T∑
t=1

`(qt, pt)

∥∥∥∥∥+ E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(qt, pt)−
1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥


≤ sup
p1

inf
q1
. . . sup

pT

inf
qT

{
inf
c∈S

∥∥∥∥∥c− 1
T

T∑
t=1

`(qt, pt)

∥∥∥∥∥
}

(18)

+ sup
p1,q1

. . . sup
pT ,qT

E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(qt, pt)−
1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
where the last inequality uses the fact that supremum is convex and infimum satisfies the following
property: infa [C1(a) + C2(a)] ≤ [infa C1(a)]+[supa C2(a)]. By one shot approachability assumption,
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we can choose a particular response qt (in the first term of Eq. (18)) for a given pt to be the mixed
strategy that satisfies `(qt, pt) ∈ S. Since S is a convex set, we conclude that

1
T

T∑
t=1

`(qt, pt) ∈ S

and the first term in Eq. (18) is zero. The second term is trivially upper bounded as

sup
p1,q1

. . . sup
pT ,qT

E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(qt, pt)−
1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

∥∥∥∥∥ 1
T

T∑
t=1

`(qt, pt)−
1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
≤ 2 sup

M
E

[∥∥∥∥∥ 1
T

T∑
t=1

dt

∥∥∥∥∥
]
.

Combining the two upper bounds yields the desired result.

Proof of Theorem 17: Consider the game where adversary plays from set X = H, the player
plays from set F = {±1}, and S = {0}. Suppose the payoff is given by `(f, x) = f · x. This game is
clearly one-shor approachable since the player can always play ±1 with equal probability to ensure
that `(p, q) = 0 irrespective of q.

Now consider the adversary strategy where adversary fixes a H valued tree x and at each time t
picks a random εt ∈ {±1} and plays xt = εtxt(f1 ·ε1, . . . , ft−1 ·εt−1) that is a random sign multiplied
with the instance given by the path on the tree specified by f1 · ε1, . . . , ft−1 · εt−1. Further note that
since εt ∈ {±1} are Rademacher random variables, we see that irrespective of choice of distribution
from which ft is drawn, ft · εt is a Rademacher random variable conditioned on history. This shows
that for the above prescribed adversary strategy, we have that for any X valued tree x and any two
player strategies {q∗t } and {q∗t } we have

E
f1∼q∗1

ε1∼Unif{±1}

. . . E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1
T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
= E

f1∼q∗1
ε1∼Unif{±1}

. . . E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1
T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
= E

f1∼q∗1
ε1∼Unif{±1}

. . . E
fT−1∼q∗T−1

εT−1∼Unif{±1}

E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1
T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
. . . = E

f1∼q∗1
ε1∼Unif{±1}

. . . E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1
T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
The first equality above is due to the fact that fT · εT is a Rademacher random variable conditioned
on f1, . . . , fT−1 and ε1, . . . , εT−1 which means we can replace q∗T with q∗T . The subsequent equalities
are got similarly by replacing each q∗t by q∗t one by one inside out by conditioning on f1, . . . , ft−1 and
ε1, . . . , εt−1; and replacing each q∗t by q∗t . Hence we see that the adversary strategy is an equalizer
strategy. Hence using Proposition 20 and picking the fixed f = 1 we see that

VT ≥ sup
x

Eε∼Unif{±1}T

[∥∥∥∥∥ 1
T

T∑
t=1

εtx(ε)

∥∥∥∥∥
]
≥ 1

2
sup
M

E

[∥∥∥∥∥ 1
T

T∑
t=1

dt

∥∥∥∥∥
]

where the last inequality is because the worst-case martingale difference sequence generated by
random signs (Walsh Paley martingales) are lower bounded by the worst case martingale difference
sequences within a factor of at most two [20].
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D Proofs for Calibration (Section 4.3)

Proof: Let δ > 0 to be determined later. Let ‖ · ‖ denote the `1 norm. Let Cδ be the maximal
2δ-packing of ∆(X ) in this norm. Consider the calibration game defined in Example 4, augmented
with the restriction that the player’s choice belongs to Cδ instead of ∆(k). The corresponding
minimax expression with this restriction is clearly an upper bound on the value of the game defined
in Example 4.

Observe that the first term in the Triplex Inequality of Theorem 2 is zero. The second term is
upper bounded by a particular (sub)optimal response qt being the point mass on pδt , the element of
Cδ closest to pt. Note that any 2δ packing is also a 2δ cover. Thus, the second term becomes

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

− E
x1:T∼p1:T
f1:T∼q1:T

B(`φ1(f1, x1), . . . , `φT (fT , xT ))


= sup

p1

inf
q1
. . . sup

pT

inf
qT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T
f1:T∼q1:T

∥∥∥∥∥ 1
T

T∑
t=1

`φp,λ(ft, xt)

∥∥∥∥∥
≤ sup

p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pδt − xt)

∥∥∥∥∥
which, in turn, is upper bounded via triangle inequality by

sup
p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pδt − pt)

∥∥∥∥∥
+ sup

p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pt − xt)

∥∥∥∥∥
≤ 2δ + sup

p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pt − xt)

∥∥∥∥∥
Now note that for a given λ > 0, p1, . . . , pT and p ∈ ∆(k), we have that {1

{
‖pδt − p‖ ≤ λ

}
·

(pt − xt)}t∈N is a martingale difference sequence and so the second term in the triplex inequality is
bounded as :

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

− E
x1:T∼p1:T
f1:T∼q1:T

B(`φ1(f1, x1), . . . , `φT (fT , xT ))

 ≤ 2δ + 2

√
k

T
. (19)

We now proceed to upper bounded the third term in the Triplex Inequality. Since −B is a sub-
additive, by Theorem 3, we have that the third term is bounded by twice the sequential complexity

2RT (`,ΦT ,−B) = 2 sup
f ,x

Eε1:T sup
φ∈ΦT

−B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
= 2 sup

f ,x
Eε1:T sup

λ>0
sup

p∈∆(k)

∥∥∥∥∥ 1
T

T∑
t=1

εt1 {‖ft(ε)− p‖ ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
where f is a Cδ-valued tree. Using the fact that f is a discrete-valued tree, not a ∆(k)-valued tree, we
would like to pass from the supremum over λ > 0 and p ∈ ∆(k) to a supremum over finite discrete
set in order to appeal to Lemma 4.

To this end, fix f ,x and ε1:T and let us see how many genuinely different functions can we get
by varying λ > 0 and p ∈ ∆(k). This question boils down to looking at the size of the class

G := {gp,λ(f) = 1 {‖f − p‖ ≤ λ} : p ∈ ∆(k), λ > 0}

over the possible values of f ∈ Cδ. Indeed, if gp,λ(f) = gp′,λ′(f) for all f ∈ Cδ, then

1
T

T∑
t=1

1 {‖ft(ε)− p‖ ≤ λ} · (ft(ε)− xt(ε)) =
1
T

T∑
t=1

1 {‖ft(ε)− p′‖ ≤ λ′} · (ft(ε)− xt(ε)).
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We appeal to VC theory for bounding the size of G over Cδ. First, we claim that the VC
dimension of G is O(k2). Note that G is the class of indicators over `1 balls of radius λ centered at p
for various values of p, λ. A result of Goldberg and Jerrum [11] states that for a class G of functions
parametrized by a vector of length d, if for g ∈ G and f ∈ F , 1 {g(f) = 1} can be computed using
m arithmetic operations, the VC dimension of G is O(md). In our case, the functions in G are
parametrized by k values and membership ‖f −p‖1 ≤ λ can be established in O(k) operations. This
yields O(k2) bound on the VC dimension of G. By Sauer-Shelah Lemma, the number of different
labelings of the set Cδ by G is bounded by |Cδ|c·k

2
for some absolute constant c. We conclude that

the effective number of different (p, λ) is finite. Let us remark that the VC upper bound is not used
in place of the sequential Littlestone’s dimension. It is only used to show that the set ΦT is finite,
and such technique can be useful when the set of player’s actions is finite.

Hence, there exists a finite set S of pairs (λ, p) with cardinality |S| ≤ |Cδ|c·k
2

such that

2RT (`,ΦT ,−B) ≤ 2 sup
f ,x

Eε1:T sup
λ>0

sup
p∈∆(k)

∥∥∥∥∥ 1
T

T∑
t=1

εt1 {‖ft(ε)− p‖1 ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
1

= 2 sup
f ,x

Eε1:T max
(p,λ)∈S

∥∥∥∥∥ 1
T

T∑
t=1

εt1 {‖ft(ε)− p‖1 ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
1

≤ 2 k1/2 sup
f ,x

Eε max
(p,λ)∈S

∥∥∥∥∥ 1
T

T∑
t=1

εt1 {‖ft(ε)− p‖1 ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
2

Now note that ‖ · ‖22 is (2, 2)-smooth and so applying Lemma 4 with G = ‖ · ‖2, γ = 2, η = 2, we see
that

2RT (`,ΦT ,−B) ≤ 2k1/2

(
8 log(2|S|)

T

)1/2

≤ 2k1/2

(
16ck2 log(|Cδ|)

T

)1/2

= c′k3/2

(
log(|Cδ|)

T

)1/2

for some small absolute constant c′.
Now note that the size of set Cδ the 2δ packing of ∆(k) is upper bounded by the size of the

minimal δ cover of ∆(k) which can be bounded as |Cδ| ≤
(

1
δ

)k−1 and so we see that

2RT (`,ΦT ,−B) ≤ c′k2

(
log(1/δ)

T

)1/2

.

Combining the above upper bound on the third term of triplex inequality and Equation 19 that
bounds the second term of the triplex inequality (and since first term is anyway 0) we see that,

VT ≤ 2δ + 2

√
k

T
+ c′k2

(
log(1/δ)

T

)1/2

.

Choosing δ = 1/T concludes the proof.

E Proofs for Global Cost (Section 4.4)

Proof of Theorem 18: The Triplex Inequality and Theorem 3 give

VT ≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

E
f ′1:T∼q1:T
x′1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

(`(ft, xt)− `(f ′t , x′t))

∥∥∥∥∥
+ sup

p1

inf
q1
. . . sup

pT

inf
qT

sup
f∈F

E
f1:T∼q1:T
x1:T∼p1:T

{∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥−
∥∥∥∥∥ 1
T

T∑
t=1

`(f, xt)

∥∥∥∥∥
}
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+ 2 sup
x

Eε1:T sup
f∈F

∥∥∥∥∥ 1
T

T∑
t=1

εt`(f,xt(ε))

∥∥∥∥∥ .

Consider the first term in the Triplex Inequality. Observe that (`(ft, xt)−`(f ′t , x′t))Tt=1 is a (vector
valued) martingale difference sequence and so

sup
p1,q1

E
f1,f ′1∼q1
x1,x

′
1∼p1

. . . sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x

′
T
∼pT

∥∥∥∥∥ 1
T

T∑
t=1

(`(ft, xt)− `(f ′t , x′t))

∥∥∥∥∥ ≤ 2 sup
M

E

[∥∥∥∥∥ 1
T

T∑
t=1

dt

∥∥∥∥∥
]
.

where the supremum is over distributions M of martingale difference sequences {dt}t∈N such that
each dt ∈ conv(H

⋃
−H).

Now, consider the second summand above:

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
f∈F

E
f1:T∼q1:T
x1:T∼p1:T

{∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥−
∥∥∥∥∥ 1
T

T∑
t=1

`(f, xt)

∥∥∥∥∥
}

= sup
p1

inf
q1
. . . sup

pT

inf
qT

 E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
f∈F

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(f, xt)

∥∥∥∥∥


≤ sup
p1

. . . sup
pT

{
E

x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
f∈F

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(f, xt)

∥∥∥∥∥
}

where in the last step a (sub)optimal choice was made for qt: the distribution qt = δft puts all the
mass on ft such that

‖`(ft, pt)‖ = inf
f∈F
‖`(f, pt)‖.

Observe that by several applications of triangle and Jensen’s inequalities,

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
f∈F

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

`(f, xt)

∥∥∥∥∥
≤

{∥∥∥∥∥ 1
T

T∑
t=1

`(ft, pt)

∥∥∥∥∥− inf
f∈F

∥∥∥∥∥ 1
T

T∑
t=1

`(f, pt)

∥∥∥∥∥
}

+ E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

(`(ft, xt)− `(ft, pt))

∥∥∥∥∥ (20)

Under Assumption 1, along with the way we chose ft, the first term in (20) becomes∥∥∥∥∥ 1
T

T∑
t=1

`(ft, pt)

∥∥∥∥∥− inf
f∈F

∥∥∥∥∥ 1
T

T∑
t=1

`(f, pt)

∥∥∥∥∥ ≤ 1
T

T∑
t=1

‖`(ft, pt)‖ −
1
T

T∑
t=1

inf
f∈F
‖`(f, pt)‖ = 0 .

We conclude that the second term in the Triplex Inequality can be upper bounded by

sup
p1

. . . sup
pT

E
x1:T∼p1:T

∥∥∥∥∥ 1
T

T∑
t=1

(`(ft, xt)− `(ft, pt))

∥∥∥∥∥ ,
which, in turn, is no worse than the supremum over distributions M of martingale difference se-
quences used to bound the first term.

This gives us the general upper bound on the value of the game:

VT ≤ 4 sup
M

E

[∥∥∥∥∥ 1
T

T∑
t=1

dt

∥∥∥∥∥
]

+ 2 sup
x

Eε1:T sup
f∈F

∥∥∥∥∥ 1
T

T∑
t=1

εt`(f,xt(ε))

∥∥∥∥∥ . (21)

Lemma 21 Let F be the probability simplex in any dimension. Let ‖ · ‖ be any norm. The function

x 7→ inf
f∈F
‖f � x‖ ,

defined on the positive orthant, is concave.
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Proof: Since the function above is absolutely homogeneous and continuous, all we need to prove is

inf
f∈F
‖f � (x+ y)‖ ≥ inf

f∈F
‖f � x‖+ inf

f∈F
‖f � y‖ .

for arbitrary x, y. That is, for arbitrary f ′, x, y,

‖f ′ � (x+ y)‖ ≥ inf
f∈F
‖f � x‖+ inf

f∈F
‖f � y‖ .

Define h, g ∈ F as follows:

gi =
f ′i(1 + yi/xi)

Zg
hi =

f ′i(1 + xi/yi)
Zh

,

where

Zg =
∑
i

f ′i(1 + yi/xi) Zh =
∑
i

f ′i(1 + xi/yi) .

Now, as we show below, 1/Zg + 1/Zh ≤ 1. Thus,

‖f ′ � (x+ y)‖ ≥ 1
Zg
‖f ′ � (x+ y)‖+

1
Zh
‖f ′ � (x+ y)‖

= ‖g � x‖+ ‖h� y‖
≥ inf
f∈F
‖f � x‖+ inf

f∈F
‖f � y‖ .

To finish the proof, note that, by Cauchy-Schwarz,(∑
i

f ′i(1 + yi/xi)

)
·

(∑
i

f ′i
xi

xi + yi

)
≥

(∑
i

f ′i

)2

= 1 .

This shows,
1
Zg
≤
∑
i

f ′i
xi

xi + yi
.

Similarly, we get
1
Zh
≤
∑
i

f ′i
yi

xi + yi
.

Adding them, we get
1
Zg

+
1
Zh
≤
∑
i

f ′i = 1

as claimed. This completes the proof.
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