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Abstract

We test whether two sequences are generated by the same distribution or by two different
ones. Unlike previous work, we make no assumptions on the distributions’ support size.
Additionally, we compare our performance to that of the best possible test. We describe an
efficiently-computable algorithm based on pattern maximum likelihood that is near optimal
whenever the best possible error probability is ≤ exp(−14n2/3) using length-n sequences.

1 Introduction

We consider the problem of testing whether two sequences are generated by the same distribution
or by two different ones. There is an extensive amount of literature on this problem and several
of its variants in the framework of hypothesis testing [6, 23, 7, 11, 12], which primarily considers
asymptotic error performance when the sequence lengths tend to infinity.

For non-asymptotic lengths, significant progress has been made recently under distribution prop-
erty testing [3, 4, 18, 21], which provide efficient algorithms for closeness testing and other problems
like entropy estimation and support size estimation using a number of samples that are sublinear
in the support size. Nonetheless, these algorithms and their error performance guarantees require a
priori knowldedge of upper bounds on the support size. In this paper, we present closeness-testing
algorithms that are competitively optimal when the best possible error probability is small. The al-
gorithms do not require knowledge of the underlying support size. Our methods extend the technique
of pattern maximum likelihood (PML) used in [16, 15] for estimating large alphabet distributions
in the context of universal compression.

1.1 Problem definition

Let A = {a1, a2, . . . , ak} be an alphabet of size k and (p1, p2) be a pair of unknown distributions
over A. Two length-n sequences X1, X2 ∈ An are generated i.i.d. and independently of each other
according to p1 and p2 respectively. The problem is to decide whether p1 and p2 are same or different
given only X1 and X2 and no further information about (p1, p2). A closeness test ∆ for sequences
in An is a mapping ∆ : An ×An → {same , diff } that labels each sequence pair as same or diff ,
indicating whether the distributions that generated them are same or different. The error probability
of ∆ for any (p1, p2) is the probability that it labels a sequence pair generated by (p1, p2) incorrectly,
i.e.,

Pne (∆, p1, p2)
def
=

{
Pr(∆(X1, X2) = diff ) if p1, p2 are same,

Pr(∆(X1, X2) = same ) if p1, p2 are different.

The goal is to design a test ∆ that uses few samples and yet has a low error probability, both when
(p1, p2) are same, i.e., p1 = p2 and when (p1, p2) are sufficiently different to be distinguishable by
some test.

1.2 A closeness test based on empirical distributions

As noted in [3], the problem can be regarded as a composite hypothesis testing problem [17] where
there are two classes of distribution pairs, Psame that contains pairs of identical distributions (p, p),
and Pdiff that contains pairs of significantly different distributions (p1, p2). For simple hypothesis
testing problems (where there is only one distribution, or one distribution pair in our case, in each



class), a likelihood ratio test (LRT) [6, 17] has lowest error probability. The empirical frequency
distribution, which is also the maximum likelihood distribution of the sequence, is a good estimate
of the underlying distribution when alphabet size k is small and sequence length n is large. Hence,
one can plug in the empirical distributions instead of actual distributions into a LRT to obtain a
test that has low error probability in this case. Such a ratio test that uses maximum likelihood
distributions is commonly referred to as a generalized likelihood ratio test (GLRT) [17] and is often
used for composite hypothesis testing.

Specifically, let P̂ (x)
def
= maxp p(x) =

∏
a∈A

(µ(a)
n

)µ(a)
be the maximum likelihood of a sequence

x ∈ An under all possible i.i.d. distributions, where µ(a) is the number of appearances of a symbol
a in x. Define ∆emp as the test such that

∆emp(x1, x2)
def
=

{
diff if P̂ (x1)P̂ (x2)

P̂ (x1x2)
>
(
n+k−1
n

)2
n,

same otherwise,

for all (x1, x2) ∈ An ×An. Note that for all (x1, x2), P̂ (x1)P̂ (x2)/P̂ (x1x2) ≥ 1 since

P̂ (x1)P̂ (x2) = max
p1,p2

p1(x1)p2(x2) ≥ max
p1=p2

p1(x1)p2(x2) = P̂ (x1x2).

It can be shown that when p1 = p2, P̂ (X1)P̂ (X2)/P̂ (X1X2) is small and ≤
(
n+k−1
n

)2
n with prob-

ability ≥ 1− 1
n . And when |p1 − p2| > ε for some ε > 0, then P̂ (X1)P̂ (X2)/P̂ (X1X2) is large and

≥ 2nε
2/6 >

(
n+k−1
n

)2
n with probability 1− o(1) [10] when k = o(n). Hence, when k = o(n), i.e., the

alphabet size k is small and sublinear in n, then ∆emp has low error probability, both in the case
when p1 = p2 and in the case when the L1 distance |p1 − p2| > ε for some constant ε > 0.

However, when the alphabet size is large, empirical distribution may not be a good estimate of
the underlying distribution and ∆emp may not have low error probability, as shown in an example
in [10] and in the following, simpler, example.
Example 1. Let k = n3 for large n and let (p1, p2) be such that p1(a1) = 1, p2(a1) = 1/2 and
for i = 2, . . . , k, p1(ai) = 0, p2(ai) = 1/(2(k − 1)). The two distributions are clearly very different
and |p1 − p2| = 1. If X1 and X2 are length-n sequences generated i.i.d. according to p1 and p2

respectively, then X1 = an1 and X2 = a
n
2
1 a2a3 · · · an2 +1 are typical sequences. In particular, by the

Birthday problem, no symbol in {a2, a3, . . . , ak} appears more than once in X2 with high probability.
In this case, we see that

P̂ (X1)P̂ (X2)

P̂ (X1X2)
=
P̂ (an1 )P̂ (a

n
2
1 a2a3 · · · an2 +1)

P̂ (a
3n
2

1 a2a3 · · · an2 +1)
=

1n × ( 1
2 )

n
2 ( 1

n )
n
2

( 3
4 )

3n
2 ( 1

2n )
n
2

=

(
4

3

) 3n
2

≈ 1.54n.

When both X1 and X2 are generated according to p2, X1 = a
n
2
1 a2a3 · · · an2 +1 and X2 =

a
n
2
1 an2 +2 · · · an+1 are typical sequences and no symbol in {a2, a3, . . . , ak} appears more than once

in X1X2 with high probability. Then,

P̂ (X1)P̂ (X2)

P̂ (X1X2)
=
P̂ (a

n
2
1 a2a3 · · · an2 +1)P̂ (a

n
2
1 an2 +2 · · · an+1)

P̂ (an1a2a3 · · · an+1)
=

( 1
2 )

n
2 ( 1

n )
n
2 × ( 1

2 )
n
2 ( 1

n )
n
2

( 1
2 )n( 1

2n )n
= 2n.

Hence, P̂ (X1)P̂ (X2)/P̂ (X1X2) is higher in the case when the distributions are same compared to

when the distributions are different. Therefore, the test P̂ (X1)P̂ (X2)/P̂ (X1X2)
diff

same

>< t cannot have

low error probability for both (p1, p2) and (p2, p2) for any choice of threshold t. Furthermore, we
note that when X1, X2 are both generated according to p2, X1, X2 and hence X1X2 have very
different empirical distribution estimates in the computation of likelihood ratio.

1.3 Related work on estimating large alphabet distributions

Batu et al [3, 4] developed a test that distinguishes the cases that two distributions are close or well
separated in L1 distance using sequences whose length is sublinear in size of the underlying alphabet.
They show an algorithm that outputs pass (i.e., same ) when |p1 − p2| ≤ max( ε

32k1/3
, ε

4k1/2
) and

fail (i.e., diff ) when |p1 − p2| > ε with error probability ≤ δ in both cases, using sequences
of length n = O(k2/3 log k · ε−4 · log 1

δ ). Their algorithm estimates the L1 distance contribution
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of only the high probability symbols using their relative frequencies as probability estimates, since
the empirical distribution is a good probability estimate for such symbols. The contribution of low
probability symbols is estimated using a test for L2 distance that relies on the number of collisions
(also known as coincidences or repetitions) in the sequences. They also show a corresponding lower
bound by showing pairs of distributions (p1, p2) such that |p1 − p2| > ε and that no algorithm can
distinguish it from the identical pair (p1, p1) using n = o(k2/3 · ε−2/3) samples. Valiant [21] further
showed that distinguishing distribution pairs with L1 distance less than α from those with distance
greater than β for 0 < α < β < 2 requires n = k1−o(1) samples and can be done using n = Õ(k)
samples by [3] or by another test shown in [21]. Also see [4, 2, 5, 19, 21] and references therein for
other problems of testing properties of distributions using a number of samples that is sublinear in
the alphabet size. Although no assumptions are made on the structure of distributions, the tests
in [3, 21] and their sample complexities still depend on the knowledge of an upper bound on the
alphabet size k of the unknown underlying distributions. Moreover, as in Example 1, there are many
distribution pairs that can be tested for closeness in much less than Õ(k2/3) samples.

The related problem of classification was considered by Kelly et al [10]. Here, one is given training
sequences X1 and X2 ∈ An generated i.i.d. and independently according to unknown distributions
p1 and p2 that are seperated in L1 distance. A third sequence Y ∈ An is generated i.i.d. and
independently according to either p1 or p2 with equal probability and the problem is to decide
whether Y is generated according p1 or p2. They show a test that has low error probability when
(p1, p2) belong to a restricted class of distributions such that the probabilities of all symbols are
Θ( 1

k ) and k = Θ(nα), for any fixed α ∈ [0, 2). Their test uses the L2 distance between the empirical

frequency distributions, of the sequences to determine which one of the pairs (X1, Y ) or (X2, Y ) are
closer and classify accordingly.

The problem of estimating the probability multiset of large alphabet distributions was also stud-
ied in the context of universal compression of large alphabet sources in [16, 14, 15]. The main idea
is to consider the pattern of a sequence, which conveys only the structure of the sequence and the
order in which symbols appear in the sequence, and not the identities of the actual symbols. The
pattern contains all the information that is needed to test symmetric properties like entropy that
depend only on the probability multiset and not on the way in which the probabilities are associated
with the symbols of the alphabet. In [16], several estimators based on the maximum likelihood of
patterns were shown that estimate the pattern probabilities (that are usually exponentially small
in n) to within a factor that is subexponential in the sequence length n, regardless of the alphabet
size and the structure of the underlying distribution. Preliminary results on application of such
estimators to the problem of classification were shown in [20]. Partial results on classifiers based
on maximum likelihood estimation of the joint pattern of two or more sequences were shown in [1].
In this paper, we show closeness tests based on maximum likelihood of joint patterns that perform
almost as good as any test can, without making any assumptions on the underlying distributions.
These tests can be used as good classifiers as well.

1.4 Closeness tests based on pattern maximum likelihood

The pattern of a sequence was introduced in [16]. Let x = x1x2 · · ·xn = xn1 ∈ An be a sequence of
length n and A(x) denote the set of symbols that appear in x. The index ıx(a) of a symbol a ∈ A(x)
is

ıx(a)
def
= min{|A(xi1)| : 1 ≤ i ≤ n and xi = a},

i.e., one more than the number of distinct symbols that have appeared before the first appearance
of a in x. The pattern of x is the sequence

Ψ(x)
def
= ıx(x1)ıx(x2) · · · ıx(xn)

obtained by replacing the symbols in x by their respective indices. For example, if x = abracadabra,
then ıx(a) = 1, ıx(b) = 2, ıx(r) = 3, ıx(c) = 4 and ıx(d) = 5. Hence, Ψ(abracadabra) =
12314151231. The set of all possible patterns of different length-n sequences is represented by Ψn.
For example, Ψ1 = {1}, Ψ2 = {11, 12} and Ψ3 = {111, 112, 121, 122, 123}.

We extend the definition of patterns to two or more sequences. The joint pattern of a pair of

sequences (x1, x2) ∈ An1×An2 is Ψ(x1, x2)
def
= (ψ1, ψ2), where ψ1 = Ψ(x1) and ψ1ψ2 = Ψ(x1x2). For

example, the joint pattern of bab and abca is Ψ(bab, abca) = (121, 2132), since the pattern of first
sequence is Ψ(bab) = 121 and that of the two sequences catenated is Ψ(bababca) = 1212132. Thus,
the joint pattern conveys the patterns of the individual sequences and the association between the
symbols of the sequences. The joint pattern of a list of three or more sequences is defined similarly.

3



We use Ψn1,n2 to denote the set of all possible joint patterns of pairs of sequences of length (n1, n2).
For example, Ψ2,1 = {(11, 1), (11, 2), (12, 1), (12, 2), (12, 3)}.

The probability of a single pattern ψ ∈ Ψn under a distribution p is the probability that a
length-n sequence X generated i.i.d. according to p has pattern ψ, i.e.,

p(ψ)
def
= p

(
Ψ(X) = ψ

)
=

∑
x:Ψ(x)=ψ

p(x).

Similarly, the probability of a joint pattern (ψ1, ψ2) ∈ Ψn1,n2 under a pair of distributions (p1, p2)
is the probability that two sequences X1 and X2 of length n1 and n2 generated i.i.d. according to
p1 and p2 respectively have joint pattern (ψ1, ψ2) and is denoted by

p1,2(ψ1, ψ2) = p1,2

(
Ψ(X1, X2) = (ψ1, ψ2)

)
=

∑
(x1,x2):

Ψ(x1,x2)=(ψ1,ψ2)

p1(x1)p2(x2).

For example, if A = {a, b, c, d} and p = (pa, pb, pc, pd), then probability of the pattern ψ = 1213 is

p(1213) = p(abac) + p(abad) + p(acab) + · · · = p2
apbpc + p2

apbpd + p2
apcpb + · · · .

Similarly, if p1 = (pa, pb, pc, pd) and p2 = (p′a, p
′
b, p
′
c, p
′
d), then probability of the pattern (12, 13) is

p1,2(12, 13) = p1,2(ab, ac) + p1,2(ab, ad) + p1,2(ba, bc) + · · · = papbp
′
ap
′
c + papbp

′
ap
′
d + · · · .

Notice that if (ψ1, ψ2) ∈ Ψn1,n2 , then ψ1ψ2 ∈ Ψn1+n2 . Also, if p1 = p2 = p, then p1,2(ψ1, ψ2) =

p1,1(ψ1, ψ2) = p1(ψ1ψ2).

The maximum likelihood of a pattern ψ under all i.i.d. distributions is P̂ (ψ)
def
= max

p
p(ψ). Sim-

ilarly, the maximum likelihood of a joint pattern (ψ1, ψ2) under all pairs of i.i.d. and independent

distributions is denoted by P̂ (ψ)
def
= max

p1,p2
p1,2(ψ).

Since joint patterns contain all the relevant information for closeness testing, consider a simple
hypothesis testing problem where a sequence pair (X1, X2) ∈ An × An is generated according to
either according to (p1, p2) or (p, p), but we are given only the joint pattern Ψ(X1, X2) and not

the actual sequences. In this case, the likelihood ratio test p1,2(Ψ(X1, X2))
diff

same

>< p(Ψ(X1X2)) is a

test with minimum error probability. Hence, similar to Subsection 1.2, viewing closeness testing
as a composite hypothesis testing problem with the joint pattern of the sequences given as the

observations, we consider the test ∆P̂ (Ψ) def
= ∆

P̂ (Ψ)
n,δ defined as

∆
P̂ (Ψ)
n,δ (x1, x2)

def
=

{
diff if P̂ (Ψ(x1,x2))

P̂ (Ψ(x1x2))
> 1√

δ
,

same otherwise,

for all (x1, x2) ∈ An × An and for some δ < exp(−12n2/3). In other words, the test outputs diff
if the maximum likelihood of the pattern of the two sequences under two different distributions is
much higher than that under two identical distributions.

Our first main result, Theorem 7, is that the test ∆P̂ (Ψ) has low error probability when the pair
of distributions is identical and also when the pair of distributions is significantly different such that
there exists a test that can distinguish it from any pair of identical distributions. We note that,
without loss of generality, we limit ourselves to only symmetric tests in our analysis, whose output
depends only on joint pattern of the sequences and not the specific symbols that have appeared,
since the property of closeness depends only on the probability multiset and not the associated
symbols. (Also see Appendix C that provides a discussion along the lines of [3, 4].) We say that a
pair of distributions (p1, p2) is (n, δ)-different if there exists a symmetric test that can distinguish
with error probability < δ, pairs of length n sequences generated according to (p1, p2) from those
generated by any pair of identical distributions (p, p). In other words, for all p, there exists a test
∆ such that

Pne (∆, p1, p2) < δ and Pne (∆, p, p) < δ.

Revisiting Example 1, in the case when (X1, X2) ∼ (p1, p2), consider the typical sequence pair

(X1, X2) = (an1 , a
n
2
1 a2a3 · · · an2 +1). Then, P̂ (Ψ(X1, X2)) = P̂ (1n, 1

n
2 23 · · · (n2 + 1)) ≥ 1 · ( 1

2 )
n
2 ( 1

2 )
n
2 =

4



( 1
2 )n, since the distributions (p′1, p

′
2) assign Ψ(X1, X2) such a likelihood, where p′1(a1) = 1, p′2(a1) =

1
2 , and the remaining probability 1

2 of p′2 is spread over a continous alphabet or a large tail, similar to

p2. Also, from [13], P̂ (Ψ(X1X2)) = P̂ (1
3n
2 23 · · · (n2 + 1)) = ( 3

4 )
3n
2 ( 1

4 )
n
2 , assigned by the distribution

p such that p(a1) = 3
4 and has the remaining probability 1

4 spread over a continuous alphabet.
Hence,

P̂ (Ψ(X1, X2))

P̂ (Ψ(X1X2))
≥

( 1
2 )n

( 3
4 )

3n
2 ( 1

4 )
n
2

=

(
4

3

) 3n
2

> 1.53n,

and the test ∆P̂ (Ψ) outputs diff for δ = exp(−14n2/3). When (X1, X2) ∼ (p2, p2), for the

typical sequence pair (X1, X2) = (a
n
2
1 a2a3 · · · an2 +1, a

n
2
1 an2 +2 · · · an+1), again by [13], we have

P̂ (Ψ(X1, X2)) ≤ P̂ (Ψ(X1)P̂ (Ψ(X2)) = P̂ (1
n
2 23 · · · (n2 + 1))2 =

(
( 1

2 )
n
2 ( 1

2 )
n
2

)2
= ( 1

2 )2n, and

P̂ (Ψ(X1X2)) = P̂ (1n23 · · · (n+ 1)) = ( 1
2 )n( 1

2 )n = ( 1
2 )2n . Hence, in this case

P̂ (Ψ(X1, X2))

P̂ (Ψ(X1X2))
= 1,

and the output of ∆P̂ (Ψ) is same . We note that the maximum likelihood distributions of Ψ(X1, X2)
and of Ψ(X1X2) are consistent, i.e., same, unlike in the case of ∆emp.

As evident from the previous example, the computation of pattern maximum likelihood (PML)
is difficult in general and hence we show an efficient test based on pattern probability estimators
that also has low error probability. Several such estimators were shown in [16], that can com-
pute maximum likelihood of patterns to within a subexponential factor. In particular, we con-
sider the following estimator in [16]. The profile of a pattern or a sequence conveys the num-
ber of symbols appearing a given number of times in it. For example, the profile of abdb is
ϕ(abdb) = (ϕ1, ϕ2, ϕ3, ϕ4) = (2, 1, 0, 0), indicating that there are ϕ1 = 2 symbols that appear
once in abdb and ϕ2 = 1 symbol that appears 2 times and so on. The sequences abdb and dcca for
example have the same profile, though their patterns are different. The definition of a profile can
be similarly extended to joint patterns or pairs of sequences and consists of entries ϕµ1,µ2

that are
the number of symbols that have appeared µ1 times in first sequence and µ2 times in the second
sequence. For example,

ϕ(dac, adbda) = ϕ(123, 21412) =

0 1 2

0 0 1 0
1 1 0 2

,

where the prevalances ϕµ1,µ2
are arranged in a matrix with the rows indexed with µ1 and columns

with µ2. As seen in the matrix, ϕ1,2 = 2, since there are 2 symbols, namely d and a that appear
µ1 = 1 times in dac and µ2 = 2 times in adbda. By convention, we set ϕ0,0 ≡ 0.

Let N(ϕ) be the number of patterns with the same profile ϕ and Φn be the set of all distinct
profiles of sequences of length n. It was shown in [16] that the probability estimator for ψ ∈ Ψn,

q(ψ)
def
=

1

|Φn|
1

N(ϕ(ψ))
,

which assigns equal probability estimate to all profiles and equal estimate to all patterns within a
profile, is a good estimate for patten maximum likelihood, i.e., q(ψ) ≥ p̂(ψ) exp(−π

√
2n/3).

We consider a similar estimator for maximum likelihood of joint patterns. Namely, denoting
the number of joint patterns with the same profile ϕ by N(ϕ) and the set of all distinct profiles of
length-(n, n) sequences by Φn,n, we consider the estimator

qjp(ψ1, ψ2)
def
=

1

|Φn,n|
1

N(ϕ(ψ1, ψ2))

for joint patterns (ψ1, ψ2) ∈ Ψn,n.

We use the estimators q and qjp instead of the pattern maximum likelihoods in ∆P̂ (Ψ) and

consider the test ∆
N(ϕ)
n,δ defined as

∆
N(ϕ)
n,δ (x1, x2)

def
=

{
diff if N(ϕ(x1x2))

N(ϕ(x1,x2)) >
1√
δ
,

same otherwise,
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for all (x1, x2) ∈ An × An and for some δ < exp(−14n2/3). Our second main result, Theorem 12,
shows that the test ∆N(ϕ) also has low error probability

Pe,sym(∆N(ϕ), p1, p2) ≤ 2
√
δ exp(7n2/3)

when (p1, p2) are either identical or (n, δ)-different. In the process, we show a convexity result for
profile probabilities, that resembles the convexity of KL-divergence.

We note that N(ϕ) can be calculated by the expressions

N(ϕ) =
n!∏n

µ=1(µ!)ϕµϕµ!
,

for ϕ ∈ Φn [16] and as shown in Appendix B,

N(ϕ) =
(n!)2∏n

µ1,µ2
(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2

!
,

for ϕ ∈ Φn,n. Hence, for (ψ1, ψ2) ∈ Ψn,n, the quantity N(ϕ(ψ1ψ2))

N(ϕ(ψ1,ψ2))
can be evaluated efficiently with

time and space complexity both O(n).
We look at Example 1 again, this time using the test ∆N(ϕ). When (X1, X2) ∼ (p1, p2) and

Ψ(X1, X2) = (ψ1, ψ2) = (1n, 1
n
2 23 · · · (n2 + 1)), the profile ϕ = ϕ(ψ1, ψ2) has ϕ0,1 = n

2 , ϕn,n2 = 1

and all other ϕµ1,µ2
= 0. And the profile ϕ′ = ϕ(ψ1ψ2) has ϕ′1 = n

2 , ϕ′3n
2

= 1 and all other ϕ′µ = 0.

Hence, by Stirling approximation,

N(ϕ(X1X2))

N(ϕ(X1, X2))
= N(ϕ′)/N(ϕ) =

(2n)!

( 3n
2 )! · (n2 )!

/ (n!)2

n!(n2 )! · (n2 )!
≈
(

4

3

) 3
2n

> 1.53n,

and the test ∆
N(ϕ)
n,δ outputs diff for a suitable δ as in the case of ∆P̂ (Ψ), say δ = exp(−16n2/3).

When (X1, X2) ∼ (p2, p2), and Ψ(X1, X2) = (ψ1, ψ2) = (1
n
2 23 · · · an

2 +1, 1
n
2 (n2 + 2) · · · (n+ 1)),

N(ϕ(X1X2))

N(ϕ(X1, X2))
=

(2n)!

n!n!

/ (n!)2

(n2 )!(n2 )! · (n2 )! · (n2 )!
≈
√
πn

2

and the output of ∆
N(ϕ)
n,δ is same for δ = exp(−16n2/3).

While the error probability results that we show for the tests ∆
N(ϕ)
n,δ and ∆

P̂ (Ψ)
n,δ are useful only

when δ < exp(−14n2/3), for higher values of δ, we can characterize their performance in terms of
sample complexity. It is shown in Corollary 14 that if (p1, p2) are (δ, n)-different for some δ < 1

4 ,

then the test ∆
N(ϕ)
n′,δ′ also has error probability less than δ when given sequences of length

n′ = max
{

19n,
120000n3

(log2
1
4δ )3

}
,

where δ′ = δ2 exp(−14n′2/3). In particular, if δ < exp(−19n2/3), the error probability of ∆N(ϕ) is
less than δ when given n′ = 19n samples.

2 Error analysis of the test ∆P̂ (Ψ)

In order to analyze the error probability of ∆
P̂ (Ψ)
n,δ , we show some ancillary results on profiles of joint

patterns and their probabilities.
We begin by showing bounds on |Φn,n|, the number of profiles of joint patterns, and show that

|Φn,n| is subexponential in the sequence length. To count the number of profiles |Φn1,n2,...,nd |,
we relate it to partitions of (n1, n2, . . . , nd). We say that a multiset of d-tuples of non-negative
integers {(µ1,i, µ2,i, . . . , µd,i)}mi=1 is an (unordered) partition of (n1, n2, . . . , nd) if

∑m
i=1 µj,i = nj for

j = 1, 2, . . . , d. The sum of two d-tuples denotes their component-wise sum, i.e., (µ1, µ2, . . . , µd)

+ (µ′1, µ
′
2, . . . , µ

′
d)

def
= (µ1 + µ′1, µ2 + µ′2, . . . , µd + µ′d). The product of a scalar with a d-tuple is

component-wise product with the scalar, i.e., α · (µ1, µ2, . . . , µd)
def
= (α · µ1, α · µ2, . . . , α · µd). Thus,

{(0, 1), (0, 1), (2, 1)} is an unordered partition of (2, 3), because 2 · (0, 1) + (2, 1) = (2, 3).
We denote the number of partitions of (n1, n2, . . . , nd) by the joint partition function P (n1, n2, . . . , nd).

For example, P (2, 1) = 4, since

(2, 1) = (1, 0) + (1, 1) = (2, 0) + (0, 1) = 2 · (1, 0) + (0, 1).
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Observation 1. For all d ≥ 1 and non-negative integers n1, n2, . . . , nd,

|Φn1,n2,...,nd | = P (n1, n2, . . . , nd).

It is a well known result due to Hardy and Ramanujan [8, 9] that for all n, the partition function
P (n) is bounded as

exp
(
π

√
2

3

√
n(1− o(1))

)
≤ P (n) < exp

(
π

√
2

3

√
n
)
.

The following lemma shows an upper bound on P (n1, n2, . . . , nd), similar to [22, Theorem 15.7].

Lemma 2. For all d ≥ 1 and all n1, n2, . . . , nd ≥ 2d+1,

P (n1, n2, . . . , nd) ≤ exp
(

2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Proof. A proof is shown in Appendix A.

Corollary 3. For all d ≥ 1 and n ≥ 2d+1,

|Φn,n,... (d times)| = P (n, n, . . . (d times)) < exp
(

2(d+ 1)nd/(d+1)
)
.

Let (X1, X2, . . . , Xd) ∈ An1 ×An2 × · · ·And be generated i.i.d. and independently according to
(p1, p2, . . . , pd) respectively. The probability of a profile ϕ ∈ Φn1,n2,...,nd under (p1, p2, . . . , pd) is the
probability of observing a list of sequences with that profile, i.e.,

p1,2,...,d(ϕ)
def
= p1,2,...,d

(
ϕ(X1, X2, . . . , Xd) = ϕ

)
=

∑
(ψ1,ψ2,...,ψd):

ϕ(ψ1,ψ2,...,ψd)=ϕ

p1,2,...,d(ψ1, ψ2, . . . , ψd).

Joint patterns with the same profile have the same probability when the sequences are generated by
i.i.d. distributions. Hence, for all (ψ1, ψ2, . . . , ψd),

p1,2,...,d(ϕ(ψ1, ψ2, . . . , ψd)) = N(ϕ(ψ1, ψ2, . . . , ψd)) · p1,2,...,d(ψ1, ψ2, . . . , ψd).

The following lemma provides a simple bound on the probability of generating sequences whose
profile has low probability.

Lemma 4. Let (X1, X2, . . . , Xd) ∈ An1 × An2 × · · · × And be generated i.i.d. according to
(p1, p2, . . . , pd) respectively, where n1, n2, . . . , nd ≥ 2d+1. Then, for all 0 < δ ≤ 1,

Pr
(
p1,2,...,d(ϕ(X1, X2, . . . , Xd)) < δ

)
< δ exp

(
2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Proof. Using union bound and Corollary 3,

Pr
(
p1,2,...,d(ϕ(X1, X2, . . . , Xd)) < δ

)
≤

∑
ϕ:p1,2,...,d(ϕ)<δ

p1,2,...,d(ϕ)

< δ|Φn1,n2,...,nd |

≤ δ exp
(

2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Corollary 5. Let (X1, X2) ∈ An×An be generated i.i.d. according to (p1, p2), where n ≥ 8. Then,
for all 0 < δ ≤ 1,

Pr
(
p1,2(ϕ(X1, X2)) < δ

)
< δ exp(6n2/3).
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We make the following observation on (n, δ)-different distributions before we proceed to analyze

the error probability of ∆P̂ (Ψ).

Observation 6. Let (p1, p2) be a pair of distributions over A that are (n, δ)-different. And let
ϕ ∈ Φn,n be a profile such that p1,2(ϕ) ≥ δ. Then, for all distributions p3 over A, p3,3(ϕ) < δ.

Proof. Suppose on the contrary, there exists a distribution p3 such that p3,3(ϕ) ≥ δ. Any symmetric
test ∆ labels all sequence pairs having profile ϕ ∈ Φn,n as either same or diff . If it maps them as
same , then Pne (∆, p1, p2) ≥ δ and if it maps them as diff , then Pne (∆, p3, p3) ≥ δ, i.e., one of the
error probabilities is ≥ δ, which contradicts the fact that (p1, p2) are (δ, n)-different.

The following theorem shows that the test ∆
P̂ (Ψ)
n,δ has low error probability both when the dis-

tribution pairs are same or (n, δ)-different.

Theorem 7. For all n ≥ 8, all 0 < δ < exp(−12n2/3), and all pairs distributions (p1, p2) that are
either same or (n, δ)-different,

Pne (∆
P̂ (Ψ)
n,δ , p1, p2) <

√
δ exp(6n2/3).

Proof. Let (X1, X2) ∼ pn1 × pn2 . Consider the case when the (p1, p2) are same, i.e., p1 = p2. Then,

Pne (∆P̂ (Ψ), p1, p1) = Pr
( p̂(Ψ(X1, X2))

p̂(Ψ(X1X2))
>

1√
δ

)
(a)
= Pr

( p̂(Ψ(X1, X2))

p3,3(Ψ(X1, X2))
>

1√
δ

)
(b)
= Pr

( p̂(ϕ(X1, X2))

p3,3(ϕ(X1, X2))
>

1√
δ

)
(c)

≤ Pr
( 1

p1,1(ϕ(X1, X2))
>

1√
δ

)
(d)
<
√
δ exp(6n2/3),

where in (a), p3 = arg maxp p(Ψ(X1X2)) and in (b), we convert pattern probabilities to profile

probabilities by multiplying and dividing by N(ϕ(X1, X2)) and using p(ϕ) = N(ϕ)p(ψ1, ψ2). For
(c), we use that p̂(ϕ(X1, X2)) ≤ 1 and we use Corollary 5 for (d).

Now consider the case when (p1, p2) are (n, δ)-different. For a sequence pair (X1, X2), let p3 =
arg maxp p(Ψ(X1X2)). Then,

Pr
( p̂(Ψ(X1, X2))

p̂(Ψ(X1X2))
≤ 1√

δ

)
≤ Pr

(p1,2(Ψ(X1, X2))

p3,3(Ψ(X1, X2))
≤ 1√

δ

)
= Pr

(p1,2(ϕ(X1, X2))

p3,3(ϕ(X1, X2))
≤ 1√

δ

)
<
√
δ exp(6n2/3).

For the last step, in the case when p1,2(ϕ) ≥
√
δ, there is no error since Observation 6 implies that

for all p3, p3,3(ϕ) < δ and hence
p1,2(ϕ(X1,X2))

p3,3(ϕ(X1,X2))
>
√
δ
δ = 1√

δ
. Hence, the error probability is bounded

by the probability of the case when p1,2(ϕ) <
√
δ, which by Corollary 5 is <

√
δ exp(6n2/3).

As mentioned in Section 1, direct computation of maximum likelihood of patterns in the test

∆P̂ (Ψ) may be difficult and hence we look at a computationally easier test ∆N(ϕ).

3 Error analysis of the test ∆N(ϕ)

We show a few more useful results for analyzing the error probability of ∆N(ϕ), which relate the
quantities N(ϕ), the number of patterns in a profile and P̂ (ϕ), the maximum likelihood of the profile
under i.i.d. distributions.

The type of a sequence x ∈ An is the vector of multiplicities τ(x)
def
=
(
µ(a1), µ(a2), . . . , µ(ak)

)
,

where µ(ai) is the number of appearances of ai in x for i = 1, 2, . . . , k. Similarly, the

8



joint type of a pair of sequences (x1, x2) ∈ An1 × An2 is the vector of multiplicity pairs

τ(x1, x2)
def
=
(
(µ1(a1), µ2(a1)), (µ1(a2), µ2(a2)), . . . , (µ1(ak), µ2(ak))

)
, where µ1(ai) and µ2(ai) are

the number of appearances of ai in x1 and x2 for i = 1, 2, . . . , k. The set of all possible dis-
tinct types of sequences in An is denoted by T n and the set of all possible distinct joint types of
sequences in An1 ×An2 is denoted by T n1,n2 .

The probability of a type τ =
(
µ(ai)

)k
i=1
∈ T n under a distribution p over A is

p(τ)
def
=

∑
τ(x)=τ

p(x) =

(
n

µ(a1), µ(a2), · · · , µ(ak)

) k∏
i=1

p(ai)
µ(ai),

i.e., the probability of observing a sequence whose type is τ . Similarly, the probability of a joint

type τ =
(
(µ1(ai), µ2(ai))

)k
i=1
∈ T n1,n2 under a pair of distributions (p1, p2) over A is

p1,2(τ)
def
=

∑
τ(x1,x2)=τ

p1,2(x1, x2)

=

(
n1

µ1(a1), µ1(a2), · · · , µ1(ak)

)(
n2

µ2(a1), µ2(a2), · · · , µ2(ak)

) k∏
i=1

p1(ai)
µ1(ai)p2(ai)

µ2(ai).

The sum type of a joint type τ =
(
(µ1(ai), µ2(ai))

)k
i=1
∈ T n,n is τs(τ)

def
=
(
µ(ai)

)k
i=1
∈ T 2n,

where µ(ai)
def
= µ1(ai) + µ2(ai) for i = 1, 2, . . . , k. The probability of a (sum) type τs ∈ T 2n under

a pair of distributions p1,2 = (p1, p2) is the probability of the set of all types τ ∈ T n,n such that
τs(τ) = τs, i.e.,

p1,2(τs)
def
=

∑
τ∈T n,n:
τs(τ)=τs

p1,2(τ).

For any pair of distributions (p1, p2) over A × A, p1/2
def
= (p1 + p2)/2 denotes the distribution over

A such that p1/2(ai) = (p1(ai) + p2(ai))/2 for i = 1, 2, . . . , k.

Observation 8. For all types τs ∈ T 2n and all (p1, p2),∑
τ∈T n,n:
τs(τ)=τs

p1,2(τ) = p1,2(τs) ≤ p1/2(τs)
(n!)222n

(2n)!
< p1/2(τs)

√
πne

1
6n .

Proof. Let τs =
(
µ(ai)

)k
i=1

. Then,

p1,2(τs) =
∑

τ∈T n,n:
τs(τ)=τs

p1,2(τ)

=
∑

(µ1(a1),...,µ1(ak)):
0≤µ1(ai)≤µ(ai) for i=1,...,k,

and µ1(a1)+···+µ1(ak)=n

n!n!

k∏
i=1

1

µ1(ai)!(µ(ai)− µ1(ai))!
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

=
n!n!∏k

i=1 µ(ai)!

∑
(µ1(a1),...,µ1(ak)):

0≤µ1(ai)≤µ(ai) for i=1,...,k,
and µ1(a1)+···+µ1(ak)=n

k∏
i=1

(
µ(ai)

µ1(ai)

)
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

≤ n!n!∏k
i=1 µ(ai)!

∑
(µ1(a1),...,µ1(ak)):

0≤µ1(ai)≤µ(ai) for i=1,...,k

k∏
i=1

(
µ(ai)

µ1(ai)

)
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

=
n!n!∏k

i=1 µ(ai)!

k∏
i=1

( µ(ai)∑
µ1(ai)=0

(
µ(ai)

µ1(ai)

)
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

)

=
n!n!∏k

i=1 µ(ai)!

k∏
i=1

(p1(ai) + p2(ai))
µ(ai)
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=
(n!)222n

(2n)!

(
2n

µ(a1), µ(a2), . . . , µ(ak)

) k∏
i=1

(p1(ai) + p2(ai)

2

)µ(ai)

=
(n!)222n

(2n)!
p1/2(τs).

The profile of a type τ ∈ T n is ϕ(τ) = ϕ(x), where x is any sequence whose type is τ(x) = τ .

Similarly, for any τ ∈ T n1,n2 , ϕ(τ)
def
= ϕ(x1, x2), where (x1, x2) is any sequence pair such that

τ(x1, x2) = τ .

Observation 9. For all profiles ϕ ∈ Φn and all distributions p,

p(ϕ) =
∑

ϕ(τ)=ϕ

p(τ).

Likewise, for all profiles ϕ ∈ Φn1,n2 and all pairs of distributions (p1, p2),

p1,2(ϕ) =
∑

ϕ(τ)=ϕ

p1,2(τ).

The sum profile of a profile ϕ ∈ Φn,n is ϕs(ϕ)
def
= ϕ(ψ1ψ2) ∈ Φ2n where (ψ1, ψ2) is any joint

pattern having profile ϕ(ψ1, ψ2) = ϕ. Hence, if ϕ = [ϕµ1,µ2
], where µ1 = 0, 1, . . . , n and µ2 =

0, 1, . . . , n, then ϕs = (ϕ′1, ϕ
′
2, . . . , ϕ

′
2n) is given by ϕ′µ =

∑
µ1+µ2=µ ϕµ1,µ2 . The probability of a

(sum) profile ϕs ∈ Φ2n under a pair of distributions p1,2 is the probability p1,2 assigns to the set of
all profiles ϕ ∈ Φn,n such that ϕs(ϕ) = ϕs, i.e.,

p1,2(ϕs)
def
=

∑
ϕ∈Φn,n:
ϕs(ϕ)=ϕs

p1,2(ϕ).

The following lemma on profile probabilities is analogous to the convexity of KL-divergence.

Lemma 10. For all ϕs ∈ Φ2n and all (p1, p2),∑
ϕ∈Φn,n:
ϕs(ϕ)=ϕs

p1,2(ϕ) = p1,2(ϕs) ≤ p1/2(ϕs)
(n!)222n

2n!
< p1/2(ϕs)

√
πne

1
6n .

Proof. Using Observations 8 and 9,

p1,2(ϕs) =
∑

ϕ∈Φn,n:
ϕs(ϕ)=ϕs

p1,2(ϕ)

=
∑

ϕ(τs)=ϕs

p1,2(τs)

≤
∑

ϕ(τs)=ϕs

(n!)222n

(2n)!
p1/2(τs)

= p1/2(ϕs)
(n!)222n

(2n)!
.

The following Lemma 11 relates the ratio of maximum likelihoods of any joint pattern (ψ1, ψ2)

and its concatenated pattern ψ1ψ2 which appear in the test ∆P̂ (Ψ), to the ratio of counts of patterns
in their respective profiles, i.e., N(ϕ(ψ1, ψ2)) and N(ϕ(ψ1ψ2)) that appear in the test ∆N(ϕ).

Lemma 11. For all joint patterns (ψ1, ψ2) ∈ Ψn,n,

N(ϕ(ψ1ψ2))

N(ϕ(ψ1, ψ2))
≥ p̂(ψ1, ψ2)

p̂(ψ1ψ2)

(2n)!

(n!)222n
>

p̂(ψ1, ψ2)

p̂(ψ1ψ2)

1
√
πne

1
6n

.
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Proof. Let p1,2 = (p1, p2) be such that p̂(ψ1, ψ2) = p1,2(ψ1, ψ2). Note that ϕs(ϕ(ψ1, ψ2)) =

ϕ(ψ1ψ2). Using Lemma 10, we have

N(ϕ(ψ1, ψ2))p̂(ψ1, ψ2) = N(ϕ(ψ1, ψ2))p1,2(ψ1, ψ2)

= p1,2(ϕ(ψ1, ψ2))

≤ p1,2(ϕs(ϕ(ψ1, ψ2)))

≤ p1/2(ϕs(ϕ(ψ1, ψ2)))
(n!)222n

(2n)!

= p1/2(ϕ(ψ1ψ2))
(n!)222n

(2n)!

≤ p̂(ϕ(ψ1ψ2))
(n!)222n

(2n)!

= N(ϕ(ψ1ψ2))p̂(ψ1ψ2)
(n!)222n

(2n)!
.

Theorem 12. For all n ≥ 8, all 0 < δ < 1
4πne1/3n

exp(−12n2/3), and all pairs distributions (p1, p2)
that are either same or (n, δ)-different,

Pne (∆N(ϕ), p1, p2) <
√
δ exp(6n2/3)

√
πne

1
6n .

Proof. Let (X1, X2) ∼ pn1 × pn2 . Consider the case when p1 = p2. Then,

Pne (∆N(ϕ), p1, p1) = Pr
( N(ϕ(X1X2))

N(ϕ(X1, X2))
>

1√
δ

)
(a)
= Pr

( p1(ϕ(X1X2))

p1,1(ϕ(X1, X2))
>

1√
δ

)
≤ Pr

( 1

p1,1(ϕ(X1, X2))
>

1√
δ

)
<
√
δ exp(6n2/3),

where in (a), we used N(ϕ(ψ1ψ2))

N(ϕ(ψ1,ψ2)
= N(ϕ(ψ1ψ2))p1(ψ1ψ2)

N(ϕ(ψ1,ψ2)p1,1(ψ1,ψ2)
= p1(ϕ(ψ1ψ2))

p1,1(ϕ(ψ1,ψ2))
and the last inequality is

due to Corollary 5.
Consider the case when (p1, p2) are (n, δ)-different. For a sequence pair (X1, X2), let p3 =

arg maxp p(Ψ(X1X2)). Then,

Pne (∆N(ϕ), p1, p2) = Pr
( N(ϕ(X1X2))

N(ϕ(X1, X2))
≤ 1√

δ

)
(a)

≤ Pr
( 1
√
πne

1
6n

p̂(Ψ(X1, X2))

p̂(Ψ(X1X2))
≤ 1√

δ

)
≤ Pr

(p1,2(Ψ(X1, X2))

p3,3(Ψ(X1X2))
≤
√
πne

1
6n

√
δ

)
<
√
δ exp(6n2/3)

√
πne

1
6n ,

where in (a), we used Lemma 11 For the last inequality, we again consider the cases p1,2(ϕ(X1, X2)) ≥√
δ
√
πne

1
6n and <

√
δ
√
πne

1
6n separately similar to the proof of Theorem 12. In the case

when p1,2(ϕ(X1, X2)) ≥
√
δ
√
πne

1
6n > δ, Observation 6 implies p3,3(ϕ(X1, X2)) < δ. Hence,

p1,2(ϕ(X1,X2))

p3,3(ϕ(X1,X2))
>
√
δ
√
πne

1
6n

δ =
√
πne

1
6n√
δ

and hence, this case does not contribute to error probability.

The error probability is therefore bounded by the probability of the other case, which by Corollary

5 is bounded as Pr
(
p1,2(ϕ(X1, X2)) <

√
δ
√
πne

1
6n

)
<
√
δ exp(6n2/3)

√
πne

1
6n .
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4 Sample complexity of closeness testing

The error analysis results of Theorems 7 and 12 can be rephrased in terms of sample complexity.
Also, Theorems 7 and 12 are applicable only when δ ≤ exp(−14n2/3), and this section partially
addresses the general case when δ < 1

2 .

Observation 13. If (p1, p2) are (n, δ)-different distributions for some 0 < δ < 1
2 , then they are also

(n′, δ′)-different, where

n′ = min
{

20n,
15000n3

D( 1
2 ||δ)3

}
and δ′ ≤ δ2 exp(14n′2/3),

where D(δ1||δ2)
def
= δ1 log δ1

δ2
+ (1− δ1) log 1−δ1

1−δ2 .

Proof sketch. Since (p1, p2) are (n, δ)-different, for any p3 there is a test that can distinguish
(p1, p2) and (p3, p3) with error probability < δ. We can obtain another test for sequences of length

n′ = (2r + 1)n such that the error probability of this test is δ′ =
∑2r+1
i=r+1 δ

i
(

2r+1
i

)
(1 − δ)2r+1−i

by using the original test on (2r + 1) pairs of length-n sequences and outputting the major-

ity decision. It can be verified that (2r + 1) ≥ min{19, 15000n2

D( 1
2 ||δ)3

} suffices to guarantee that∑2r+1
i=r+1 δ

i
(

2r+1
i

)
(1− δ)2r+1−i ≤ δ2 exp(14((2r + 1)n)2/3).

Corollary 14. If (p1, p2) are (n, δ)-different distributions for some 0 < δ < 1
4 , then they are

also (n′, δ′)-different where δ′ ≤ δ2 exp(14n′2/3) for n′ = max
{

19n, 120000n3

(log2
1
4δ )3

}
. Furthermore if

δ < exp(−19n2/3), then n′ = 19n suffices.

Hence, using Theorem 12 and Corollary 14, it follows that whenever (p1, p2) are identical or

(n, δ)-different, the error probability of the test ∆
N(ϕ)
n′,δ′ is less than δ, using sequences of length

n′ = max
{

19n, 120000n3

(log2
1
4δ )3

}
, where δ′ = δ2 exp(14n′2/3).

5 Related problems and open problems

For the problem of classification described in 1.3, our results imply that whenever the distributions

of the classes, p1 and p2, are (n, δ)-different, the closeness tests ∆P̂ (Ψ) or ∆N(ϕ) can be used to

construct classifiers whose error probability is ≤ 2
√
δ exp(7n2/3). We define two distributions (p1, p2)

to be (n, δ)-classifiable if length-n sequence pairs generated by (p1, p2) can be distinguished with
error probability < δ from those generated by (p1, p1) and (p2, p2) by a symmetric test. While
(n, δ)-difference implies (n, δ)-classifiabilty, it remains to answer if the opposite is also true.

As mentioned earlier, our results are applicable when the error probabilities (δ) are small and
≤ exp(−14n2/3), and while we partially address the case of general δ < 1

2 , and it remains to perform

a better analysis. We also hope to reduce the subexponential factor of exp(7n2/3) in the right hand
side of Theorems 7 and 12 using a tighter analysis.

Lastly, it remains to fully answer the question of when two distributions (p1, p2) are (n, δ)-

different. In many cases such as Example 1, the quantity N(ϕ(X1X2))

N(ϕ(X1,X2))
in the test ∆N(ϕ) can be shown

to be exponentially large in n with high probability, that implies (n, δ)-difference for a suitable δ.
This question is also answered in part by [3] and [21] where distributions are parametrized in terms
of alphabet size.
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A Number of profiles of a given length

Lemma 15. For all d ≥ 1 and all n1, n2, . . . , nd ≥ 2d+1,

P (n1, n2, . . . , nd) ≤ exp
(

2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Proof. The (ordinary) generating function of P (n1, n2, . . . , nd) is

G(x1, x2, . . . , xd) =

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nd=0

P (n1, n2, . . . , nd)x
n1
1 xn2

2 · · ·x
nd
d =

∏
(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

1

1− xµ1

1 xµ2

2 · · ·x
µd
d

,

where N = {0, 1, 2, · · · } and 0 < x1, x2, . . . , xd < 1. Hence,

logG(x1, x2, . . . , xd) =
∑

(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

− log
(

1−
d∏
j=1

x
µj
j

)

=
∑

(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

∞∑
l=1

1

l

( d∏
j=1

x
µj
j

)l

=

∞∑
l=1

1

l

∑
(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

d∏
j=1

(xlj)
µj

=

∞∑
l=1

1

l

(
1∏d

j=1(1− xlj)
− 1

)

=

∞∑
l=1

1

l

1−
∏d
j=1(1− xlj)∏d

j=1

(
(1− xj)

(∑l−1
i=0 x

i
j

))
<

∞∑
l=1

1

l

1−
∏d
j=1(1− xlj)(∏d

j=1(1− xj)
)(

1 +
∑d
j=1

∑l−1
i=1 x

i
j

)
(a)
<

1∏d
j=1(1− xj)

(
1 +

∞∑
l=2

1

l(l − 1)

)

=
2∏d

j=1(1− xj)
.

In the Inequality (a), we consider the cases l = 1 and l > 1 separately. When l > 1, in

the denominator,
(

1 +
∑d
j=1

∑l−1
i=1 x

i
j

)
> (l − 1)

∑d
j=1 x

i
j > (l − 1)

(
1−

∏d
j=1(1− xlj)

)
. Since

G(x1, x2, . . . , xd) > P (n1, n2, . . . , nd)x
n1xn2 · · ·xnd , we have

logP (n1, n2, . . . , nd) < logG(x1, x2, . . . , xd)−
d∑
j=1

nj log xj <
2∏d

j=1(1− xj)
−

d∑
j=1

nj log xj .

Substituting xj = 1− n−1/(d+1)
j for j = 1, 2, . . . , d, we get

logP (n1, n2, . . . , nd) < 2

d∏
j=1

n
1/(d+1)
j +

d∑
j=1

nj log
(

1− n−1/(d+1)
j

)
≤ 2

(
1 +

1

d

) d∑
j=1

n
d/(d+1)
j .

In the last step, we used AM-GM inequality, i.e.,
∏d
j=1 n

1/(d+1)
j =

(∏d
j=1 n

d/(d+1)
j

)1/d ≤
1
d

∑d
j=1 n

d/(d+1)
j , and log(1− ε) < 2ε for ε ≤ 1

2 , hence log
(
1−n−1/(d+1)

j

)
≤ 2n

−1/(d+1)
j for nj > 2d+1

and j = 1, 2, . . . , d.
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B Number of patterns of a given profile

The number of joint patterns with the same profile ϕ is denoted byN(ϕ). For example, consider
the profile ϕ = ϕ(1232, 13) which has ϕ1,1 = 2, ϕ2,0 = 1 and all other ϕµ1,µ2 = 0. Then, N(ϕ) =
12 since the set of all joint patterns that have this profile is {(1123, 23), (1123, 32), (1213, 23),
(1213, 32), (1223, 13), (1223, 31), (1231, 23), (1231, 32), (1232, 13), (1232, 31), (1233, 13), (1233, 21)}.
The following lemma gives an expression for N(ϕ) and extends Lemma 3 in [16].

Lemma 16. For all d ≥ 1 and all ϕ ∈ Φn1,n2,...,nd ,

N(ϕ) =

d∏
j=1

nd!

n1∏
µ1=0

n2∏
µ2=0

· · ·
nd∏
µd=0

(µ1!µ2! · · ·µd!)ϕµ1,µ2,...,µdϕµ1,µ2,...,µd !

.

Proof. We show the lemma for d = 2, and the proof is similar for any d ≥ 1. Let ϕ ∈ Φn1,n2 . Any
joint pattern (ψ1, ψ2) that has profile ϕ is a pair of sequences with symbols from {1, 2, . . . ,m}, where
m =

∑n1

µ1=0

∑n2

µ2=0 ϕµ1,µ2 is the total number of symbols in ψ1ψ2. Let {µ1(i)}mi=1 and {µ2(i)}mi=1

be non-negative integers such that
∑m
i=1 µ1(i) = n1 and

∑m
i=1 µ2(i) = n2. The number of sequence

pairs whose alphabet is {1, 2, . . . ,m}, and the number of appearances of i in first sequence is µ1(i)
and in second sequence is µ2(i), for i = 1, 2, . . . ,m, is(

n1

µ1(1), µ1(2), . . . , µ1(m)

)(
n2

µ2(1), µ2(2), . . . , µ2(m)

)
=

n1!n2!
m∏
i=1

µ1(i)!µ2(i)!
.

The number of different ways of choosing {µ1(i)}mi=1 and {µ2(i)}mi=1 such it conforms to profile is ϕ
is (

m

ϕ0,0, ϕ0,1, . . . , ϕn1,n2

)
=

m!
n1∏
µ1=0

n2∏
µ2=0

ϕµ1,µ2 !

.

Thus, the number of sequence pairs whose alphabet is {1, 2, . . . ,m} and profile is ϕ is

N∗(ϕ) =
n1!n2!

m∏
i=1

µ1(i)!µ2(i)!

m!
n1∏
µ1=0

n2∏
µ2=0

ϕµ1,µ2
!

=
n1!n2!m!

n1∏
µ1=0

n2∏
µ2=0

(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2
!

.

Clearly, N∗(ϕ) = m! ·N(ϕ), since

≥: For each joint pattern having profile ϕ, the labels {1, 2, . . . ,m} can be permuted in m! ways to
generate m! different sequence pairs whose alphabet is {1, 2, . . . ,m} and profile is ϕ. Further-
more, the sets of sequence pairs generated in this way by different joint patterns are disjoint.
So N∗(ϕ) ≥ m! ·N(ϕ).

≤: Given any pair of sequences (x1, x2) having alphabet {1, 2, . . . ,m} and profile ϕ, their symbols
can be permuted keeping the positions same to obtain a joint pattern with profile ϕ, which is
in fact Ψ(x1, x2). There are exactly m! sequence pairs having alphabet {1, 2, . . . ,m} and profile
ϕ that have the same joint pattern. Hence, N∗(ϕ) ≤ m! ·N(ϕ).

Thus,

N(ϕ) =
N∗(ϕ)

m!
=

n1!n2!
n1∏
µ1=0

n2∏
µ2=0

(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2
!

.

C Symmetric tests

We provide a formal treatment to the intuition that joint patterns of sequences contain sufficient
information for the problem of closeness testing, similar to [4],[3],[21].

We define the symmetric error probability of a test ∆ for (p1, p2) as its worst case error probability
over all possible permutations of the alphabet, i.e.,

Pne,sym(∆, p1, p2)
def
= max

σ∈SA
Pne (∆, pσ1 , p

σ
2 ),
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where SA is the set of all permutations of A. Clearly, since separation between distributions does
not depend on the actual symbols, and depends only the probability multiset, it is appropriate to
look at the symmetric error probability.

A symmetric test is a test whose output does not change when the alphabet is permuted and
gives the same output for all sequence pairs which have the same joint pattern, i.e., ∆(x1, x2) =

∆̃(Ψ(x1, x2)) for all (x1, x2), where ∆̃ : Ψn,n → {same , diff }. Hence, a symmetric test depends only
the joint pattern of the sequences. Note that for a symmetric test ∆, Pe,sym(∆, p1, p2) = Pe(∆, p1, p2)
for all distribution pairs (p1, p2). The following observation shows that we may limit ourselves to
considering only symmetric closeness tests.

Observation 17. Let ∆ : An × An → {same, diff} be any test for closeness, possibly not sym-

metric. Then, there exists a symmetric test ∆̃ : An ×An → {same, diff} such that for all pairs of

distributions (p1, p2) over A, Pne,sym(∆̃, p1, p2) ≤ 2 · Pne,sym(∆, p1, p2).

Proof. Let ∆̃ be the test whose output for a sequence pair is same as that made by ∆ for the majority
of sequence pairs with the same joint pattern, i.e., ∆̃(x1, x2) = majority{∆(x′1, x

′
2) : Ψ(x′1, x

′
2) =

Ψ(x1, x2)}. Clearly, Pne (∆̃, pσ1,2) is same for all permutations σ of A. Thus, if p1, p2 are similar,

Pne,sym(∆̃, p1, p2) = Pne (∆̃, p1, p2)

=
1

|A|!
∑
σ∈SA

Pne (∆̃, pσ1,2)

=
1

|A|!
∑
σ∈SA

∑
(x1,x2):

∆̃(x1,x2)=diff

pσ1 (x1)pσ2 (x2)

=
∑

(x1,x2):

∆̃(x1,x2)=diff

1

|A|!
∑
σ∈SA

pσ1 (x1)pσ2 (x2)

(a)

≤ 2
∑

(x1,x2):
∆(x1,x2)=diff

1

|A|!
∑
σ∈SA

pσ1 (x1)pσ2 (x2)

= 2 · 1

|A|!
∑
σ∈SA

∑
(x1,x2):

∆(x1,x2)=diff

pσ1 (x1)pσ2 (x2)

≤ 2 · max
σ∈SA

∑
(x1,x2):

∆(x1,x2)=diff

pσ1 (x1)pσ2 (x2)

= 2 · Pne,sym(∆, p1, p2),

where in (a), we note that all (x1, x2) having the same joint pattern have the same probability
1
|A|!

∑
σ∈SA

pσ1 (x1)pσ2 (x2). A similar argument can be shown for the case p1 6= p2.
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