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Abstract

Efficient estimation of the moments and Shannon entropy of data streams is an important
task in modern machine learning and data mining. To estimate the Shannon entropy, it
suffices to accurately estimate the α-th moment with ∆ = |1− α| ≈ 0. To guarantee that
the error of estimated Shannon entropy is within a ν-additive factor, the method of sym-
metric stable random projections requires O

(
1

ν2∆2

)
samples, which is extremely expensive.

The first paper (Li, SODA2009) in Compressed Counting (CC), based on skewed-stable ran-
dom projections, supplies a substantial improvement by reducing the sample complexity to
O

(
1

ν2∆

)
, which is still expensive. The followup work (Li, UAI2009) provides a practical

algorithm, which is however difficult to analyze theoretically.
In this paper, we propose a new accurate algorithm for Compressed Counting, whose sample
complexity is only O

(
1
ν2

)
for ν-additive Shannon entropy estimation. The constant factor

for this bound is merely about 6. In addition, we prove that our algorithm achieves an
upper bound of the Fisher information and in fact it is close to 100% statistically optimal.
An empirical study is conducted to verify the accuracy of our algorithm.

1 Introduction

The problem of “scaling up for high dimensional data and high speed data streams” is among the
“10 challenging problems in data mining research” (Yang and Wu, 2006). This paper is devoted
to estimating entropy of data streams. Mining data streams in (e.g.,) 100 TB scale databases has
become an important area of research, e.g., (Henzinger et al., 1999, Domeniconi and Gunopulos,
2001, Aggarwal et al., 2004, Muthukrishnan, 2005), as the Web and network data can easily reach
that scale (Yang and Wu, 2006).

Consider the Turnstile stream model (Muthukrishnan, 2005). The input stream at = (it, It),
it ∈ [1, D] arriving sequentially describes the underlying signal A, meaning

At[it] = At−1[it] + It, (1)
where the increment It can be either positive (insertion) or negative (deletion). For example, in
network measurements, It can be the increment of the packet size at the location numbered by it.

In the model (1), restricting At[i] ≥ 0 results in the strict-Turnstile model, which suffices for
describing almost all natural phenomena (Muthukrishnan, 2005). This paper focuses on efficient
algorithms for estimating α-th frequency moment of data streams

F(α) =
D∑

i=1

At[i]α. (2)

We are interested in the case of α → 1, which is crucial for the estimation of Shannon entropy. Note
that the first moment (i.e., the sum) F(1) =

∑t
s=0 Is can be computed using a single counter.

1.1 Entropy, Moments, and Estimation Complexity
A widely useful summary statistic is the Shannon entropy

H = −
D∑

i=1

At[i]
F(1)

log
At[i]
F(1)

. (3)



There are various generalizations of the Shannon entropy. The Rényi entropy (Rényi, 1961), denoted
by Hα, and the Tsallis entropy (Havrda and Charvát, 1967, Tsallis, 1988), denoted by Tα, are

Hα =
1

1− α
log

F(α)

Fα
(1)

, Tα =
1

1− α

(
F(α)

Fα
(1)

− 1

)
. (4)

As α → 1, both Rényi entropy and Tsallis entropy converge to Shannon entropy:

lim
α→1

Hα = lim
α→1

Tα = H. (5)

Thus, both Rényi entropy and Tsallis entropy can be computed from the α-th frequency moment;
and one can approximate Shannon entropy using α ≈ 1. While this fact is well-known, it appears
that (Zhao et al., 2007) is the first study that applied (5) to Shannon entropy estimation in data
streams. Later (Harvey et al., 2008b,a) proposed criteria on theoretically (and conservatively) how
close to 1 the α needs to be. One can numerically verify ∆ = |1 − α| < 10−7 in (Harvey et al.,
2008b) or ∆ < 10−5 in (Harvey et al., 2008a) are very likely.1

The difficulty in Shannon entropy estimation is reflected by the estimation variance. By the
definitions of the Rényi and Tsallis entropies, we need estimators of F(α) with variances proportional
to O

(
∆2

)
in order to cancel the term 1

(1−α)2 = 1
∆2 (otherwise the sample size must be proportional

to 1
∆2 ). In other words, the estimators of F(α) must be extremely accurate.

1.2 Some Applications of Shannon Entropy
Real-Time Network Anomaly Detection Network traffic is a typical example of high-rate data
streams. An effective measurement of network traffic in real-time is crucial for anomaly detection
and network diagnosis; and one such measurement metric is the Shannon entropy (Feinstein et al.,
2003, Lakhina et al., 2005, Xu et al., 2005, Brauckhoff et al., 2006, Lall et al., 2006, Zhao et al., 2007).
The Turnstile data stream model (1) is naturally suitable for describing network traffic, especially
when the goal is to characterize the statistical distribution of the traffic. In its empirical form, a
statistical distribution is described by histograms, At[i], i = 1 to D. It is possible that D = 264 (or
larger) if one is interested in measuring the traffic streams of all unique sources or destinations.

The Distributed Denial of Service (DDoS) attack, as a representative example of network anoma-
lies, attempts to make computers unavailable to intended users, either by forcing users to reset the
computers or by exhausting the resources of service-hosting sites. Since a DDoS attack often changes
the statistical distribution of network traffic, a common practice to detect such an attack is to mon-
itor the network traffic using certain summary statistics. As the Shannon entropy is well-suited for
characterizing a distribution, a popular detection method is to measure the time-history of entropy
and alarm anomalies when the entropy becomes abnormal (Feinstein et al., 2003, Lall et al., 2006).

Entropy measurements do not have to be “perfect” for detecting attacks. It is, however crucial
that the algorithm should be computationally efficient at low memory cost, because the traffic data
generated by large high-speed networks are enormous and transient. Algorithms should be real-time
and one-pass, as the traffic data are unlikely to be stored permanently. Many algorithms have been
proposed for “sampling” the traffic streaming data for estimating entropy (Lall et al., 2006, Zhao
et al., 2007, Bhuvanagiri and Ganguly, 2006, Guha et al., 2006, Chakrabarti et al., 2006, 2007, Har-
vey et al., 2008b,a, Zhao et al., 2010).

Entropy of Query Logs in Web Search Mei and Church (2008) proposed to estimate the
Shannon entropy of some commercial search logs, to help answer some basic problems in Web
search, such as, how big is the web? The search logs can be viewed as data streams, and Mei and
Church (2008) analyzed several “snapshots” of a sample of the search logs, which contained 10 mil-
lion <Query, URL, IP> triples; each triple corresponded to a click from a particular IP address on a
particular URL for a particular query. (Mei and Church, 2008) drew their important conclusions on
this (hopefully) representative sample. Alternatively, one could apply new data stream algorithms
on the entire history of the search logs.

Entropy in Neural Computations A workshop in NIPS’03 was devoted to entropy estimation
(www.menem.com/~ilya/pages/NIPS03), owing to the wide-spread use of entropy in neural compu-
tations (Paninski, 2003), e.g., for studying the underlying structure of spike trains.

1In (Harvey et al., 2008b), ∆ = c
16 log(1/c)

, c = ν
4 log(D) log(m)

, where m is the number of streaming updates.

If we let D = 264, m = 264, ν = 0.1, then ∆ ≈ 7× 10−8. If we let m = 106, ν = 0.1, then ∆ ≈ 2.5× 10−7.
Harvey et al. (2008a) provides some improvements, to allow slightly larger ∆, which is still extremely small.
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Graph Estimation As demonstrated in a recent paper (Gupta et al., 2010), Shannon entropy
estimation plays a crucial role in graph estimation and density estimation in high dimensions.

1.3 Symmetric Stable Random Projections and Prior Work on Compressed Counting
The problem of estimating F(α) has been heavily studied since the pioneering work of (Alon et al.,
1996). For 0 < α ≤ 2, the method of symmetric stable random projections (Indyk, 2006, Li, 2008,
Li and Hastie, 2007) in many applications provides a practical algorithm, with a sample complexity
of O

(
1
ε2

)
(even for α = 1), to estimate F(α) within a 1± ε multiplicative factor.

Compressed Counting (CC) (Li, 2009a,b) is a recent breakthrough, which is based on maximally-
skewed stable random projections. Li (2009a) provided two algorithms, using the geometric mean
and harmonic mean. The geometric mean algorithm has the variance proportional to O(∆) in the
neighborhood of α = 1, where ∆ = |1 − α|. This is the first algorithm that reflected the intuition
that, in the neighborhood of α = 1, the moment estimation algorithms should work better and
better as α → 1, in a continuous fashion. The geometric mean algorithm for CC, unfortunately, did
not provide an adequate mechanism for entropy estimation. It only led to an entropy estimation
algorithm with a complexity of O

(
1

ν2∆

)
, but (theoretically) ∆ has to be extremely small.

Based on the geometric mean algorithm of CC (Li, 2009a), Harvey et al. (2008a) developed a
complicated multi-point method for Shannon entropy estimation, with a sample (word) complexity
of O

(
1
ν2 log M

)
and a very large (like 107) constant2, where (e.g.,) M =

∑D
i=1 |At[i]| can be viewed

as the ”universe size.“ In comparison, our new algorithm is very simple with a sample (word)
complexity of O

(
1
ν2

)
and a small constant (about 6), without the log M term.

Li (2009b) proposed a practical algorithm based on numerical optimization and achieved very
good performance. Since that estimator was complicated and implicit, Li (2009b) did not analyze
the sample complexity and statistical efficiency and left them as open problems.

1.4 Another Perspective for Entropy Estimation
By the definition of Rényi entropy (4), instead of estimating F(α), it suffices to estimate J(α), where

J(α) = F
−1/∆
(α) =

[
D∑

i=1

At[i]α
]−1/∆

, (6)

because, if ∆ = 1− α > 0, then

Hα =
1

1− α
log

F(α)

Fα
(1)

=
1
∆

log
J−∆

(α)

Fα
(1)

= − log J(α) −
1
∆

log Fα
(1). (7)

Since 1
∆ log Fα

(1) is computed exactly, we only need to estimate J(α). Our new algorithm will provide
a ν-multiplicative estimate of J(α) with a complexity of O

(
1
ν2

)
. For small ν, this translates into:

1. An ε = ν∆-multiplicative estimate of F(α), with a sample complexity of O
(

1
ν2

)
. For example,

denote the estimate of J(α) by Ĵ(α), then

Pr
(
Ĵ(α) ≥ (1 + ν)J(α)

)
= Pr

(
Ĵ−∆

(α) ≤ (1 + ν)−∆F(α)

)

Pr
(
Ĵ(α) ≤ (1− ν)J(α)

)
= Pr

(
Ĵ−∆

(α) ≥ (1− ν)−∆F(α)

)
.

For small ν, we have (1 + ν)−∆ ≈ 1− ν∆ = 1− ε and (1− ν)−∆ ≈ 1 + ν∆ = 1 + ε.

2. A ν-additive estimate of log J(α), with a sample complexity of O
(

1
ν2

)
. For example

Pr
(
Ĵ(α) ≥ (1 + ν)J(α)

)
= Pr

(
log Ĵ(α) ≥ log(1 + ν) + log J(α)

)

Pr
(
Ĵ(α) ≤ (1− ν)J(α)

)
= Pr

(
log Ĵ(α) ≤ log(1− ν) + log J(α)

)
.

For small ν, we have log(1 + ν) ≈ ν and log(1− ν) ≈ −ν.

2In Sec. 5.2 of (Harvey et al., 2008a), their sample complexity bound is O
([

200(z + 1)3
]2 1

ν2 log M
)
,

where z = log(1/ν) + log log M. The constant
[
200(z + 1)3

]2
will exceed 107, even just for z = 3.
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2 The Proposed Algorithm

Consider the strict-Turnstile data stream model (1). Conceptually, we multiply the data stream
vector At ∈ RD by a random matrix R ∈ RD×k, resulting in a vector X = At×R ∈ Rk with entries

xj = [At ×R]j =
D∑

i=1

rijAt[i], j = 1, 2, ..., k

where rij ’s are random variables generated as follows:

rij =
sin (αvij)

[sin vij ]
1/α

[
sin (vij∆)

wij

]∆
α

, ∆ = 1− α > 0, (8)

where vij ∼ Uniform(0, π) (i.i.d.) and wij ∼ Exp(1) (i.i.d.), an exponential distribution with mean
1. In data stream computations, the matrix R is not materialized. The standard procedure is to
(re)generate entries of R on-demand (Indyk, 2006). Whenever a stream element at = (it, It) arrives,
one updates entries of X:

xj ← xj + Itritj , j = 1, 2, ..., k.

The cost of (re)generating (pseudo) random numbers is proportional to the sample size k. As our
work substantially reduces the sample size, it also tremendously reduces the processing time.

Here, our goal is to estimate J(α) = F
−1/∆
(α) (and hence also F(α)). Our proposed algorithm is

Ĵ(α) =
∆
k

k∑

j=1

x
−α/∆
j , (9)

from which one can estimate the Shannon entropy, for example, by the Rényi entropy as

Ĥα = − log Ĵ(α) −
1
∆

log Fα
(1) (10)

The following Lemma provides the moments of Ĵ(α).

Lemma 1

E
(
Ĵ(α)

)
= J(α), (11)

V ar
(
Ĵ(α)

)
=

J2
(α)

k
(3− 2∆) , (12)

E
(
Ĵ(α) − J(α)

)3

=
J3

(α)

k2

(
17− 21∆ + 6∆2

)
, (13)

E
(
Ĵ(α) − J(α)

)4

= 3
J4

(α)

k2
(3− 2∆)2 +

J4
(α)

k3

(
142− 252∆ + 140∆2 − 24∆3

)
. (14)

¤
The first two moments immediately imply that the sample complexity of Ĵ(α) is O

(
1
ν2

)
for a

ν-multiplicative approximation of J(α). The higher moments in Lemma 1 are also useful for the
proof of Lemma 10.

The next Lemma provides the precise tail bounds.

Lemma 2 1. The right tail bound: for ν > 0,

Pr
(
Ĵ(α) ≥ (1 + ν)J(α)

)
≤ exp

(
−k

ν2

GR

)
(15)

ν2

GR
= − log

(
1 +

∞∑
n=1

tnRenH(n; ∆)

)
+ tR(1 + ν) (16)

where tR is the solution to

−
∑∞

n=1 ntn−1
R enH(n;∆)

1 +
∑∞

n=1 tnRenH(n;∆)
+ (1 + ν) = 0 (17)

and

H (n;∆) =
n−1∏

i=0

n− i∆
e(n− i)

(18)
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2. The left tail bound: for 0 < ν < 1,

Pr
(
Ĵ(α) ≤ (1− ν)J(α)

)
≤ exp

(
−k

ν2

GL

)
(19)

ν2

GL
= − log

(
1 +

∞∑
n=1

(−tL)nenH(n;∆)

)
− tL(1− ν) (20)

where tL is the solution to
∑∞

n=1(−1)nn(tL)n−1enH(n;∆)
1 +

∑∞
n=1(−tL)nenH(n;∆)

+ (1− ν) = 0. (21)

¤

While the expressions for the tail bounds in Lemma 2 appear sophisticated, they are carefully
formulated so that they can be accurately evaluated numerically; see Figure 1. The function H(n;∆)
in (18) approaches e−n when ∆ → 1, and it is always upper bounded by 1√

2πn
even as ∆ → 0, since

n−1∏

i=0

n− i∆
n− i

≤ nn

n!
≤ nn

(n− 1)!
≤ en

√
2πn

according to Stirling’s series (Gradshteyn and Ryzhik, 1994, 8.327)

Γ(n) = (n− 1)! =
√

2πn
(n

e

)n
[
1 +

1
12n

+
1

288n2
− 139

51840n3
− ...

]
.

Interestingly, we can obtain closed-form expressions when ν → 0.

Lemma 3 As ν → 0, the constants GR and GL in (16) and (20), respectively, become

GR → 6− 4∆, GL → 6− 4∆. (22)

¤
In addition, when ∆ → 1−, we can actually analytically express the tail bounds in closed-forms.

Lemma 4 When ∆ → 1−, i.e., α → 0+,

ν2

GR
= − log(1 + ν) + ν, ν > 0 (23)

ν2

GL
= − log(1− ν)− ν, 0 < ν < 1. (24)

¤
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∆ = 1

∆ = 10−2

∆ = 10−6

Figure 1: Numerical values of GR (left panel) and GL (right panel) in the tail bounds (16) and (20),
for ∆ = 10−2 and ∆ = 10−6, together with the closed-form expressions for ∆ = 1 as obtained in
Lemma 4. Note that as ν → 0, both GR and GL approach 6− 4∆, as proved in Lemma 3.

We summarize the complexity bound of our algorithm in a theorem.
Theorem 5 The proposed algorithm Ĵ(α) in (9) provides a ν-multiplicative approximation of J(α)

and a ν-additive approximation of the Shannon entropy with a probability at least 1 − δ, using
C
ν2 log 2/δ samples (words). The constant C approaches 6− 4∆ as ν → 0.¤
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3 More Intuition and Explanation

The proposed algorithm (9) is based on the idea of maximally-skewed stable random projections.

3.1 Review Maximally-Skewed Stable Random Projections and Estimators
The method for sampling from skewed stable distributions was proposed by Chambers et al. (1976).
To sample from S(α, β = 1, 1), i.e., α-stable maximally-skewed (β = 1) with unit scale, one first
generates an exponential random variable with mean 1, W ∼ Exp(1), and a uniform random variable
U ∼ Uniform

(−π
2 , π

2

)
. Then the following nonlinear transformation of W and U results in the

desired random variable:

Z ′ =
sin (α(U + ρ))

[cos U cos (ρα)]1/α

[
cos (U − α(U + ρ))

W

] 1−α
α

∼ S(α, β = 1, 1), (25)

where ρ = π
2 when α < 1 and ρ = π

2
2−α

α when α > 1. Note that cos
(

π
2 α

) → 0 as α → 1. For
convenience (and to avoid numerical problems), we use

Z = Z ′ cos1/α (ρα) ∼ S (α, β = 1, cos (ρα)) .

It turns out, the random variable Z with α < 1 has good properties. This study only considers
α = 1−∆ < 1, i.e, ρ = π

2 . After simplification, we obtain

Z =
sin (αV )

[sin V ]1/α

[
sin (V ∆)

W

]∆
α

, (26)

where V = π
2 + U ∼ Uniform(0, π). This explains (8).

Let X = At × R, where entries of R are i.i.d. samples of S
(
α, β = 1, cos

(
π
2 α

))
. Then by

properties of stable distributions, the entries of X are

xj = [At ×R]j =
D∑

i=1

ri,jAt[i] ∼ S
(
α, β = 1, cos

(π

2
α
)

F(α)

)
,

where F(α) =
∑D

i=1 At[i]α as defined in (2). Li (2009a) provided two algorithms using on the
geometric mean and harmonic mean estimators, based on the following basic moment formula.

Lemma 6 (Li, 2009a). If X ∼ S(α, β = 1, F(α) cos
(

απ
2

)
), then X > 0, and for any −∞ <

λ < α < 1,

E
(
Xλ

)
= F

λ/α
(α)

Γ
(
1− λ

α

)

Γ (1− λ)
.

¤
3.1.1 The Geometric Mean Estimator
Assume xj , j = 1 to k, are i.i.d. samples from S(α, β = 1, F(α) cos

(
απ
2

)
). After simplifying the

corresponding expression in (Li, 2009a), we obtain

F̂(α),gm =

[
Γ

(
1− α

k

)

Γ
(
1− 1

k

)
]k k∏

j=1

x
α/k
j , (27)

which is unbiased and has asymptotic variance

Var
(
F̂(α),gm

)
=

F 2
(α)

k

π2

6
∆ (1 + α) + O

(
1
k2

)
(28)

As ∆ = 1−α → 0, the asymptotic variance approaches zero at the rate of only O (∆) (not O
(
∆2

)
).

3.1.2 The Harmonic Mean Estimator

F̂(α),hm =
k 1

Γ(1+α)∑k
j=1 x−α

j

(
1− 1

k

(
2Γ2(1 + α)
Γ(1 + 2α)

− 1
))

, (29)

which is asymptotically unbiased and has variance

Var
(
F̂(α),hm

)
=

F 2
(α)

k

(
2Γ2(1 + α)
Γ(1 + 2α)

− 1
)

+ O

(
1
k2

)
. (30)
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3.2 Limitations of the Geometric Mean and Harmonic Mean Estimators
In order to estimate the Shannon entropy with a guaranteed ν-additive accuracy, the variance of the
estimator of F(α) should be O

(
∆2

)
; or equivalently, the sample complexity should be O

(
1
ν2

)
.

The geometric mean estimator has variance proportional to only O (∆); or equivalently, its
complexity is O

(
1

ν2∆

)
, where ∆ needs to be extremely small (e.g., < 10−5). For the harmonic mean

estimator in Li (2009a), the following Lemma says its variance is also proportional to O (∆).

Lemma 7 As ∆ = 1− α → 0,
2Γ2(1 + α)
Γ(1 + 2α)

− 1 = ∆ + ∆2

(
2− π2

6

)
+ O

(
∆3

)
. (31)

¤
In other words, the harmonic mean estimator improves the geometric mean estimator by reducing
the variance by a factor of π2

6 2 = 3.29. Thus, we must develop significantly better algorithms.

3.3 The Distribution Function
This section provides the distribution function of Z ∼ S

(
α < 1, β = 1, cos

(
π
2 α

))
, which will be

needed for better understanding the proposed estimator (9).

Lemma 8 Suppose a random variable Z ∼ S
(
α < 1, β = 1, cos

(
π
2 α

))
. The cumulative distribution

function (CDF) is

FZ(t) = Pr (Z ≤ t) =
1
π

∫ π

0

exp
(
−t−α/∆g (θ;∆)

)
dθ. (32)

where

g(θ; ∆) =
[sin (αθ)]α/∆

[sin θ]1/∆
sin (θ∆) , θ ∈ (0, π)

g (0+;∆) = lim
θ→0+

g(θ; ∆) = ∆αα/∆.

¤
Note that g (0+;∆) = ∆αα/∆ ≈ ∆e−1 approaches zero as ∆ → 0. Thus, one might be wondering

if we replace g (θ;∆) by g (0+;∆), the errors may be quite small, as seen in Figure 2.
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0.4
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Exact
Approx

0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1
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C
D

F

 

 

∆ = 10−4

Exact
Approx

Figure 2: We plot the CDF curves as derived in Lemma 8, for ∆ = 10−5 and 10−4. As ∆ → 0, the
exact CDF (solid curves) is very close to the approximate CDF (dashed curves), which we obtain
by replacing the exact g(θ;∆) function in Lemma 8 with the limit g(0+;∆).

3.4 One Intuition Behind the Proposed Algorithm
The difficulty in developing accurate algorithms lies in that FZ in (32) has no closed-form expression.
From Lemma 8 and Figure 2, it appears that if one replaces the exact g(θ;∆) with its approximation
g(0+;∆), the error may be small. Thus, we consider a random variable Y with CDF

FY (t) = Pr (y ≤ t) = exp
(
−t−α/∆∆αα/∆

)
, t ∈ [0,∞). (33)

It is indeed a CDF because it is an increasing function of t ∈ [0,∞), FY (0) = 0, and FY (∞) = 1.
Here, we are interested in estimating cα from k i.i.d. samples xj = cyj , j = 1 to k. Statistics

theory tells us that the maximum likelihood estimator (MLE) achieves the (asymptotic) optimality.
Because FY has a closed-form expression, we can compute the MLE exactly.
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Lemma 9 Suppose yj, j = 1 to k, are i.i.d. samples from a distribution whose CDF is given by
(33). Let xj = cyj, where c > 0. Then the maximum likelihood estimator of cα is given by

1
∆∆αα

[
k

∑k
j=1 x

−α/∆
j

]∆

. (34)

¤

In comparison, our proposed algorithm for estimating J(α) = F
−1/∆
(α) is defined in (9), which

provides an estimator of F(α):

F̂(α) =
1

∆∆

[
k

∑k
j=1 x

−α/∆
j

]∆

, (35)

which is almost identical to (34). Note that, as ∆ → 0, the extra term in (34), αα → 1, converges
much faster than ∆∆ → 1. In other words, αα is negligible.

Therefore, we should expect that our proposed estimator (35) is actually very close to the true
MLE, even though we can not explicitly derive the MLE. Indeed, in the next section, Lemma 11
says that our algorithm is close to be 100% statistically optimal.

4 Additional Technical Results

4.1 The Moments of F̂(α)

The following Lemma analyzes the mean square error: MSE = E
[
F̂(α) − F(α)

]2

= V ar
(
F̂(α)

)
+ Bias2.

Lemma 10 The estimator F̂(α) is asymptotically unbiased:

E
(
F̂(α)

)
= F(α)

(
1 + O

(
∆
k

))
. (36)

The mean square error (MSE) is

E
[
F̂(α) − F(α)

]2

=
F 2

(α)

k
∆2

(
(3− 2∆) + O

(
1
k

))
. (37)

More precisely

0 ≤ E
(
F̂(α) − F(α)

)
≤ ∆F(α)

k
e2+∆

(
(1 + ∆)(3− 2∆)/2 +

k

k −∆

)
. (38)

and ∣∣∣∣∣∣
E

(
F̂(α)

F(α)
− 1

)2

− ∆2

k
(3− 2∆)− ∆2

k2
C∗3 (∆)

∣∣∣∣∣∣
≤ ∆2C∗4 (∆)

4k2
(3− 2∆)2 + O(∆2k−3 log k) (39)

where C∗3 (∆) = (1 + ∆)(17 − 21∆ + 6∆2) = 17 + O(∆) and C∗4 (∆) = e4+2∆(11 + 18∆ + 7∆2) +
e5+2∆(6 + 11∆ + 6∆2 + ∆3) = 11e4 + 6e5 + O(∆). ¤
4.2 Statistical Optimality
Recall we have k i.i.d. samples xj ∼ S

(
α, β = 1, cos

(
π
2 α

)
F(α)

)
. The goal is to estimate J(α) =

F
−1/∆
(α) . The classical theory of the Cramér-Rao lower bound tells us that the variance of the

estimator is lower bounded by 1
k

1
I(J(α))

, where I(J(α)) is the Fisher Information of J(α).
A natural question is how much more improvement can we expect, after we have developed the

estimator Ĵ(α) (9), whose variance is
J2
(α)

k (3− 2∆)? Lemma 11 provides the answer.

Lemma 11 For a distribution S
(
α, β = 1, cos

(
π
2 α

)
F(α)

)
, the Fisher Information of J(α) = F

−1/∆
(α)

is given by

I(J(α)) =
1

J2
(α)

(I2 − 1) , I2 =
∫ ∞

0

[
1
π

∫ π

0
sg2e−sgdθ

]2
1
π

∫ π

0
ge−sgdθ

ds (40)
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where g = g(θ;∆) = [sin(αθ)]α/∆

[sin θ]1/∆ sin (θ∆). The Fisher Information of F(α) is given by

I(F(α)) =
1

∆2F 2
(α)

(I2 − 1) . (41)

Furthermore, I2 is bounded by I2 ≤ 2. Therefore the following bounds hold:

I
(
J(α)

) ≤ 1
J2

(α)

, I
(
F(α)

) ≤ 1
∆2F 2

(α)

. (42)

¤
The Fisher information bounds (42) suggest that the optimal estimator (if one can find it) of

J(α) (or F(α)) exhibits variance of at least
J2
(α)

k (or
F 2

(α)

k ∆2). In this sense, our proposed estimator is
statistically optimal (up to a constant factor) in the framework of CC. Furthermore, the integral I2

in (40) can be numerically evaluated. Figure 3 plots 1
I2−1 (dashed curve) and 3− 2∆ (solid curve).

Our proposed estimator is close to be 100% optimal and hence there is little room for improvement.
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Figure 3: Dashed (red) curve: 1
I2−1 as in (40). Solid (black) curve: 3− 2∆.

5 Experiments

This section demonstrates that the proposed estimator Ĵ(α) in (9) is a practical algorithm, while the
previously proposed geometric mean algorithm (Li, 2009a) is inadequate for entropy estimation. We
also demonstrate that algorithms based on symmetric stable random projections (Indyk, 2006, Li,
2009a, Li and Hastie, 2007) are not suitable for entropy estimation in practice. Note that Lemma 7
has shown that the harmonic mean algorithm proposed in (Li, 2009a) is only 3.29-fold better than
the geometric mean algorithm and hence it makes no essential difference for entropy estimation.

5.1 Data
Since the estimation accuracy is what we are interested in, we simply use static data instead of
real data streams, because the projected data vector X = RTAt is the same at the end of the
stream, regardless of whether it is computed at once (i.e., static) or incrementally (i.e., dynamic).
As summarized in Table 1, 8 English words are selected from a chunk of Web crawl data, i.e., 8
vectors whose entries are the numbers of word occurrences in each document. The words are selected
fairly randomly, although we make sure they cover a wide range of data sparsity, from function words
(e.g., “A”), to common words (e.g., “FRIDAY”) to rare words (e.g., “TWIST”).

5.2 Estimating Shannon Entropies
We used the estimated frequency moments to estimate the Shannon entropies. For the data vector
“TWIST”, we present the results at sample sizes k = 3, 10, 100, 1000, and 10000. For all other
vectors, we did not use k = 10000. Figure 4 presents the normalized mean square errors (MSEs).

Using our proposed algorithm (middle panels), only k = 10 samples already produces fairly
accurate estimates. In fact, for some vectors (such as “A”), even k = 3 may provide reasonable
estimates. We believe the performance of the new estimator is remarkable. Another nice property
is that the estimation errors become stable after (e.g.,) ∆ < 10−3 (or 10−4). This essentially frees
practitioners from specifying ∆.
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Table 1: The data set consists of 8 English words selected from a corpus of Web pages, forming 8
vectors whose values are the word occurrences. The table lists their fractions of non-zeros (sparsity)
and the Shannon entropies (H). The last column is the variance ratio for comparing CC with
another algorithm named CRS; the details are in Section 6.

Word Sparsity Entropy H Improvement over CRS
TWIST 0.004 5.4873 2.1
FRIDAY 0.034 7.0487 38.9
FUN 0.047 7.6519 23.1
BUSINESS 0.126 8.3995 48.7
NAME 0.144 8.5162 65.9
HAVE 0.267 8.9782 67.7
THIS 0.423 9.3893 84.4
A 0.596 9.5463 113.7

In comparison, the performance of the geometric mean algorithm (left panels) is not satisfactory.
This is because its variance decreases only at the rate of O(∆), not O(∆2). Also clearly, using
symmetric stable random projections (right panels) would not provide good estimates of the Shannon
entropy (unless the sample size is extremely large with a carefully chosen ∆).

6 Comparisons with Conditional Random Sampling (CRS)

Conditional Random Sampling (CRS), which is applicable to data stream computations, is another
randomized algorithm (Li and Church, 2007, Li et al., 2008) particularly designed for sampling from
sparse data. The significant advantage of CRS is that the method is “one sketch for all,” meaning
that the same set of “sketches” can be used to estimate a very wide range of summary statistics
and distances including histograms, cross-entropy, χ2 distances, inner products, general lα distances
(for any α). In comparison, the methods of (symmetric and skewed) α-stable random projections
are generally limited to 0 < α ≤ 2 and one has to re-do the projections (and keep multiple sets of
samples) if the application requires to use multiple α values.3 A recent manuscript (Zhao et al.,
2010) compared CRS with a variety of other algorithms on the network data provided by ATT Labs.

It is interesting to compare CC (using the new estimator in this paper) with CRS for estimating
Shannon entropy. Suppose we use the estimator (10) with sufficiently small ∆. Then the estimation
variance is roughly just 3

k , essentially independent of the original data. Using the generic approximate

variance formula in Li et al. (2008), the variance for entropy estimation is denoted by V ar
(
ĤCRS

)
:

V ar
(
Ĥα

)
≈ 3

k
+ O

(
1
k2

)
, for sufficiently small ∆ (43)

V ar
(
ĤCRS

)
≈ |{i|At[i] > 0}|

k





D∑

i=1

[
At[i]
F(1)

log
At[i]
F(1)

]2

− 1
D

[
D∑

i=1

At[i]
F(1)

log
At[i]
F(1)

]2


 + O

(
1
k2

)
.

(44)

Table 1 (last column) already presents the variance ratios:
V ar(ĤCRS)

V ar(Ĥα) for the data used in our

experiments. The ratios range from 2.1 to 113.7. The comparison further conforms that CC is
extremely accurate for entropy estimation. On the other hand, CRS is actually also pretty good for
entropy estimation, considering it is “one-sketch-for-all.” Another significant advantage of CRS is
that it is not limited to the strict-Turnstile data stream model, or even the general Turnstile model.
It is particularly useful when applications require using nonlinearly transformed data (e.g., TF-IDF
weighting in search and natural language processing) instead of the original data.

3We should mention that the method of normal (l2) random projections was recently extended (Li et al.,
2010) to estimating lα distances for α = 4, 6, 8, ... in massive (static) data matrices.
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Figure 4: Normalized MSEs for estimating Shannon entropies using the geometric mean algorithm
(left panels) proposed in (Li, 2009a), the proposed new algorithm Ĵ(α) (9) (middle panels) in this
paper, and the geometric mean algorithm for symmetric stable random projections (right panels)
in (Li, 2008).

11



7 Conclusion

Many machine learning (e.g., neural computation, graph estimation) and data mining (e.g., anomaly
detection) problems require estimating the Shannon entropy. When the data are dynamic (e.g.,
data streams), efficient estimation of the Shannon entropy using small space has been a challenging
problem. It is known that we can approximate the Shannon entropy using the α-th frequency
moment of the stream with α very close to 1, if the estimator of the moment is accurate enough with
variance proportional to O(∆2), where ∆ = |1− α|. Our paper provides such a practical estimator.
Our method is an ideal solution to the problem of entropy estimation when the data streams follow
the strict-Turnstile model.

For ν-additive Shannon entropy estimation, the sample complexity of the algorithm is only
O

(
1
ν2

)
. The constant factor for this bound is merely about 6. In addition, we prove that our algo-

rithm achieves an upper bound of the Fisher information and in fact it is close to 100% statistically
optimal. An empirical study is also conducted to verify the accuracy of our algorithm.

Further research: To further reduce the processing cost in order to better accommodate high-rate
data streams, it is desirable to replace the dense matrix of skewed stable variables by a sparse matrix
of Pareto-type variables. This is closely related to the prior study of very sparse symmetric stable
random projections (Li, 2007). However, the extension to CC requires further work.
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