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Abstract

A popular approach in reinforcement learning is to use a model-based algorithm, i.e., an
algorithm that utilizes a model learner to learn an approximate model to the environment.
It has been shown such a model-based learner is efficient if the model learner is efficient
in the so-called “knows what it knows” (KWIK) framework. A major limitation of the
standard KWIK framework is that, by its very definition, it covers only the case when the
(model) learner can represent the actual environment with no errors. In this paper, we
introduce the agnostic KWIK learning model, where we relax this assumption by allowing
nonzero approximation errors. We show that with the new definition that an efficient
model learner still leads to an efficient reinforcement learning algorithm. At the same time,
though, we find that learning within the new framework can be substantially slower as
compared to the standard framework, even in the case of simple learning problems.

1 Introduction

The knows what it knows (KWIK) model of learning (Li et al., 2008) is a framework for online
learning against an adversary. Before learning, the KWIK learner chooses a hypothesis class and
the adversary selects a function from this hypothesis class, mapping inputs to responses. Then, the
learner and the adversary interact in a sequential manner: Given the past interactions, the adversary
chooses an input, which is presented to the learner. The learner can either pass, or produce a
prediction of the value one would obtain by applying the function selected by the adversary to the
selected input. When the learner passed and only in that case, the learner is shown the noise-
corrupted true response. All predictions produced by the learner must be in a close vicinity to
the true response (up to a prespecified tolerance), while the learner’s efficiency is measured by the
number of times it passes.

The problem with this framework is that if the hypothesis class is small, it unduly limits the
power of the adversary, while with a larger hypothesis class efficient learning becomes problematic.
Hence, in this paper we propose an alternative framework that we call the agnostic KWIK framework,
where we allow the adversary to select functions outside of the hypothesis class, as long the function
remains “close” to the hypothesis class, while simultaneously relaxing the accuracy requirement on
the predictions.

New models of learning abound in the learning theory literature, and it is not immediately
clear why the KWIK framework makes these specific assumptions on the learning process. For the
extension investigated in the paper, the agnostic KWIK model, even the name seems paradoxical:
“agnostic” means “no knowledge is assumed”, while KWIK is acronym for “knows what it knows”.
Therefore, we begin the paper by motivating the framework.

1.1 Motivation

The motivation of the KWIK framework is rooted in reinforcement learning (RL). An RL agent
makes sequential decisions in an environment to maximize the long-term cumulated reward it incurs
during the interaction (Sutton and Barto, 1998). The environment is initially unknown to the agent,
so the agent needs to spend some time exploring it. Exploration, however, is costly as an agent



exploring its environment may miss some reward collecting opportunities. Therefore, an efficient RL
agent must spend as little time with exploration as possible, while ensuring that the best possible
policy is still discovered.

Many efficient RL algorithms (Kearns and Singh, 2002, Brafman and Tennenholtz, 2001, Strehl,
2007, Szita and Lőrincz, 2008, Szita and Szepesvári, 2010) share a common core idea: (1) they keep
track of which parts of the environment are known with high accuracy; (2) they strive to get to
unknown areas and collect experience; (3) in the known parts of the environment, they are able to
plan the path of the agent to go wherever it wants to go, such as the unknown area or a highly
rewarding area. The KWIK learning model of Li et al. (2008) abstracts the first point of this core
mechanism. This explains the requirements of the framework:

• Accuracy of predictions: a plan based on an approximate model will be usable only if the
approximation is accurate. Specifically, a single large error in the model can fatally mislead the
planning procedure.
• Adversarial setting: the state of the RL agent (and therefore, the queries about the model)

depend on the (unknown) dynamics of the environment in a complex manner. While the
assumption that the environment is fully adversarial gives more power to the adversary, this
assumption makes the analysis easier (while not preventing it).
• Noisy feedback: the rewards and next states are determined by a stochastic environment, so

feedback is necessarily noisy.

The main result of the KWIK framework states that if an algorithm “KWIK-learns” the parame-
ters of an RL environment then it can be augmented to an efficient reinforcement learning algorithm
(Li, 2009, Chapter 7.1). The result is significant because it reduces efficient RL to a conceptually
simpler problem and unifies a large body of previous works (Li, 2009, Strehl et al., 2007, Diuk et al.,
2008, Strehl and Littman, 2007).

An important limitation of the KWIK framework is that the environment must be exactly repre-
sentable by the learner. Therefore, to make learning feasible, we must assume that the environment
comes from a small class of models (that is, characterized with a small number of parameters), for
example, it is a Markov decision process (MDP) with a small, finite state space.

However, such a model of the environment is often just an approximation, and in such cases, not
much is known about efficient learning in a KWIK-like framework. The agnostic KWIK learning
framework is aimed to fill this gap. In this new framework the learner tries to find a good approxi-
mation to the true model with a restricted model class.1 Of course, we will not be able to predict
the model parameters accurately any more (the expressive power of our hypothesis class is insuffi-
cient), so the accuracy requirement needs to be relaxed. Our main result is that with this definition
the augmentation result of Li (2009) still holds: an efficient agnostic KWIK-learning algorithm can
be used to construct an efficient reinforcement learning algorithm even when the environment is
outside of the hypothesis class of the KWIK learner. To our knowledge, this is the first result for
reinforcement learning that allows for a nonzero approximation error.

1.2 The organization of the paper

In the next section (Section 2) we introduce the KWIK framework and its agnostic extension. In
the two sections following Section 2 we investigate simple agnostic KWIK learning problems. In
particular, in Section 3 we investigate learning when the responses are noiseless. Two problems
are considered: As a warm-up we consider learning with finite hypothesis classes, followed by the
investigation of learning when the hypothesis class contains linear functions with finitely many
parameters. In Section 4 we analyze the case when the responses are noisy. Section 5 contains our
main result: the connection between agnostic KWIK and efficient approximate RL. Our conclusions
are drawn in Section 6. Proofs of technical theorems and lemmas have been moved to the Appendix.

2 From KWIK learning to agnostic KWIK learning

A problem is a 5-tuple G = (X ,Y, g, Z, ‖ · ‖), where X is the set of inputs, Y ⊆ Rd is a measurable
set of possible responses, Z : X → P(Y) is the noise distribution that is assumed to be zero-mean
(P(Y) denotes the space of probability distributions over Y) and ‖ · ‖ : Rd → R+ is a semi-norm on
Rd. A problem class G is a set of problems. When each problem in a class shares the same domain
X , response set Y and same semi-norm ‖ · ‖, for brevity, the semi-norm will be omitted from the
problem specifications. If the noise distribution underlying every G ∈ G is a Dirac-measure, we say

1The real environment is not known to belong to the restricted model class, hence the name “agnostic”.
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that the problem class is deterministic. For such problem classes, we will also omit to mention the
distribution.

The knows what it knows (KWIK) framework (Li, 2009) is a model of online learning where an
(online) learner interacts with an environment.2 In this context, an online learner L is required to
be able to perform two operations:
• predict: For an input x ∈ X , L must return an answer ŷ ∈ Y ∪ {⊥}. The answer ŷ =⊥ means

that the learner passes.
• update: Upon receiving an input-response pair (x, y) ∈ X × Y, L should update its internal

representation.

At the beginning of learning, the environment secretly selects a problem (X ,Y, g∗, Z) from some
class and it also selects the inputs xt which are presented to the learner in a sequential manner.
Given an input xt, the learner has the option to pass (say “I don’t know”), or to make a prediction.
An admissible learner is required to make accurate predictions only. When the learner passes (and
only in that case), the environment tells it the response (or answer) yt, which is randomly chosen
so that zt = yt − g∗(xt) ∼ Z(xt) and zt is independent of the past given xt. The learner’s goal is to
minimize the number of passes, while staying admissible. The environment is assumed to choose the
problem and the inputs adversarially and so we sometimes call the environment the adversary. In
the case of noisy responses, exact, or near-optimal predictions are in general impossible to achieve
with certainty. Correspondingly, we introduce two parameters: the required accuracy ε ≥ 0 and the
maximum permitted failure probability δ.

The KWIK protocol, controlling the interaction between the online learner and the adversary, is
shown as Algorithm 1. Note that in the standard KWIK-framework, before learning, both adversary

Algorithm 1 The KWIK protocol (G, ε).

1: N0 = 0 {Nt is the number of times the learner “passed”.}
2: Adversary picks problem G∗ = (X ,Y, g∗, Z, ‖ · ‖) ∈ G and (X ,Y, ‖ · ‖) is told learner
3: for t = 1, 2, . . . do
4: Adversary picks query xt ∈ X , which is announced to learner.
5: Learner computes answer ŷt ∈ Y ∪ {⊥} (predict is called), which is announced to adversary.
6: Nt = Nt−1

7: if ŷt =⊥ then
8: Adversary tells learner yt = g∗(xt) + zt, where zt ∼ Z(·|xt)
9: Learner updates itself (update is called)

10: Nt is incremented by 1
11: else if ‖ŷt − g∗(xt)‖ > ε then
12: return FAIL

and learner are given G and ε. Further, learner might be given a confidence parameter 0 ≤ δ ≤ 1,
whose role will be explained soon. In particular, this means that the learner can adjust its strategy to
(G, ε, δ). Note also that the environment is allowed to pick xt based on any past information available
to it up to time t.3 We note in passing that if in an application, regardless of the decision of the
learner, the response yt is generated and is communicated to the learner at every step, the learning
problem can only become easier. We call the so-modified protocol, the relaxed KWIK protocol. If
the learner is reasonable, the extra information will help it, though, this calls for an explicit proof.
All the definitions below extend to the relaxed KWIK protocol.

Definition 2.1 Fix ε ≥ 0 and 0 ≤ δ ≤ 1 and a problem class G. A learner L is an admissible
(and bounded) (ε, δ) KWIK-learner for G if, with probability at least 1 − δ, it holds that when L
and an arbitrary adversary interact following the KWIK protocol, the protocol does not fail (and the
number of passes Nt stays bounded by a finite deterministic quantity B(G, ε, δ)). We call the quantity
B(G, ε, δ) the learner’s KWIK-bound. The problem class G is (ε, δ) KWIK-learnable, if there exists
a bounded, admissible (ε, δ) KWIK-learner L for G. Further, G is KWIK-learnable, if it is (ε, δ)
KWIK learnable for any ε > 0, 0 < δ < 1. If B(G, ε, δ) is the learner’s KWIK-bound, we say that G
is KWIK-learnable with KWIK-bound B(G, ε, δ).

Note that the learners can be specialized to G, ε and δ. However, interesting results concern general
KWIK-learners which are operate for any G from a meta-class of concept-classes C. For example,

2Our definitions are slightly different from the original ones, mostly for the sake of increased rigour and
to make them better fit our results. Specifically, we explicitly include the noise as part of the concept.

3The choice must be measurable to avoid pathologies.
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the memorization learner of Li (2009) is a bounded, admissible KWIK learner for any problem class
G where the problems in G are deterministic and share the same finite input space X .

In addition to the above concepts, it is also customary to define the notion of KWIK-learnability:

Definition 2.2 Let c : G → R+ be a real-valued function. The problem class G is c-efficiently
KWIK-learnable, if, for any ε > 0, 0 ≤ δ ≤ 1, it is (ε, δ) KWIK-learnable by a learner L whose
KWIK-bound B satisfies B(G, ε, δ) ≤ poly(c(G), 1/ε, log(1/δ)) for some polynomial poly. Further, G
is c-efficiently deterministically KWIK-learnable if the above polynomial is independent of δ. Finally,
G is c-exactly KWIK-learnable if poly(c, 1/ε, log(1/δ)) is independent of 1/ε.4

Examples of KWIK-learnable classes can be found in the thesis by Li (2009).

2.1 Agnostic KWIK learning

From now on, we will assume that G is such that all problems in it share the same domain and
response spaces. A crucial assumption of the KWIK framework is that learner gets to know G at the
beginning of learning – the so-called realizability assumption.5 To illustrate the importance of this
assumption take X = N, Y = {−1,+1} and let G have two disjoint deterministic problems (functions)
in it. Then, trivially, there is a KWIK-learner which is bounded and admissible independently of how
the two deterministic functions are chosen. However, for any KWIK-learner who remains uninformed
about the choice of G there exists a class G with two functions that makes the learner fail.

However, in practice the realizibility assumption might be restrictive: The user of a learning
algorithm might give the learner a problem class (the hypothesis class), H ⊂ YX , that may or may
not contain the problem to be learned. In this case one still expects performance to degrade in a
graceful manner as a function of the “distance” between the problem selected by the adversary and
H. In particular, it is reasonable to relax the accuracy requirements in proportion to this distance.
Therefore, in our agnostic KWIK learning framework we propose to allow prediction errors of size
rD + ε (instead of ε), where D is the maximum tolerable approximation error.

The formal definitions are as follows. Let

∆(G,H)
def
= sup

(X ,Y,g,Z)∈G
inf
h∈H
‖h− g‖∞.

denote the error of approximating the functions of G by elements of H.

Definition 2.3 Fix a hypothesis class H over the domain X and response set Y, an approximation
error bound D > 0, a competitiveness factor r > 0, an accuracy-slack ε ≥ 0 and a confidence
parameter 0 ≤ δ ≤ 1. Let G be a problem class G over (X ,Y) that satisfies ∆(G,H) ≤ D. Then, a
learner L is a (D, r, ε, δ) agnostic KWIK-learner for the pair (H,G) if L is an (rD + ε, δ) KWIK-
learner for G.

The other learnability concepts (e.g., (ε, δ) learnability, learnability, efficiency, etc.) can also be
defined analogously.

3 Learning deterministic problem classes

The results in this section are used to illustrate the definitions, and the role of the various parameters
(such as r). The common property of the learning problems studied here is that the responses are
noise-free. As a warm-up, learning with finite hypothesis classes is considered. Next, we consider
learning with a hypothesis class composed of linear functions. We will see that in this case KWIK-
learning is still possible, but can be exponentially slow as a function of the dimension of the input
space. Note that our learners are deterministic. Hence, all statements hold either with probability
one or probability zero. In particular, a bounded, admissible KWIK-learner is necessarily a bounded
and admissible KWIK-learner even with the choice of δ = 0.

3.1 Learning with a finite hypothesis class

For any d > 0 and y ∈ Y, define the d-ball around y as

Bd(y)
def
= {y′ ∈ Y : ‖y′ − y‖ ≤ d} .

4In the definition, contrary to previous work, we intentionally use log(1/δ) instead of 1/δ because log(1/δ)
is more natural in a learning context and a 1/δ-bound looks unnecessarily weak.

5If the learner knows G, it can “realize” any problem chosen by the adversary, hence the name.
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Algorithm 2 Generic Agnostic Learner for deterministic problem classes.

initialize(D, H)
F := H and store D

learn(x, y)
F := F \ {f ∈ F : ‖f(x)− y‖ > D}

predict(x)
Y :=

⋂
f∈F BD(f(x))

if Y 6= ∅ then
return an arbitrary ŷ ∈ Y

else
return ⊥

Consider the Generic Agnostic Learner (Algorithm 2) of Littman (the algorithm is published by
Li (2009), without analysis and for Y ⊆ R). Every time a new query xt is received, the algorithm
checks whether there exists some value ŷt that remaining functions agree at xt up to the accuracy D.
If such a value exists, the learner predicts ŷt, otherwise it passes. When the learner passes it learns
the response yt, based on which it can exclude at least one concept. This results in the following
statement:

Theorem 3.1 Let (X ,Y) be arbitrary sets, r = 2, ε = 0, D > 0, H a finite hypothesis class over
(X ,Y), G a deterministic problem class over (X ,Y) with ∆(G,H) ≤ D. Then, the Generic Agnostic
Learner is an agnostic (D, r, ε) KWIK-learner for (H,G) with KWIK-bound |H| − 1.

The factor r = 2 in the above theorem is the best possible as long as X is infinite:

Theorem 3.2 Fix any D > 0 and an infinite domain X . Then, there exists a finite response set
Y ⊂ R, a two-element hypothesis class H and a deterministic problem class G, both over (X ,Y),
that satisfy ∆(G,H) ≤ D such that there is no bounded agnostic (D, r, 0) KWIK-learner for (H,G)
with competitiveness factor 0 ≤ r < 2.

Because of this result, in what follows, we will restrict out attention to r = 2. Note that the
KWIK-bound we got is identical to the (worst-case) bound that is available when D = 0, that is,
seemingly there is no price associated to D > 0 in terms of the KWIK-bound. However, the worst-
case approach taken here leads to overly conservative bounds as the structure of a hypothesis space
may allow much better bounds (this is discussed in Section 5.5.2 of Li (2009)). In the next section
we study linear hypothesis classes for which the above bound would be vacuous.

3.2 Learning with linear hypotheses

Sometimes Algorithm 2 is applicable even when the hypothesis class H is infinite: First, the set of
remaining hypotheses F = H(x1, y1, . . . , xn, yn) after n passes can be “implicitly represented” by
storing the list (x1, y1, . . . , xn, yn) of pairs received after the n passes. Then, the algorithm remains
applicable as long as there is some procedure for checking whether Y =

⋂
f∈F BD(f(x)) is empty

(and finding an element of Y , if it is non-empty). It remains to see then if the procedure is efficient
and if the learner stays bounded (that the procedure stays is admissible for r ≥ 2 follows from its
definition).

In this section we consider the case when the functions in the hypothesis class are linear in the
inputs. More specifically, let X = [−Xmax, Xmax]d for some d ∈ {1, 2, . . .} = N, Y = R, ‖·‖ = | · |,
M > 0 and choose H to be the set of bounded-parameter linear functions: Denote by fθ : X → R
the linear function fθ(x) = θ>x, x ∈ X . Then,

Hlin(M)
def
= {fθ : θ ∈ Rd, ‖θ‖∞ ≤M} .

Then, F = H(x1, y1, . . . , xn, yn) = {fθ : θ ∈ Rd,−M ≤ θi ≤ M,yj −D ≤ fθ(xj) ≤ yj +D, 1 ≤ i ≤
d, 1 ≤ j ≤ n} since for any (xi, yi) pair the hypotheses not excluded must satisfy |fθ(x) − y| ≤ D.
Now, Y = [y−, y+], where y− = minfθ∈F fθ(x) and y+ = maxfθ∈F fθ(x) and both y− and y+ can be
efficiently computed using linear programming. The resulting algorithm is called the deterministic
linear agnostic learner (Algorithm 3). In the algorithm, we also allow for a slack ε > 0.

The following theorem shows that for ε > 0 this algorithm is a bounded, admissible agnostic
KWIK learner:

Theorem 3.3 Let Xmax > 0, X = [−Xmax, Xmax]d, Y = R, M,D, ε > 0, r = 2, H = Hlin(M).
Then, for any G deterministic problem class over (X ,Y) with ∆(G,H) ≤ D, it holds that the deter-
ministic linear agnostic learner is an agnostic (D, r, ε) KWIK-learner for (H,G) with the KWIK-

bound 2d!
(
MXmax

ε + 1
)d

.
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Algorithm 3 Deterministic Linear Agnostic Learner

initialize(Xmax, M , D, ε)
C := {θ : −M ≤ θi ≤M, ∀i ∈ {1, . . . , d}}
learn(x, y)
C := C ∩ {θ : y −D ≤ θTx ≤ y +D}

predict(x)
y+ := maxθ∈C θ

Tx {solve LP}
y− := minθ∈C θ

Tx {solve LP}
if y+ − y− ≤ 2(D + ε) then

return (y+ + y−)/2
else

return ⊥

The theorem cannot hold with ε = 0, as shown by the following result:

Theorem 3.4 Let X ,Y, D, r,H be as in Theorem 3.3. Then, there exists a problem class G that
satisfies ∆(G,H) ≤ D such that there is no bounded, agnostic (D, r, 0) KWIK-learner for (H,G).

In Theorem 3.3 the KWIK-bound scales exponentially with d. The next result shows that this
is the best possible scaling behavior:

Theorem 3.5 Fix X ,Y, D,H, ε as in Theorem 3.3 and let r ≥ 2. Then, there exists some problem
class G so that any algorithm that agnostic (D, r, ε) KWIK learns (H,G) will pass at least 2d−1 times.

Whether the scaling behavior of the bound of Theorem 3.3 as a function of ε can be improved
remains for future work. Note that for D = 0 we get an algorithm close to Algorithm 13 of Li (2009),
the difference being that Algorithm 13 never predicts unless the new input lies in the span of past
training vectors. Nevertheless, for D = 0 and any ε ≥ 0 (including ε = 0), our algorithm is also an
ε KWIK-learner with KWIK-bound d. Thus, we see that the price of non-realizibility is quite high.

4 Learning in bounded noise

As opposed to the previous section, in this section we consider the case when the responses are noisy.
We first consider the case of learning with finite hypothesis classes and then we briefly outline a
simple discretization-based approach to the case when the hypothesis class is infinite. We further
assume that Y ⊆ R and the range of the noise in the responses is bounded by K.

4.1 The case of finite hypothesis classes

Let the finite hypothesis class given to the learner be H and fix some D > 0. Let g∗ be the function
underlying the problem chosen by the adversary from some class G which satisfies ∆(G,H) ≤ D.
Assuming that the noise in the responses is bounded to lie in [−K,K] for some K > 0, an application
of the Hoeffding-Azuma inequality gives that for any ε > 0 and any fixed function f ∈ H such that
‖f − g∗‖ ≤ D (such functions exists, by our assumption connecting G and H), 0 < δ ≤ 1, with
probability 1− δ, it holds that∣∣∣∣∣ 1

m

m∑
k=1

{f(xk)− yk}

∣∣∣∣∣ ≤ D +K

√
2

m
log

(
2

δ

)
≤ D + ε , (1)

where m = m(ε, δ) > 0 is chosen large enough so that the second inequality is satisfied and where
((xk, yk); k = 1, 2, . . .) is the list of training examples available to the algorithm (the application
of Hoeffding-Azuma is not entirely immediate, for the details see Lemma A.1). One idea then is
to eliminate those functions f from H which fail to satisfy (1) after m examples have been seen.
The problem is that this rule is based on an average. A clever adversary, who wants to prevent the

elimination of some function f̂ ∈ H could then provide many examples (xk, yk) such that yk is close

to f̂(xk), thus shifting the average to a small value. Therefore, we propose an alternate strategy
which is based on the pairwise comparison of hypothesis.

The idea is that if f, f ′ are far from each other, say at x ∈ X it holds that |f(x)−f ′(x)| > 2(D+ε),
then if the adversary feeds x enough number of times, we can eliminate at least one of f and f ′.
The following definition will become handy: for two numbers y, y′ ∈ R, we define y � y′ by
y+ 2(D+ ε) ≤ y′. We index the elements of H from 1 to N : H = {f1, . . . , fN}. The algorithm that
we propose is shown as Algorithm 4.

The following theorem holds true for this algorithm:

Theorem 4.1 Let H be a finite hypothesis class over (X ,R), D, ε > 0, 0 ≤ δ ≤ 1, r = 2. Then,
for any G problem class such that the noise in the responses lies in [−K,K] and ∆(G,H) ≤ D it

6



Algorithm 4 Pairwise Elimination-based Agnostic Learner

initialize(D, H, ε)
N := |H|, I := {1, . . . , N}
ni,j := 0, si,j = 0,∀i, j ∈ I
m := d 2K2

ε2 log 2(N−1)
δ e

predict(x)
Y :=

⋂
i∈I BD+ε(fi(x))

if Y 6= ∅ then
return an arbitrary ŷ ∈ Y

else
return ⊥

learn(x, y)
for all i, j ∈ I such that fi(x)� fj(x) do
ni,j := ni,j + 1
si,j := si,j + (fi(x) + fj(x))/2− y
if ni,j = m then

if si,j < 0 then
I := I \ {i}

else
I := I \ {j}

holds that the pairwise elimination based agnostic learner is an agnostic (D, r, ε, δ) KWIK-learner

for (H,G) with KWIK-bound ((d 2K2

ε2 log 2(N−1)
δ e − 1)N + 1)(N − 1) = O

(
K2N2

ε2 log N
δ

)
.

4.2 The case of infinite hypothesis classes

Note that by introducing an appropriate discretization, the algorithm can also be applied to problems
when the hypothesis set is infinite. In particular, given ε > 0, if there exists N > 0 and HN ⊂ H
with n functions such that for any function f ∈ H there exists some function f ′ ∈ HN such
that ‖f − f ′‖∞ ≤ ε/2 then if we run the above algorithm with HN and ε/2 (instead of ε) then
from ∆(G,H) ≤ D it follows that ∆(G,HN ) ≤ D + ε/2. Therefore, by the above theorem, the
pairwise elimination based agnostic learner with HN will be 2D + ε accurate and will pass at most

O
(
K2N2

ε2 log N
δ

)
times, outside of an event of probability at most δ. Therefore, it is a (D, r, ε, δ)

agnostic KWIK-learner for (H,G). In the case of a linear hypothesis class with a d-dimensional
input, N = Θ((1/ε)d) and thus the number of passes in the bound scales with (1/ε)2d+2. We see
that as compared to the noise-free case, we lose a factor of two in the exponent. The approach just
described is general, but the complexity explodes with the dimension. It remains to be seen if there
exists alternative, more efficient algorithms.

5 Reinforcement learning with KWIK-learning

In reinforcement learning an agent is interacting with its environment by executing actions and
observing states and rewards of the environment, the goal being to collect as much reward as
possible. Here we consider the case when the state transitions are Markovian. An agent unfamiliar
with its environment must spend some time exploring the environment, or it may miss essential
information and loose a lot reward in the long run. However, with time the agent must reduce
exploration, or it will fail to collect reward. The basic question is how to find the right balance
between exploration and exploitation.

The KWIK-Rmax construction of Li (2009) shows that if efficient KWIK-learning is possible for
some environment models then efficient reinforcement learning is possible for the same class. The
purpose of this section is to show that this result readily extends to the agnostic case in a sensible
manner, justifying the choice of the agnostic learning model proposed.

5.1 Markovian Decision Processes and efficient learning agents

In this section we introduce a minimal formal framework for studying the efficiency of reinforcement
learning algorithms when they are used to learn to control Markovian Decision Processes (MDPs).
For further information on learning in MDPs the reader is referred to the book of Szepesvári (2010)
and the references therein.

Technically, an MDP M is a triple (S,A,P), where S is the set of states, A is the set of actions,
both are non-empty, Borel-spaces; and P, determining the evolution of the decision process, is a
transition probability map from S × A to S × R.6 In particular, an agent interacting with an

6We call P a transition probability map between measurable spaces (E1, E1) and (E2, E2) if (i) P(·|e2)
is a probability measure on (E1, E1) for any e2 ∈ E2 and (ii) the function P(B|·) is measurable on E2 for
any B ∈ E1. In what follows, to minimize clutter, we omit technical assumptions needed to establish e.g.
the existence of measurable optimal stationary policies. See e.g. Theorem 6.11.11 in the book by Puterman
(2005) for a compact result and the references in this book. All results presented hold for finite MDPs
without any further assumptions.
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environment described by an MDP receives at time step the state st ∈ S of the environment, decides
about the action at ∈ A to take based on the information available to it and then executes the action
in the environment. As a result the environment moves the state and generates the reward associated
with the transition: (rt, st+1) ∼ P (·|st, at). The process then repeats. An algorithm (which may use
randomness) for computing an action based on past information is called a (non-stationary) policy.
The value of a policy π in state s is the expected total discounted reward, or expected return when
the interaction starts at state s. Formally,

V π(s) = E

[ ∞∑
t=0

γtrt

∣∣∣ (rt, st+1) ∼ P (·|st, at), at ∼ π(·|s0, a0, r0, s1, a1, r1, . . . , st), t ≥ 0, s0 = s

]
.

An optimal policy π∗ is such that in every state s ∈ S, V π
∗
(s) is the best possible value: V π

∗
(s) =

V ∗(s)
def
= supπ V

π(s). Here, V ∗ is the so-called optimal value function and V π is called the value
function of policy π. In finite discounted MDPs an optimal policy always exists. We also need the
optimal action-value function Q∗ : S × A→ R; Q∗(s, a) is defined as the total expected discounted
reward assuming that the interaction starts at state s, the first action is a and in the subsequent
timesteps an optimal policy is followed. We will write V πM , V ∗M , Q∗M when there is a need to emphasize
that these object are specific to the MDP M .

A learning agent’s goal is to act “near-optimally” in every finite MDP while having little a priori
information about the MDP. In particular, given a finite MDP M = (S,A,P), the learning agent A
is told S,A, a bound on the rewards and their expected value, a discount factor 0 < γ < 1. Then, A
starts interacting with an environment described by M . Note that a learning agent is slightly more
general then a policy: A policy is MDP-specific (by definition), while a learning agent must be able
to act in any (finite) MDP. We can also view learning as the learning agent choosing an appropriate
(non-stationary) policy to follow based on the a priori information received. We also identify an
agent A with its “learning algorithm” and will also say “algorithm A”.

One possible goal for a learning agent is to minimize the number of timesteps when the future
value collected from the state just visited is worse than the optimal value less some value ε > 0.
Following Kakade (2003), we formalize this as follows:

Definition 5.1 (ε-mistake count) Let ε > 0 be a prescribed accuracy. Assume that a learning
agent A interacts with an MDP M and let (st, at, rt)t≥0 be the resulting S×A×R-valued stochastic
process. Define the expected future return of A at time step t ≥ 0 as

V At,M = E

[ ∞∑
s=0

γsrt+s

∣∣∣ s0, a0, r0, s1, a1, r1, . . . , st

]
.

Agent A is said to make an ε-mistake at time step if V At,M < V ∗M (st) − ε and we will use NAM,ε to
denote the number of ε-mistakes agent A makes in M :

NAM,ε =

∞∑
t=0

I{V At,M<V ∗M (st)−ε} .

The competence of an algorithm A is measured by NAM,ε.
7 Formally, an algorithm A is called PAC-

MDP if for any ε > 0, 0 < δ ≤ 1, MDP M , NAM,ε can be bounded with probability 1 − δ with a

polynomial of the form poly(|S|, |A|, 1/ε, log(1/δ), 1/(1 − γ)), assuming that the rewards belong to
[0, 1] interval. For MDPs with infinite state and action spaces, |S| and |A| should be replaced by an
appropriate “complexity” measure.

From a static, non-learning, computational viewpoint, the stochasticity of the rewards does not
play a role. Hence, by slightly abusing notation, we will also call a 4-tuple (S,A, P,R) an MDP,
where P is a transition probability map from S × A to S, and R : S × A → R is the immediate
expected reward function underlying P. A policy π which chooses the actions based on the last
state only in a fixed manner is called a stationary (Markov) policy.8 Such a policy can and will be
identified with a transition probability map from S to A. In particular, we will use π(·|s) to denote
the probability distribution over A designated by π at s ∈ S.

7 An alternative, closely related way for measuring competence is to count the number of timesteps when

Q∗M (xt, at) < V ∗M (xt) − ε: N̂AM,ε =
∑∞
t=0 I{Q∗M (st,at)<V

∗
M

(st)−ε}. If the learning agent does not randomize,

Q∗M (st, at) > V At,M follows from the definitions. It follows then that NAM,ε ≤ N̂AM,ε holds almost surely. For
further, alternative notions of efficient learning consult Fiechter (1994), Auer et al. (2008).

8A policy is Markov if the distribution assigned to a history depends only on the last state of the history.
In what follows, by a stationary policy we will always mean a stationary Markov policy.
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5.2 A general theorem on efficient RL

In this section we show a general result on constructing efficient reinforcement learning algorithms.
The result states that if a policy i) keeps track whether state-action pairs are “known”, ii) ensures
that the model parameters corresponding to “known” pairs are indeed known with reasonable accu-
racy, iii) makes an effort to get to unknown areas, then it will be efficient as soon as the number of
times it happens that the currently visited state-action pair is not “known” is small.

Theorems of this style have appeared in Strehl et al. (2006, 2009), Li (2009), Li et al. (2011).
These results in fact generalize the proof of Kakade (2003) which shows that Rmax is efficient.
The closest in spirit to the result below is Theorem 10 by Strehl et al. 2009 (originally appeared
as Proposition 1 of Strehl et al. (2006) and then repeated as Theorem 4 by Li et al. 2011). The
differences between the result below and this theorem are mostly at the cosmetic level, although the
particular form below makes our theorem particularly easy to apply to the model-based setting of
the next section and it also allows imperfect (even stochastic) planners. However, the main reason
we included this result is to give a fully rigorous proof, which avoids the inaccuracies and ambiguities
of previous proofs.9 Also, we slightly improve the previous bounds: we remove a 1/(1− γ)-factor.

Let Y = M(S) × R, where M(S) is the space of finite signed-measures. We define the norm

‖ · ‖Y : Y → R+ as follows: For any P ∈ M(S), r ∈ R, let ‖(P, r)‖Y
def
= |r| + γ ‖P‖TV Vmax, where

Vmax > 0 will be chosen to be a common upper bound on the value functions in a class of MDPs of
interest and ‖·‖TV is the total-variation norm of finite signed measures (‖P‖TV = |P |(S)). Define
the distance of MDPs M1 = (S,A, P1, R1), M2 = (S,A, P2, R2) sharing S and A by

d(M1,M2)
def
= sup

(s,a)∈S×A
‖(P1(·|s, a)− P2(·|s, a), r1(s, a)− r2(s, a))‖Y .

Theorem 5.1 Consider agent A interacting with an MDP M = (S,A,P). Let (s1, a1, r1, s2, a2, r2, . . .)
be the trajectory that results when A interacts with M and let Ft = σ(s1, a1, r1, . . . , st) be the σ-field
corresponding to the history at time t. Let G ⊂ Ω be a measurable event of the probability space that
holds the random variables (st, at, rt)t≥1. Assume that there exist a sequence of state-action sets

(Kt)t≥1, Kt ⊆ S × A, a sequence of models (M̂t)t≥1, and a sequence of stationary policies (πt)t≥1

such that for some eplan, emodel, Vmax > 0 and for any t ≥ 1 the following hold:

(a) the expected immediate rewards underlying M and (M̂t)t≥1 are bounded by (1− γ)Vmax;

(b) Kt, M̂t, πt are Ft-measurable;

(c) at = πt(st) (the action at time t is selected by πt);

(d) V πt
M̂t

(st) ≥ V ∗M̂t
(st)− eplan (the policy πt is at least eplan-optimal at st in model M̂t);

(e) for any (s, a) ∈ Kt,
∥∥∥M̂t(s, a)−M(s, a)

∥∥∥
Y
≤ emodel holds true on G (the model is emodel-

accurate for “known” state-action pairs);

(f) for any (s, a) 6∈ Kt, any stationary policy π, Vmax ≤ QπM̂t
(s, a) (in “unknown” states, the model

is optimistic, but not overly so); and

(g) if (st, at) ∈ Kt then πt+1(st+1) = πt(st+1) (old policy used as long as visiting known state-action
pairs).

Let B be a deterministic upper bound on the number of times it happens that (st, at) 6∈ Kt on
G:

∑∞
t=1 I{(st,at)6∈Kt,G} ≤ BI{G}. Then, for any 0 < δ ≤ 1 there exists an event F = Fδ such

that P (Fδ) ≥ 1 − δ and on F ∩ G, the number of 5emodel/(1 − γ) + eplan-mistakes is bounded

by 2Vmax(1−γ)L
emodel

{
B + (

√
2B + 3)

√
log
(
L
δ

)
+ 6 log

(
L
δ

)}
, where L = max(1, d(1 − γ)−1 log(Vmax(1 −

γ)/emodel)e).

We will need two lemmas for the proof, which we state first. The first lemma is a standard result
which follows from simple contraction arguments:

9Some of the differences in our proof follow from our slightly changed assumptions. However, the proof
of Lemma 5.3 is new. In place of our argument, earlier works either did not present a proof or used an
argument which did not allow serial correlations and thus, strictly speaking, cannot be applied in the setting
considered here.
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Lemma 5.2 (Simulation Lemma) For any two MDPs M1 and M2 sharing the same state-action
set S×A and any stationary policy π over (S,A), it holds that

∥∥V πM1
− V πM2

∥∥
∞ ≤ d(M1,M2)/(1−γ).

The next lemma compares the number of times the bias underlying an infinite sequence of coin
flips can exceed a certain threshold ε given that the biases are sequentially chosen and that the
number of heads in the infinite coin flip sequence assumes some bound m. The proof is based on
the idea underlying Markov’s inequality and a stopping time construction used in conjunction with
a Bernstein-like inequality due to Freedman (1975).

Lemma 5.3 Let 0 < ε < 1, m ∈ N be deterministic constants, (Ft)t≥1 be some filtration and let
(At)t≥1 be an (Ft+1)t≥1-adapted sequence of indicator variables. Let

at = E [At|Ft]

and let G be an event such that on G the inequality
∑∞
t=1At ≤ m holds almost surely. Then, for

any 0 < δ ≤ 1 with probability 1− δ, either Gc holds, or

∞∑
t=1

I{at≥ε} ≤
1

ε

{
m+

√
2m log

(
1
δ

)
+ 3
√

log
(

1
δ

)
+ 6 log

(
1
δ

)}
.

With this, we are ready to give the proof of Theorem 5.1:

Proof: We need to show that with an appropriate choice of F , and for ε
def
= 5emodel/(1− γ) + eplan,

the inequality NAM,ε ≤
2Vmax(1−γ)L

emodel

{
B + (

√
2B + 3)

√
log
(
L
δ

)
+ 6 log

(
L
δ

)}
holds on F ∩G.

Let etrunc
def
= emodel/(1 − γ) be the allowed truncation-error. Note that with this notation,

L = max(1, d 1
1−γ log Vmax

etrunc
e). The quantity L is known as the so-called etrunc-horizon: if V πM (s;L)

denotes the expected L-step return of π in M when the decision process starts at s then |V πM (s) −
V πM (s;L)| ≤ etrunc.

Fix t ≥ 1 and let Et be the event that in the next L steps, the agent “escapes” the known set:

Et =

L−1⋃
i=0

{(st+i, at+i) 6∈ Kt+i} . (2)

The plan for the proof is as follows: We first show that whenever pt = P (Et|Ft) is small, in particular,
when

pt ≤
etrunc

2Vmax
(3)

then, on G, the agent does not make an ε-mistake at time t. Then, based on Lemma 5.3 we will give
a high-probability bound on the number of timesteps when (3) fails to hold.

Turning to the first step, assume that (3) holds. We want to show that the agent does not make
an ε-mistake on G, i.e., on this event, V At,M ≥ V ∗M (st)− ε. Let π̃t be the non-stationary policy of M

induced by A at time step t. Then, V At,M = V π̃tM (st) ≥ V π̃tM (st;L)− etrunc by the choice of L. Let M̄t

be the model which agrees with M on Kt, while it agrees with M̂t outside of Kt.

Claim 5.4 We have V π̃tM (st;L) ≥ V πt
M̄t

(st;L)− 2Vmaxpt, with probability one.

The proof, which is given in the appendix, uses that the immediate rewards for both M and M̂t

are bounded by (1− γ)Vmax (i.e., condition (a)), the measurability condition (b) and the condition
that there is no policy update while visiting known states (i.e., condition (g)).

Now, by the definition of L, V πt
M̄t

(st;L) ≥ V πt
M̄t

(st) − etrunc, while by the Simulation Lemma

(Lemma 5.2) and (e), on G, it holds that V πt
M̄t

(st) ≥ V πt
M̂t

(st) − emodel/(1 − γ). By (d), V πt
M̂t

(st) ≥
V ∗
M̂t

(st)− eplan. Let π∗ be an optimal stationary policy in M . We have V ∗
M̂t

(st) ≥ V π
∗

M̂t
(st).

Now, let M̃t be the MDP which is identical to M̂t for state-action pairs in Kt, while outside of
Kt it is identical to M . We claim that the following holds true:

Claim 5.5 On G, it holds that V π
∗

M̂t
(st) ≥ V π

∗

M̃t
(st).
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The proof, which is again given in the appendix, uses the optimism condition (condition (f)),
condition (a).

By the Simulation Lemma and (e), on G, it holds that V π
∗

M̃t
(st) ≥ V π

∗

M (st) − emodel/(1 − γ).

Chaining the inequalities obtained, we get that, on G, the inequality V At,M ≥ V π
∗

M (st)− (2ptVmax +

4etrunc + eplan) holds. Thus, when (3) holds, on G, we also have V At,M ≥ V π
∗

M (st)− (5etrunc + eplan) =

V π
∗

M (st)− ε, which concludes the proof of the first step.
Let us now turn to the second step of the proof. By the first step, on G,

∑∞
t=1 I{V At,M<V ∗M−ε} ≤∑∞

t=1 I{pt< etrunc
1−γ }. Let Tnon-opt =

∑∞
t=1 I{pt>etrunc/(2Vmax)}. In order to bound Tnon-opt, we write it

as the sum of L terms as follows

Tnon-opt =

L−1∑
i=0

∞∑
j=0

I{pjL+i+1>etrunc/(2Vmax)}︸ ︷︷ ︸
T

(i)
non-opt

. (4)

We will apply Lemma 5.3 to each of the resulting L terms separately. To do so, fix 0 ≤ i ≤ L−1 and
choose the sequence of random variables (At)t≥0 to be (I{EtL+i+1})t≥0, while let the corresponding
sequence of σ-fields be (FtL+i+1)t≥0. Further, choose ε of Lemma 5.3 as ε = etrunc/(2Vmax). By
condition (b), At is F(t+1)L+i+1-measurable, since EtL+i+1 ∈ F(t+1)L+i+1. The upper bound m on
the sum

∑
tAt is obtained from

∞∑
j=0

I{EjL+i+1} ≤
∞∑
t=1

I{Et} ≤
∞∑
t=1

I{(xt,at)6∈Kt} ,

where the last inequality follows from the definition of Et (cf. (2)). By assumption, on G, the last
expression is bounded by B. Therefore, on G,

∑∞
j=0 I{EjL+i+1} ≤ B also holds and Lemma 5.3 gives

that with probability 1− δ/L, either Gc holds or

T
(i)
non-opt ≤

2Vmax

etrunc

{
B +

√
2B log

(
L
δ

)
+ 3
√

log
(
L
δ

)
+ 6 log

(
L
δ

)}
.

Combining this with (4) gives that, with probability 1− δ, either Gc holds or

Tnon-opt ≤
2VmaxL

etrunc

{
B + (

√
2B + 3)

√
log
(
L
δ

)
+ 6 log

(
L
δ

)}
,

thus, finishing the proof.

5.3 The KWIK-Rmax construction

In this section we consider the KWIK-Rmax algorithm of Li (2009) (see, also Li et al. (2011)).
This algorithm is identical to the Rmax algorithm of Brafman and Tennenholtz (2000), except that
the model learning and planning components of Rmax are replaced by general components. This
way one gets a whole family of algorithms, depending on what model learner and planner is used.
In addition to unifying a large number of previous works which considered different model learners
and planners (for a list of these, see the introduction of this article), this allowed Li to improve the
previously known efficiency bounds, too (see, Chapter 7 of Li (2009)).

Here, the exact same algorithm is considered, but we derive a more general result: We show
that if the model learning algorithm is an agnostic KWIK-learner enjoying some KWIK-bound and
a “good” planner is used then the resulting instance of KWIK-Rmax will be efficient even when
the MDP considered is outside of the hypothesis class that the KWIK-learner uses. In essence,
our analysis shows how approximation errors propagate in a reinforcement learning context. In the
special case of realizable learning, our result reproduces the result of Li (2009) (our bound is slightly
better in terms of its dependence on the discount factor γ).

The KWIK-Rmax algorithm is shown as Algorithm 5. The algorithm takes as input two “ob-
jects”, a learner (MDPLearner) and a planner (Planner). The learner’s job is to learn an approx-
imation to the MDP that KWIK-Rmax interacts with. The learned model is fed to the planner.
The planner is assumed to interact with models by querying next state distributions and immediate
rewards at select certain state-action pairs. The predict method of a model is assumed to return
the returned values for the planner. The planner itself could use these in many ways – the details
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of the planning mechanism are not of our concern here (our result allows for both deterministic and
stochastic planners). An important aspect of the algorithm is that the model learned is not actually
fed directly to the planner, but it is fed to a wrapper. In fact, since a KWIK learner might pass
in any round, it is the job of the wrapper to produce a next-state distribution, reward pair in all
cases. This can be done in many different ways. However, the main idea here is to return a next-
state distribution and a reward, which makes an “unkown” state-action pair highly desirable. One
implementation of this is shown in the right-hand side of algorithm listing 5. The KWIK-Rmax
algorithm itself repeatedly calls the planner (with the optimistically wrapped model learned by the
KWIK learner), executes the returned action and upon observing the next state and reward, if the
KWIK learner passed, it feeds the learner with the observed values. Note that for the analysis it
is critical that the learner is not feed with information when it did not pass, contradicting one’s
intuition.

Algorithm 5 The KWIK-Rmax Algorithm and the Optimistic Wrapper

KWIK-Rmax(MDPLearner,Planner)
MDPLearner.initialize(. . .)
Planner.initialize(. . .)
Observe s1

for t := 1, 2, . . . do
at = Planner.plan(Opt(MDPLearner), st)
Execute at and observe st+1, rt
if MDPLearner.predict(st, at) =⊥ then

MDPLearner.learn((st, at), (δst+1
, rt))

{Optimistic Wrapper}
Opt(MDPLearner).predict(s, a)

if MDPLearner.predict(s, a) =⊥ then
return (δs(·), (1− γ)Vmax)

else
return MDPLearner.predict(s, a)

Our main result, stated below, says that if MDPLearner is an agnostic KWIK-learner and the
planner is near-optimal then KWIK-Rmax will be an efficient RL algorithm. In order to state this
result formally, first we need to define what we mean by KWIK-learning in the context of MDPs.

As before, we fix the set of states (S) and actions (A) and Vmax > 0, an upper bound on the
value functions for the MDPs of interest. Remember that Y = M(S)×R and the norm ‖·‖Y defined
by ‖(P, r)‖Y = |r| + γ ‖P‖TV Vmax (P ∈ M(S), r ∈ R). The space Y will be the output space
for the predictors. Learning an MDP model means learning the immediate expected rewards and
transition probabilities when the inputs are state-action pairs. That is, we let X = S × A and
encode an MDP as a mapping g : X → Y, where for x = (s, a) ∈ X , g(s, a) = (P, r), where P is
the next-state distribution over S and r ∈ R is the associated expected immediate reward. What
is left in specifying an MDP problem instance (X ,Y, g, Z, ‖·‖) is the noise component Z. In the RS
component of Y, the noise is completely determined by g, while, for the reward component the noise
distribution is arbitrary, except that the noisy reward is restricted to be bounded by (1 − γ)Vmax.
A subset of all g : X → Y functions will be called an MDP hypothesis space. Now, we are ready to
state our main result.

Theorem 5.6 Fix a state space S and an action space A, which are assumed to be non-empty
Borel spaces. Let X ,Y be as described above, H be an MDP hypothesis set, G be a set of MDP
problem instances, both over X ,Y. Assume that ∆(G,H) ≤ D. Assume that Vmax > 0 is such
that (1 − γ)Vmax is an upper bound on the immediate rewards of the MDPs determined by mem-
bers of H and G. Fix ε > 0, r ≥ 1, 0 < δ ≤ 1/2. Assume that MDPLearner is an agnostic
(D, r, ε) KWIK-learner for (H,G) with KWIK-bound B(δ). Assume further that we are given a
Planner which is eplanner-accurate. Consider the instance of the KWIK-Rmax algorithm which

uses MDPLearner and Planner, interacting with some MDP M from G. Let ε′ = 5(rD+ε)
1−γ +

eplanner. Then, with probability 1 − 2δ, the number of ε′-mistakes, NM,ε′ , made by KWIK-Rmax

is bounded by 2Vmax(1−γ)L
rD+ε

{
B(δ) + (

√
2B(δ) + 3)

√
log
(
L
δ

)
+ 6 log

(
L
δ

)}
, where L = max(1, d(1 −

γ)−1 log(Vmax(1− γ)/(rD + ε))e).

6 Discussion

In the first part of the paper we formalized and explored the agnostic KWIK framework (first
mentioned in Li (2009)), and presented several simple agnostic KWIK learning algorithms for finite
hypothesis classes with and without noise, and for deterministic linear hypothesis classes. In the
second part of the paper we showed that an agnostic KWIK-learner leads to an efficient reinforcement
learning, even when the environment is outside of the hypothesis class that the KWIK-learner uses.
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To our knowledge, this is the first result that proves any kind of efficiency for an RL algorithm
in the agnostic setting. Our bound also saves a factor of 1/(1 − γ) compared to previous bounds.
Unfortunately, our (limited) exploration of agnostic KWIK-learning indicated that efficient agnostic
KWIK-learning might be impossible for some of the most interesting (simple) hypothesis classes.
These negative results do not imply that efficient agnostic reinforcement learning is impossible, but
indicate that the problem itself requires further work.
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A Appendix: Proofs

A.1 Proofs for Section 3

Theorem 3.1 Let (X ,Y) be arbitrary sets, r = 2, ε = 0, D > 0, H a finite hypothesis class over
(X ,Y), G a deterministic problem class over (X ,Y) with ∆(G,H) ≤ D. Then, the Generic Agnostic
Learner is an agnostic (D, r, ε) KWIK-learner for (H,G) with KWIK-bound |H| − 1.

Proof: Suppose that the adversary chose problem G = (X ,Y, g, 0). Since ∆(G,H) ≤ D and H is
finite, there exists a function f∗ ∈ H such that ‖f∗ − g‖∞ = ∆(G,H) ≤ D. Consequently, f∗ will
be never excluded from F : for any x and y = g(x), ‖f∗(x)− y‖ ≤ D.

Let us now show that every time the learner makes a prediction, the prediction is 2D-accurate.
Indeed, if ŷ is the prediction of the learner, ‖ŷ − y‖ ≤ ‖ŷ − f∗(x)‖ + ‖f∗(x) − y‖. Now, by the
definition of ŷ and because f∗ is never excluded, ‖ŷ− f∗(x)‖ ≤ D. Further, by the choice of f∗ and
because y = g(x), we also have ‖f∗(x) − y‖ ≤ D, altogether showing that the prediction error is
upper bounded by 2D.

It remains to show that the learner cannot pass more than |H| − 1 times. This follows, because
after each pass, the learner excludes at least one hypothesis. To see why note that Y = ∅ means
that for every y′ ∈ Y there is some f ∈ F such that y′ 6∈ BD(f(x)). Specifically, this also holds for
y = g(x) and thus there is a function f ∈ F such that ‖f(x)− y‖ > D. By definition, this function
will be eliminated in the update. As the learner eliminates at least one hypothesis from F when
passing, and f∗ is never eliminated from F , the number of passes is at most |H| − 1.

Theorem 3.2 Fix any D > 0 and an infinite domain X . Then, there exists a finite response set
Y ⊂ R, a two-element hypothesis class H and a deterministic problem class G, both over (X ,Y),
that satisfy ∆(G,H) ≤ D such that there is no bounded agnostic (D, r, 0) KWIK-learner for (H,G)
with competitiveness factor 0 ≤ r < 2.

Proof: Fix D > 0. Let X be an infinite set, x1, x2, . . . be a sequence of distinct elements in X ,
Y = {−2D,−D, 0, D, 2D} and H be a two-element set containing f+D ≡ D and f−D ≡ −D. For
n ∈ N, define the functions

gn,±D(x) =

{
±2D, if x = xn ;

0, otherwise

and let G be the set of these functions. Clearly, ∆(G,H) = D. Before picking a hypothesis, the
adversary simulates its interaction with the learner. At step t of the simulation, the adversary asks
query xt. If the learner passes with probability 1, then A answers 0. Suppose now that there is
some t when the learner makes some prediction ŷt with probability p > 0. Without loss of generality
we may assume that P (ŷt ≥ 0) ≥ p/2. At this point, the adversary stops the simulation and picks
gt,−D. During the learning process, L passes to any xi with i < t and gets feedback 0. At time step
t, however, with probability p/2,

ŷt − gt,−D(xt) ≥ 0 + 2D,

so the learner fails. On the other hand, if the learner always passes then it is not bounded.

Theorem 3.3 Let Xmax > 0, X = [−Xmax, Xmax]d, Y = R, M,D, ε > 0, r = 2, H = Hlin(M).
Then, for any G deterministic problem class over (X ,Y) with ∆(G,H) ≤ D, it holds that the deter-
ministic linear agnostic learner is an agnostic (D, r, ε) KWIK-learner for (H,G) with the KWIK-

bound 2d!
(
MXmax

ε + 1
)d

.

Proof: First of all, we need to show that the calculations of the algorithm are meaningful. Specif-
ically, solutions y+ and y− to the linear programs need to be finite. This will hold because
Θ(C) is bounded and non-empty during any point of the learning. Boundedness holds because
Θ(C) ⊆ {θ : ‖θ‖∞ ≤ M}. We assumed that there is a hypothesis fθ∗ so that ‖fθ∗ − g∗‖∞ ≤ D,
and the KWIK protocol sends training samples (x, y) such that y = g∗(x). Therefore, D ≥
|fθ∗(x)− g∗(x)| = |(θ∗)Tx− y|, so θ∗ satisfies all constraints in C, making Θ(C) nonempty.

Secondly, the following calculation shows that if a prediction is made, it is correct:

ŷt − yt = y+
t /2 + y−t /2− g(xt)

≤ D + ε+ y−t /2 + y−t /2− g(xt)

= D + ε+ (y−t − f∗(xt)) + (f∗(xt)− g(xt))

≤ D + ε+ 0 +D ,
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and similarly,

ŷt − yt = y+
t /2 + y−t /2− g(xt)

≥ y+
t /2 + y+

t /2− (D + ε)− g(xt)

= −D − ε+ (y+
t − f∗(xt)) + (f∗(xt)− g(xt))

≥ −D − ε+ 0−D ,

so |ŷt − yt| ≤ 2D + ε, as required.

Finally, we prove the upper-bound on the number of ⊥s. Let X ′ def= [−Xmax−ε/M,Xmax +ε/M ]d

be a slightly increased version of X . Let Hk be the set of x ∈ X ′ for which the learner makes a
prediction, that is, y+(x)−y−(x) ≤ 2D(1+ε). The set Hk is convex, following from the convexity of
the constraints and the convexity of the max operator (and the concavity of min). If the adversary
asks some x 6∈ Hk, then x gets added to the known set, together with some of its neighborhood

B(x)
def
= {x′ ∈ X ′ : ‖x′ − x‖1 ≤ ε/M}. This follows from the calculation below: let x′ ∈ B(x), then

for any θ ∈ Θ(Ck+1),

θTx′ ≤ θTx+ ‖θ‖∞ ‖x
′ − x‖1 ≤ θTx+ ε , so

max
θ∈Θ(Ck+1)

θTx′ ≤ max
θ∈Θ(Ck+1)

θTx+ ε , that is,

y+(x′) ≤ y+(x) + ε .

With similar reasoning, y−(x′) ≥ y−(x) − ε. In step k + 1, the constraint y − D ≤ θTx ≤ y + D
was added for x, so y+(x)− y−(x) ≤ 2D. Consequently, y+(x′)− y−(x′) ≤ 2(D + ε), so the learner
knows x′.

The set Hk is convex, x 6∈ Hk, and B(x) is symmetric to x. So for any x′ ∈ B(x), at most one
of x′ and x + (x − x′) can be ∈ B(x), that is, at least half of the volume of B(x) is outside Hk.
Hk ∪B(x) ⊆ Hk+1, so Vol(Hk+1) ≥ Vol(Hk) + Vol(B(x))/2. The volume of B(x) is (2ε/M)d/d!, so

Vol(Hk) ≥ k (2ε/M)d

2d! . On the other hand, Hk ⊆ X ′, so Vol(Hk) ≤ (2Xmax + 2ε/M)d, which yields an
upper bound on k:

k ≤ 2d!

(
MXmax

ε
+ 1

)d
.

Theorem 3.4 Let X ,Y, D, r,H be as in Theorem 3.3. Then, there exists a problem class G that
satisfies ∆(G,H) ≤ D such that there is no bounded, agnostic (D, r, 0) KWIK-learner for (H,G).

Proof: For any learner L, we will construct a problem class G, a strategy for the adversary so that L
will either make a mistake larger than 2D with nonzero probability, or passes infinitely many times.
The construction will be similar to the previous one.

Without loss of generality, let X = [0, 2] and let Y = R with the absolute loss norm. Let
(x1, x2, . . .) be a strictly increasing sequence of numbers with 1 < xt < 2, t ∈ N. For convenience,
define x0 = 1. For n ∈ N, let

gn,±(x)
def
=

{
±D(1 + x

xn−1
) if x > xn−1 ,

0 if x ≤ xn−1

and let G be the set of these functions. For this set of problems, ∆(G,H) ≤ D: for any concept, there
exists a function f ∈ Hlin(M) that is at most at distance D from the chosen concept. Specifically,
for gn,+, fθ with θ = D/xn−1 is satisfactory:∥∥gn,+ − fD/xn−1

∥∥
∞ = max

{
max
x≤xn−1

|gn,+(x)− fD/xn−1
(x)|; max

x>xn−1

|gn,+(x)− fD/xn−1
(x)|

}
= max

{
max
x≤xn−1

|0− D

xn−1
x|; max

x>xn−1

|D(1 +
x

xn−1
)− D

xn−1
x|
}

= D .

We prove the statement by contradiction. Assume that there exists a bounded, agnostic learner for
the above problem. The adversary proceeds similarly to the adversary of Theorem 3.2: it finds out
the first index t where the learner would make a prediction with nonzero probability (provided that
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it receives feedback 0 only). Unless the learner passes infinitely many times, such a t exists. If the
first prediction is nonnegative with at least 1/2 chance, the adversary picks gt,−, otherwise it picks
gt,+. In the first case,

ŷt − gt,−(xt) ≥ 0 +D(1 +
xn
xn−1

) > 2D,

with nonzero probability, and similarly, ŷt − gt,−(xt) < −2D for the second case, showing that a
bounded learner will make a mistake larger than 2D with positive probability.

Theorem 3.5 Fix X ,Y, D,H, ε as in Theorem 3.3 and let r ≥ 2. Then, there exists some problem
class G so that any algorithm that agnostic (D, r, ε) KWIK learns (H,G) will pass at least 2d−1 times.

Proof: X = [−2, 2], Y = R with the absolute loss norm, fix some 1 > D > 0. The adversary asks the
2d−1 vertices of the hypercube {−1,+1}d that have positive first coordinates. It is easy to see that
the adversary can pick the values on the vertices independently, and if the learner predicts anything
with nonzero probability then the adversary can make the protocol fail. The proof is completely
analogous to the previous one.

A.2 Proofs for Section 4

The following lemma, which follows from an application of the Hoeffding-Azuma inequality and a
careful argumentation with “skipping processes”, will be our basic tool. The novelty of the lemma is
that we allow for the possibility of unbounded stopping times, otherwise the lemma would directly
follow from Theorem 2.3 in Chapter VII of Doob (1953) and the Hoeffding-Azuma inequality. (It is
very well possible that the lemma exists in the literature, however, we could not find it.)

Lemma A.1 Let F = (Ft)t≥1 be a filtration and let (εt, Zt)t≥1 be a sequence of {0, 1} × R-valued
random variables such that εt is Ft−1-measurable, Zt is Ft-measurable, E [Zt|Ft−1] = 0 and Zt ∈
[A,A+K] for some deterministic quantities A,K ∈ R. Let m > 0 and let τ = min{t ≥ 1 :

∑t
s=1 εs =

m}, where we take τ =∞ when
∑∞
s=1 εs < m. Then, for any 0 < δ ≤ 1, with probability 1− δ,
τ∑
t=1

εtZt ≤ K

√
m

2
log

(
1

δ

)
. (5)

Remark A.1 (Analysis of the sum in (5)) Let (Ω,A) be the probability space holding the ran-
dom variables and the filtration F , and let Sn =

∑n
t=1 εtZt (n = 0, 1, . . ., the empty sum being zero).

The sum S on the left-hand side of (5) is well-defined almost everywhere on Ω as it has at most m
terms no matter whether τ(ω) <∞ or τ(ω) =∞. It also holds true that the sum S is an integrable

random variable. To see why, consider S′∞
def
= limn→∞ Sτ∧n. We claim that the random variable

S′∞ is well-defined, integrable and S′∞ = S holds almost surely. First, notice that (Sτ∧n)n≥1 is a
martingale (this follows, e.g., from the Corollary on p.341 to Theorem 9.3.4 of Chung 2001). Next,
note that (Sτ∧n)n≥1 is L1-bounded (by the condition on Zt and because Sτ∧n has at most m terms,
we have E [|Sτ∧n|] ≤ m(|A|+K)) and therefore it is also uniformly integrable. Hence, Theorem 9.4.6
of Chung 2001 gives that S′∞ is a well-defined, integrable random variable. Finally, a simple case
analysis shows that S′∞ = S holds almost surely.

Proof: Let S′n = Sτ∧n, where Sn =
∑n
t=1 εtZt, n ≥ 0. Define N∞ = N ∪ {∞}. By Remark A.1,

S = S′∞ a.s., where S is the sum on the right-hand side of (5) and S′∞ = limn→∞ Sτ∧n, Theorem 9.4.6
of Chung 2001 mentioned in the remark not only gives that S′∞ is integrable, but it also gives that

(S′n,Fn)n∈N∞ is a martingale, i.e., S′∞ is a “closure” of (S′n,Fn)n∈N. Let τi = min{k ≥ 1 :
∑k
t=1 εt =

i}, i = 1, . . . ,m (as before, min ∅ =∞). Note that τm = τ and τi ≤ τi+1, i = 1, . . . ,m−1. Note that
just like Sτ , Sτi is also well-defined by Remark A.1. Consider the process (S′τi ,Fτi)i=1,...,m, where

S′τi(ω)
def
= S′τi(ω)(ω) and Fτi is the σ-algebra of pre-τi events. By the optional sampling theorem of

Doob (see, e.g., Theorem 9.3.5 of Chung 2001), (S′τi ,Fτi)i=1,...,m is a martingale. Let us now apply
the Hoeffding-Azuma inequality to this martingale. In order to be able to do this, we need to show
that the increments, Xi = S′τi+1

− S′τi lie in some bounded set for i = 0, . . . ,m− 1, where we define

S′0 = 0. When τi+1 = ∞, S′τi+1
= S′∞ = S. Now, if τi = ∞, we also have S′τi = S′∞ = S, while

if τi < ∞, we have S = Sτi = S′τi . Thus, in both cases, Xi = 0 ∈ [A,A + K] (that zero is in this
interval follows because (Zt) is a martingale increment). When τi+1 <∞, we also have τi <∞ and
thus S′τi+1

= Sτi+1
and also S′τi = Sτi and so S′τi+1

−S′τi = ετi+1
Zτi+1

and so Xi ∈ [A,A+K] by our
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assumption on (Zt). Thus, we have shown that Xi ∈ [A,A + K] almost surely. The application of
the Hoeffding-Azuma inequality to (S′τi ,Fτi)i=1,...,m gives then the desired result.

Remark A.2 Note that the proof does not carry through for the case when we replace the as-
sumption on the range of Zt by the assumptions that |Zt| ≤ B a.s. and Zt ∈ [At, At + K]
for some At, Ft−1-measurable random variable and a deterministic constant K > 0. The prob-
lem is twofold: (Aτi)i=1,...,m might not be well-defined and even if it is, all we can say is that
ετi+1

Zτi+1
∈ [Aτi+1

, Aτi+1
+K], but Aτi+1

is not necessarily Fτi-measurable.

In the proof of Theorem 4.1 we will need the one-dimensional version of Helly’s theorem, which
we nevertheless state for the d-dimensional Euclidean spaces:

Theorem A.2 (Helly’s Theorem) Let d,N ∈ N, N > d, C1, . . . , CN ⊆ Rd be convex subsets of
Rd. If the intersection of any d+ 1 of these sets is nonempty, then ∩Ni=1Ci 6= ∅.

With these preparations, we are ready to prove Theorem 4.1.

Theorem 4.1 Let H be a finite hypothesis class over (X ,R), D, ε > 0, 0 ≤ δ ≤ 1, r = 2. Then,
for any G problem class such that the noise in the responses lies in [−K,K] and ∆(G,H) ≤ D it
holds that the pairwise elimination based agnostic learner is an agnostic (D, r, ε, δ) KWIK-learner

for (H,G) with KWIK-bound ((d 2K2

ε2 log 2(N−1)
δ e − 1)N + 1)(N − 1) = O

(
K2N2

ε2 log N
δ

)
.

Proof: Fix H, G, D, ε, δ as in the theorem statement. Let g∗ : X → R be the function underlying
the problem chosen by the adversary. Let i∗ be the index of a function fi ∈ H that satisfies
‖fi∗ − g∗‖∞ ≤ D. By our assumption on G and H, i∗ is well-defined.

Let E be the (error) event when i∗ is eliminated by the algorithm. We will show that P (E) ≤ δ
as from this, the rest follows easily: Indeed, on the complementer of E, i.e., on Ec, by the definition
of predict, the algorithm makes 2D + ε-accurate predictions since if for some input x ∈ X , Y =⋂
i∈I BD+ε(fi(x)) 6= ∅ then for any ŷ ∈ Y , |ŷ − fi∗(x)| ≤ D + ε (since i∗ ∈ I) and thus

|ŷ − g(x)| ≤ |ŷ − fi∗(x)|+ |fi∗(x)− g(x)| ≤ 2D + ε .

Also, every time the algorithm passes, at least one of the counters ni,j is incremented. Indeed, if
upon receiving input x the algorithm did not pass then

⋂
i∈I BD+ε(fi(x)) = ∅. Therefore, |I| > 1

and it follows from Helly’s theorem (Theorem A.2) that there exists two distinct indices i, j ∈ I such
that BD+ε(fi(x)) ∩ BD+ε(fj(x)) = ∅. For this pair (i, j), either ni,j or nj,i is incremented. When
some counter ni,j reaches the value m, at least one of i and j is excluded. Therefore, there can
be at most (m − 1)N(N − 1) calls to learn with no exclusions. Further, there can only be N − 1
exclusions (since on Ec the index i∗ does not get excluded). Thus, on Ec, there can be no more
than (m− 1)N(N − 1) + (N − 1) calls to learn. Plugging in the value of m gives the KWIK-bound.

Thus, it remains to show that the probability of E is small, i.e., that P (E) ≤ δ. To prove
this we need some more notation. Let G = (X ,Y, g∗, Z) be the problem and let (xt)t≥1 be the
sequence of covariates (xt ∈ X ) chosen by the adversary. To simplify the presentation, we introduce
for each t ≥ 1 a response, yt = g(xt) + zt. Let Ft = σ(x1, y1, . . . , xt, yt). By assumption, the
noise satisfies zt ∼ Z(xt) and, in particular, zt lies in [−K,K], and E [zt|Ft−1, xt] = 0. Let πt be
the indicator of whether the learner has passed when presented with the input xt: πt = 1 if the
learner passed (and thus yt is available for learning) and πt = 0, otherwise. For i, j ∈ {1, . . . , N},
t ≥ 1 let ε

(i,j)
t = I{fi(xt)�fj(xt)} and let τ (i,j) = min{n ≥ 1 :

∑n
t=1 πtε

(i,j)
t = m} be the time when

the counter ni,j reaches m and thus either i or j gets eliminated by the algorithm (if it was not

eliminated before). Here we let τ (i,j) = ∞ when
∑∞
t=1 πtε

(i,j)
t < m. Note that i∗ gets eliminated

only if one of τ (i∗,j) or τ (j,i∗) is finite for some j 6= i∗, 1 ≤ j ≤ N . Thus,

E =
⋃∗
j 6=i∗(E ∩ {τ (i∗,j) <∞}) ∪∗

⋃∗
j 6=i∗(E ∩ {τ (j,i∗) <∞}) . (6)

We show that for j 6= i∗, both E∩{τ (i∗,j) <∞} and E∩{τ (j,i∗) <∞} happen with small probability.
Fix j 6= i∗ and consider E ∩ {τ (i∗,j) < ∞}. To simplify the notation introduce τ = τ (i∗,j)

and εt = ε
(i∗,j)
t . Let F be the event F = {

∑τ
t=1 πtεt(fi∗(xt) + fj(xt)) < 2

∑τ
t=1 πtεtyt}. Then

E ∩ {τ (i∗,j) < ∞} = E ∩ {τ < ∞} ⊂ F ∩ {τ < ∞} holds because by the definition of the learn
procedure, if i∗ gets eliminated at time τ due to ni∗,j reaching m then it must hold that

τ∑
t=1

πtεt(fi∗(xt) + fj(xt)) < 2

τ∑
t=1

πtεtyt. (7)
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Define G = {
∑τ
t=1 πtεtzt > K

√
2m log(2(N − 1)/δ)}. We claim that

F ∩ {τ <∞} ⊂ G ∩ {τ <∞} . (8)

To prove this, assume that (7) holds and τ <∞. Then,

τ∑
t=1

πtεtzt =

τ∑
t=1

πtεt(yt − g∗(xt))

>

τ∑
t=1

πtεt

{
fi∗(xt) + fj(xt)

2
− g∗(xt)

}
(because of (7))

≥
τ∑
t=1

πtεt {fi∗(xt) + (D + ε)− g∗(xt)} (definition of εt = ε
(i∗,j)
t )

≥

{
τ∑
t=1

πtεt

}
ε (because fi∗(xt) ≥ g∗(xt)−D)

= mε (definition of τ and τ <∞)

≥ K

√
2m log

(
2(N − 1)

δ

)
(definition of m) ,

finishing the proof of (8). By Lemma A.1, P (G) ≤ δ/(2(N − 1)) and thus we also have

P
(
E ∩ {τ (i∗,j) <∞}

)
≤ δ

2(N − 1)
.

With an entirely similar argument we can show that P
(
E ∩ {τ (j,i∗) <∞}

)
≤ δ/(2(N − 1)) holds,

too. Therefore, by the decomposition (6), P (E) ≤ δ, finishing the proof.

B Proofs for Section 5

Before turning to the proof of Lemma 5.3, we state Freedman’s version of Bernstein’s inequality
(see, Freedman 1975, Theorem 1.6).

Theorem B.1 Let F = (Fk)k≥0 be a filtration and consider a sequence of F-adapted random
variables (Xk)k≥1. Assume that E [Xk|Fk−1] ≤ 0 and Xk ≤ R a.s. for k = 1, 2, 3, . . .. Let the kth

partial sum of (Xk)k≥1 be Sk and let V 2
k be the total conditional variance up to time k: Sk =

∑k
i=1Xi,

V 2
k =

∑k
i=1 Var

[
X2
i |Fi−1

]
. Let τ be a (not necessarily finite) stopping time w.r.t. F . Then, for all

t ≥ 0, v ∈ R,

P
(
Sτ ≥ t, V 2

τ ≤ v2 and τ <∞
)
≤ exp

{
− t2/2

v2 +Rt/3

}
.

In the literature the above theorem is sometimes stated for finite stopping times only (or for the
specific case when τ = k for some k). In fact, inequality 1.5(a) in Freedman’s paper, from which the
above theorem follows, is presented for finite stopping times only. However, the form of Theorem 1.6
of Freedman (1975) is actually equivalent to Theorem B.1. The next result follows from Theorem B.1
by a simple “inversion” argument and is given here because it will suit our needs better:

Corollary B.2 Let F , (Xk)k≥1, (Sk)k≥1, (V 2
k )k≥1, R and τ be as in Theorem B.1. Then, for any

v ∈ R, 0 < δ ≤ 1, it holds that

P

(
Sτ ≥

√
2v2 ln

(
1

δ

)
+

2R

3
ln

(
1

δ

)
, V 2

τ ≤ v2 and τ <∞

)
≤ δ .

Let us now turn to the proof of Lemma 5.3:

Lemma 5.3 Let 0 < ε < 1, m ∈ N be deterministic constants, (Ft)t≥1 be some filtration and let
(At)t≥1 be an (Ft+1)t≥1-adapted sequence of indicator variables. Let

at = E [At|Ft]
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and let G be an event such that on G the inequality
∑∞
t=1At ≤ m holds almost surely. Then, for

any 0 < δ ≤ 1 with probability 1− δ, either Gc holds, or
∞∑
t=1

I{at≥ε} ≤
1

ε

{
m+

√
2m log

(
1
δ

)
+ 3
√

log
(

1
δ

)
+ 6 log

(
1
δ

)}
.

It is interesting to compare the result of this lemma to what happens when (at)t≥1 is a determin-
istic sequence, and At is Bernoulli with parameter at, independently chosen of all the other random
variables. Clearly, in this case if

∑
tAt ≤ m holds almost surely, we will also have

∑∞
t=1 at ≤ m.

In contrast to this, in the sequential setting of the above lemma there exists (At, at) satisfying the
conditions of the lemma such that for any B > 0, with positive probability,

∑∞
t=1 at > B (note that

in both cases, E [
∑∞
t=1 at] = E [

∑∞
t=1At]). Since

∑
t at ≥

∑
t I{at≥ε}at ≥ ε

∑
t I{at≥ε}, in the setting

of independent Bernoulli trials, we get that almost surely,
∑
t I{at≥ε} ≤

1
ε

∑
tAt ≤ m/ε. Thus, we

see that the dependent and independent cases are quite different and the above lemma can be seen
as quantifying the price of choosing at in a sequential manner.
Proof: Define Sn =

∑n
t=1(at −At), sn =

∑n
t=1 at, V

2
n =

∑n
t=1 Var [at −At|Ft] =

∑n
t=1 at(1− at),

ŝn =
∑n
t=1 I{at≥ε}, for n = 1, 2, . . . ,∞. Note that V 2

n ≤ sn holds for any n and V 2
n is the total

conditional variance associated with the martingale (Sn,Fn+1)n≥0 (the empty sum is defined to be
zero).

Fix 0 < δ ≤ 1. Let f = f(m, δ) be a real number to be chosen later. We will define this number
such that on some event Fδ, whose probability is at least 1− δ, we will have that

s∞ ≥ f implies that

∞∑
t=1

At > m . (9)

Once we prove this, it follows by our assumption on
∑∞
t=1At that on Fδ ∩G, we must have s∞ < f .

Now, using I{at≥ε}ε ≤ I{at≥ε}at, we get that εŝn ≤
∑n
t=1 I{at≥ε}at ≤ sn. Therefore, on Fδ ∩ G,

ŝ∞ ≤ ε−1s∞ ≤ ε−1f . Plugging in the value of f will then finish the proof.
The event Fδ is chosen as follows: Let τ be the first index n when sn ≥ f holds and let τ = ∞

when there is no such index. Using Corollary B.2, we get that the probability of the event

E =

{
Sτ ≥

√
2(f + 1) log

(
1
δ

)
+ 2

3 log
(

1
δ

)
, V 2

τ ≤ f + 1 , τ <∞
}

is at most δ: P (E) ≤ δ. Note that V 2
τ ≤ sτ ≤ f+1 holds almost surely, where the last inequality fol-

lows from the definition of τ and because at ∈ [0, 1]. Therefore, the second condition can be dropped

in the definition of E without changing it: E =
{
Sτ ≥

√
2(f + 1) log

(
1
δ

)
+ 2

3 log
(

1
δ

)
, τ <∞

}
. Take

Fδ = Ec. Thus, P (Fδ) ≥ 1− δ and on Fδ, we have

Sτ <
√

2(f + 1) log
(

1
δ

)
+ 2

3 log
(

1
δ

)
or τ =∞

which is equivalent to
τ∑
t=1

At > sτ −
√

2(f + 1) log
(

1
δ

)
− 2

3 log
(

1
δ

)
or τ =∞ . (10)

Let us now show that on Fδ, (9) holds. Consider an outcome ω ∈ Fδ and assume that we also
have s∞(ω) ≥ f (to avoid clutter, we suppress ω in what follows). Because of s∞ ≥ f , it follows
that τ <∞ and sτ ≥ f . Therefore, from (10) and from

∑τ
t=1At ≤

∑∞
t=1At, we get that

∞∑
t=1

At > (f + 1)−
√

2(f + 1) log
(

1
δ

)
− 2

3 log
(

1
δ

)
− 1 . (11)

Now, define f = f(m, δ) to be a number such that

(f + 1)−
√

2(f + 1) log
(

1
δ

)
− 2

3 log
(

1
δ

)
− 1 ≥ m. (12)

Such a number exists because the left hand side, as a function of f , is unbounded. In fact, a simple
calculation shows that, with the definitions c =

√
2 log(1/δ) and L = 2/3 log(1/δ) + 1, choosing f

so that (f + 1)1/2 is larger than (c +
√
c+ 4(m+ L))/2 makes (12) hold true. Some calculation

shows that f ≤ m+
√

2m log(1/δ) + 3
√

log(1/δ) + 6 log(1/δ). Chaining the inequality (11) with the
inequality (12), we get that on Fδ, (9) indeed holds, thus, finishing the proof.
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Claim 5.4 We have V π̃tM (st;L) ≥ V πt
M̄t

(st;L)− 2Vmaxpt, with probability one.

Proof: Let Z = (S × A)L be the space of trajectories of length L which is viewed as a measurable
space with the product σ-algebra (for S, A finite, this is just the discrete σ-algebra). Let π◦t be an
arbitrary Ft-measurable policy, Mt = (S,A, PMt

, RMt
) be an MDP, where PMt

and RMt
are Ft-

measurable. Let Ft,Mt,π◦t
be the measure induced by Mt and π◦t on the space of L-step trajectories

Z, and the initial state distribution that is concentrated at the single state st (i.e., the initial state
distribution used in the definition of Ft,Mt,π◦t

is the Dirac-measure δst(·)). Note that Ft,Mt,π◦t
is a

random measure, which is itself Ft-measurable. Let RMt
: Z → R be the mapping that assigns

Mt-returns to the trajectories in Z:

RMt(s0, a0, . . . , sL−1, aL−1) =

L−1∑
i=0

γiRMt(si, ai) . (13)

Now, consider the measures Ft,M,π̃t and Ft,M̄t,π̃t (these are Ft-measurable thanks to condi-
tion (b)). An important property of these measures is that they agree when restricted to ZKt :

Ft,M,π̃t|ZKt = Ft,M̄t,π̃t|ZKt . (14)

This property will play a crucial role in proving the desired inequality. Two further identities that
we will need are the following: Let ZKt = KL

t be the set of L-step trajectories that stay within Kt.
Then, we have

pt =

∫
I{z 6∈ZKt}dFt,M,π̃t(z) (15)

=

∫
I{z 6∈ZKt}dFt,M,πt(z) . (16)

Clearly, these two equations are equivalent to the following ones:

1− pt =

∫
I{z∈ZKt}dFt,M,π̃t(z) (17)

=

∫
I{z∈ZKt}dFt,M,πt(z) . (18)

Therefore, it will suffice to prove that these latter equations hold true.

To show (17), first notice that 1− pt = E
[
I{Ect }|Ft

]
and I{Ect } =

∏L−1
i=0 I{(st+i,at+i)∈Kt}. There-

fore, E
[
I{Ect }|Ft

]
=
∫
I{z∈ZKt}dFt,M,π̃t(z), which shows that (17) indeed holds.

Let us now turn to the proof of (18). By (14),
∫
I{z∈ZKt}dFt,M,π̃t(z) =

∫
I{z∈ZKt}dFt,M̄t,π̃t(z).

Thanks to condition (g), along those trajectories that stay in Kt, the policy followed does not change.
This implies that

dFt,M̄t,π̃t|ZKt = dFt,M̄t,πt|ZKt . (19)

Therefore, we also have
∫
I{z∈ZKt}dFt,M̄t,π̃t(z) =

∫
I{z∈ZKt}dFt,M̄t,πt(z), finishing the proof of (18).

Let us continue with the lower bound on V π̃t(st;L). Then, V π̃tM (st;L) =
∫
RM (z)dFt,M,π̃t(z),

where RM (z) is the return assigned by model M to trajectory z ∈ Z (cf. (13)). Now, break
the integral into two parts using the decomposition Z = ZKt ∪∗ ZcKt . For the integral over

ZcKt use that |RM (z)| ≤ Vmax (which holds by condition (a)) and then (15) to get V π̃tM (st;L) ≥∫
ZKt
RM (z)dFt,M,π̃t(z)− Vmaxpt. By (14) and (19),∫
ZKt

RM (z)dFt,M,π̃t(z) =

∫
ZKt

RM̄t
(z)dFt,M̄t,πt(z) = V πt

M̄t
(st;L)−

∫
ZcKt

RM̄t
(z)dFt,M̄t,πt(z) .

Using again RM̄t
(z) ≤ Vmax (which follows from condition (a)) and then (16) and chaining the

previous equalities and inequalities, we get V π̃tM (st;L) ≥ V πt
M̄t

(st;L)−2ptVmax, which is the inequality

that was to be proven.

We need some preparations before we give the proof of Claim 5.5. The next lemma also follows
from a simple contraction argument (the proof is omitted). The lemma uses the partial ordering
of functions: f1 ≤ f2 if f1(x) ≤ f2(x) holds for all x ∈ Dom(f1) = Dom(f2). Also, an operator is
isotone if it preserves the ordering of its arguments.
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Lemma B.3 (Comparison Lemma) Let B be a Banach-space of real-valued functions over some
domain D. Let T1, T2 : B → B be contractions and let f∗1 , f

∗
2 ∈ B be their respective (unique)

fixed-points. Assume that T1 is isotone. Then, if T1f
∗
2 ≤ T2f

∗
2 = f∗2 then f∗1 ≤ f∗2 .

In the proof below, we also need the concept of Bellman operators. Let M = (S,A, P,R) be an MDP
and let π be a stationary policy over (S,A). The Bellman operator TπM : RS×A → RS×A underlying
M and π is defined by

(TπMQ)(s, a) = R(s, a) + γ

∫
Q(s′, a) dπ(a|s′)dP (s′|s, a), (s, a) ∈ S ×A .

As it is well known, TπM is a contraction with respect to the maximum norm and if QπM denotes the
unique fixed point of TπM ,

∫
QπM (s, a)dπ(a|s) = V πM (s) holds for all s ∈ S (in fact, QπM (s, a) is the

so-called action-value function underlying π, i.e., QπM (s, a) is the expected total discounted return if
the decision process is started at state s, the first action is a and the subsequent actions are chosen
by π).

Claim 5.5 On G, it holds that V π
∗

M̂t
(st) ≥ V π

∗

M̃t
(st).

Proof: Instead of the claimed inequality, we prove the stronger inequalityQπ
∗

M̂t
≥ Qπ∗

M̃t
. To prove this,

we apply the Comparison Lemma (Lemma B.3). Choose B as the Banach-space of bounded, real-
valued functions over S ×A with the supremum norm ‖·‖∞, and consider two operators Tπ

∗

M̂t
, Tπ

∗

M̃t
:

B → B. Operator Tπ
∗

M̂t
is the policy evaluation operator corresponding to π∗ on M̂t: T

π∗

M̂t
Q(s, a) =

RM̂t
(s, a)+γ

∫
Q(s′, a) dπ∗(a|s′)dPM̂t

(s′|s, a), while Tπ
∗

M̃t
is the Vmax-truncated policy evaluation op-

erator corresponding to π∗ on M̂t: T
π∗

M̂t
Q(s, a) = Π

[
RM̃t

(s, a) + γ
∫
Q(s′, a) dπ(a|s′)dPM̃t

(s′|s, a)
]
,

where Π : R→ R is the projection to [−Vmax, Vmax], i.e., Π(x) = max(min(x, Vmax),−Vmax). Clearly,
Qπ
∗

M̂t
is the fixed point of Qπ

∗

M̂t
, while Qπ

∗

M̃t
is the fixed point of Qπ

∗

M̃t
, the latter of which follows be-

cause
∥∥∥Qπ∗

M̃t

∥∥∥
∞
≤ Vmax, thanks to condition (a). It is also clear that both operators are contractions.

Take any (s, a) ∈ S × A. We claim that Tπ
∗

M̂t
Qπ
∗

M̂t
(s, a) ≥ Tπ

∗

M̃t
Qπ
∗

M̂t
(s, a). Let us first show that this

inequality holds when (s, a) ∈ Kt. In this case, |Tπ∗
M̃t
Qπ
∗

M̂t
(s, a)| ≤ |rM̃t

(s, a)| + γVmax ≤ Vmax,

because, by construction rM̃t
(s, a) = rM̂t

(s, a) and by condition (a) |rM̂t
(s, a)| ≤ (1 − γ)Vmax.

Therefore, the projection has no effect. Using that on the set Kt the models M̂t and M̃t coincide,
we get that Tπ

∗

M̂t
Qπ
∗

M̂t
(s, a) = Tπ

∗

M̃t
Qπ
∗

M̂t
(s, a). Now, consider the case when (s, a) 6∈ Kt. In this case,

Tπ
∗

M̂t
Qπ
∗

M̂t
(s, a) = Qπ

∗

M̂t
(s, a) ≥ Vmax ≥ Tπ

∗

M̃t
Qπ
∗

M̂t
(s, a), where the first inequality follows from condi-

tion (f), while the second follows because Tπ
∗

M̃t
Q(s, a) is restricted to the interval [−Vmax, Vmax]. This

finishes the verification of the conditions of the Comparison Lemma. Therefore, the lemma gives
that Qπ

∗

M̂t
≥ Qπ∗

M̃t
, which is the inequality that we wished to prove.

Theorem 5.6 Fix a state space S and an action space A, which are assumed to be non-empty
Borel spaces. Let X ,Y be as described above, H be an MDP hypothesis set, G be a set of MDP
problem instances, both over X ,Y. Assume that ∆(G,H) ≤ D. Assume that Vmax > 0 is such
that (1 − γ)Vmax is an upper bound on the immediate rewards of the MDPs determined by mem-
bers of H and G. Fix ε > 0, r ≥ 1, 0 < δ ≤ 1/2. Assume that MDPLearner is an agnostic
(D, r, ε) KWIK-learner for (H,G) with KWIK-bound B(δ). Assume further that we are given a
Planner which is eplanner-accurate. Consider the instance of the KWIK-Rmax algorithm which

uses MDPLearner and Planner, interacting with some MDP M from G. Let ε′ = 5(rD+ε)
1−γ +

eplanner. Then, with probability 1 − 2δ, the number of ε′-mistakes, NM,ε′ , made by KWIK-Rmax

is bounded by 2Vmax(1−γ)L
rD+ε

{
B(δ) + (

√
2B(δ) + 3)

√
log
(
L
δ

)
+ 6 log

(
L
δ

)}
, where L = max(1, d(1 −

γ)−1 log(Vmax(1− γ)/(rD + ε))e).

Proof: We apply Theorem 5.1 to the agent KWIK-Rmax that uses MDPLearner and Planner. Fix
0 < δ ≤ 1. The event G is constructed as follows: MDPLearner interacts with an “environment”
according to the KWIK protocol. Consider the event on which it holds that the number of timesteps
when MDPLearner passes is bounded by B(δ), while the learner’s prediction errors (on the same
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event) is always below rD + ε. By assumption, this event has probability at least 1 − δ. Call
this event G. Now, the sequence (Kt)t≥1 is simply determined as follows. Let gt : S × A →
Y ∪ {⊥} be the function underlying the predictions made by MDPLearner in step t. Then, Kt =
{(s, a) ∈ S × A : gt(s, a) 6=⊥}. Further, let Mt be the model returned by the optimistic wrapper
and let the policy πt be the policy that Planner would “compute” at time t (i.e., πt(·|s) is the
distribution of actions returned by Planner if state s is fed to it). Let us verify the conditions of
Theorem 5.1. The bound on the expected immediate rewards (condition (a)) holds by assumption,
just like the measurability condition (b) and that the action selected at time t is sampled from
πt(·|st) (condition (c)). The condition on the accuracy of the planner (condition (d)) was assumed
as a condition of this theorem. The accuracy condition (e) holds with emodel = rD + ε on G by the
choice of G, while the optimism condition (f) is met because of the use of the optimistic wrapper
(in fact, because of this wrapper, Qπ

M̂t
(s, a) = Vmax holds for any (s, a) 6∈ Kt). Also, condition (g) is

met because the learn method of MDPLearner is not called when (st, at) ∈ Kt, hence in that case
gt+1 = gt and thus πt+1 = πt. Finally, on G, B = B(δ) bounds the number of times (st, at) 6∈ Kt

happens. Therefore, by the conclusion of Theorem 5.1, with probability at least 1−2δ, the number of

5emodel/(1− γ) + eplan-mistakes is bounded by 2Vmax(1−γ)L
emodel

{
B + (

√
2B + 3)

√
log
(
L
δ

)
+ 6 log

(
L
δ

)}
,

where L = max(1, d(1− γ)−1 log(Vmax(1− γ)/emodel)e). Plugging in the value emodel = rD+ ε gives
the final bound.
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