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Abstract

We consider the problem of online linear regression on arbitrary deterministic sequences
when the ambient dimension d can be much larger than the number of time rounds T . We
introduce the notion of sparsity regret bound, which is a deterministic online counterpart of
recent risk bounds derived in the stochastic setting under a sparsity scenario. We prove such
regret bounds for an online-learning algorithm called SeqSEW and based on exponential
weighting and data-driven truncation. In a second part we apply a parameter-free version
of this algorithm on i.i.d. data and derive risk bounds of the same flavor as in Dalalyan
and Tsybakov (2008, 2011) but which solve two questions left open therein. In particular
our risk bounds are adaptive (up to a logarithmic factor) to the unknown variance of the
noise if the latter is Gaussian.

1 Introduction

We consider the problem of online linear regression on arbitrary deterministic sequences. A forecaster
has to predict in a sequential fashion the values yt ∈ R of an unknown sequence of observations given
some input data xt ∈ X and some base forecasters ϕj : X → R, 1 6 j 6 d, on the basis of which he
outputs a prediction ŷt ∈ R. The quality of the predictions is assessed by the square loss. The goal

of the forecaster is to predict almost as well as the best linear forecaster u · ϕ ,
∑d
j=1 ujϕj , where

u ∈ Rd, i.e., to satisfy, uniformly over all individual sequences (xt, yt)16t6T , a regret bound of the
form

T∑
t=1

(
yt − ŷt

)2
6 inf

u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ ∆T,d(u)

}
,

for some regret term ∆T,d(u) that should be as small as possible and, in particular, sublinear in T .
In this setting the variant of the sequential Ridge regression forecaster studied by Azoury and

Warmuth (2001) and Vovk (2001) has a regret of order at most d lnT . When the ambient dimension
d is much larger than the number of time rounds T , the latter regret bound may unfortunately be
larger than T and is thus somehow trivial. Since the regret bound d lnT is optimal in a certain
sense (see Vovk 2001, Theorem 2), additional assumptions are needed to get interesting theoretical
guarantees.

A natural assumption, which has already been extensively studied in the stochastic setting, is
that there is a sparse linear combination u∗ (i.e., with s� T/(lnT ) non-zero coefficients) which has

a small cumulative square loss. If the forecaster knew in advance the support J(u∗) , {j : u∗j 6= 0}
of u∗, he could apply the same forecaster as above but only to the s-dimensional linear subspace{
u ∈ Rd : ∀j /∈ J(u∗), uj = 0

}
. The regret bound of this “oracle” would be roughly of order s lnT

and thus sublinear in T . Under this sparsity scenario, a sublinear regret thus seems possible, though,
of course, the aforementioned regret bound s lnT can only be used as an ideal benchmark (since the
support of u∗ is unknown).

In this paper, we prove that a regret bound proportional to s is achievable (up to logarithmic
factors). In Corollary 1 and its refinements (Proposition 2 combined with Remark 2, and Theorem 4)

∗This research was carried out within the INRIA project CLASSIC hosted by École Normale Supérieure
and CNRS.



we indeed derive regret bounds of the form

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+
(
‖u‖0 + 1

)
gT,d

(
‖u‖1 , ‖ϕ‖∞

)}
, (1)

where ‖u‖0 denotes the number of non-zero coordinates of u and where g is increasing but grows

at most logarithmically in T , d, ‖u‖1 ,
∑d
j=1 |uj |, and ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)|. We call

regret bounds of the above form sparsity regret bounds.

This work is in connection with several papers that appeared at previous COLT conferences,
either in the stochastic setting (Bunea et al., 2006; Dalalyan and Tsybakov, 2007, 2009) or in online
convex optimization (Duchi et al., 2010). Next we discuss these papers and some related references.

Related works in the stochastic setting

The above regret bound (1) can be seen as a deterministic online counterpart of the so-called sparsity
oracle inequalities introduced in the stochastic setting in the past decade. The latter are risk bounds
expressed in terms of the number of non-zero coefficients of the oracle vector. Such inequalities were
introduced by Bunea et al. (2004, 2006) for the regression model with random design. The same
authors prove similar results for the case of a fixed design in Bunea et al. (2007) through general
model selection arguments of Birgé and Massart (2001). As we do not have the space to thoroughly
review the extensive literature related to sparsity oracle inequalities, we refer the reader to the full
version of this paper (Gerchinovitz, 2011) for further references.

We only mention that, recently, sparsity oracle inequalities with leading constant equal to 1
have been proved for procedures based on exponential weighting; see Dalalyan and Tsybakov (2007)
and the other references given in Gerchinovitz (2011). These papers show that a trade-off can
be reached between strong theoretical guarantees (as with `0-regularization) and computational
efficiency (as with `1-regularization). They indeed propose aggregation algorithms which satisfy
sparsity oracle inequalities under almost no assumption on the base forecasters (ϕj)j , and which
can be approximated numerically at a reasonable computational cost for large values of the ambient
dimension d.

Our online-learning algorithm SeqSEW is inspired from Dalalyan and Tsybakov (2008, 2011).
Following the same lines as in Dalalyan and Tsybakov (2009), it is possible to slightly adapt its
statement to make it computationally tractable by means of Langevin Monte-Carlo approximation
while not affecting its statistical properties. The technical details are however omitted in this paper,
which only focuses on the theoretical guarantees of the algorithm SeqSEW.

Previous works on sparsity in the framework of individual sequences

To the best of our knowledge, Corollary 1 and its refinements (Proposition 2 combined with Re-
mark 2, and Theorem 4) provide the first examples of sparsity regret bounds in the sense of (1).
To comment on the optimality of such regret bounds and compare them to related results in the
framework of individual sequences, note that (1) can be rewritten in the equivalent form:

For all s ∈ N and all U > 0,

T∑
t=1

(yt − ŷt)2 − inf
‖u‖06s
‖u‖16U

T∑
t=1

(
yt − u ·ϕ(xt)

)2
6
(
s+ 1

)
gT,d

(
U, ‖ϕ‖∞

)
,

where g grows at most logarithmically in T , d, U , and ‖ϕ‖∞. When s � T , this upper bound
matches (up to logarithmic factors) the lower bound of order s lnT that follows in a straightforward
manner from Vovk (2001, Theorem 2) or Cesa-Bianchi and Lugosi (2006, Chapter 11). Indeed, if
s� T , X = Rd, and ϕj(x) = xj , then for any forecaster, there is an individual sequence (xt, yt)16t6T

such that the regret of this forecaster on
{
u ∈ Rd : ‖u‖0 6 s and ‖u‖1 6 d

}
is bounded from below

by a quantity of order s lnT . Therefore, up to logarithmic factors, any algorithm satisfying a sparsity
regret bound of the form (1) is minimax optimal on intersections of `0-balls (of radii s � T ) and
`1-balls. This is in particular the case for our algorithm SeqSEW, but this contrasts with related
works discussed below.

Recent works in the field of online convex optimization addressed the sparsity issue in the online
deterministic setting, but from a quite different angle. They focus on algorithms which output
sparse linear combinations, while we are interested in algorithms whose regret is small under a
sparsity scenario, i.e., on `0-balls of small radii. See, e.g., Langford et al. (2009); Shalev-Shwartz

2



and Tewari (2009); Xiao (2010); Duchi et al. (2010) and the references therein. All these articles
focus on convex regularization. In the particular case of `1-regularization under the square loss, the
aforementioned works propose algorithms which predict as a sparse linear combination ŷt = ût ·ϕ(xt)
of the base forecasts (i.e., ‖ût‖0 is small), while no such guarantee can be proved for our algorithm
SeqSEW. However they prove bounds on the `1-regularized regret of the form

T∑
t=1

(
(yt − ût · xt)2 + λ ‖ût‖1

)
6 inf

u∈Rd

{
T∑
t=1

(
(yt − u · xt)2 + λ ‖u‖1

)
+ ∆̃T,d(u)

}
, (2)

for some regret term ∆̃T,d(u) which is suboptimal on intersections of `0- and `1-balls as explained
below. The truncated gradient algorithm of Langford et al. (2009, Corollary 4.1) satisfies1 such a

regret bound with ∆̃T,d(u) at least of order ‖ϕ‖∞
√
dT when the base forecasts ϕj(xt) are dense in

the sense that max16t6T
∑d
j=1 ϕ

2
j (xt) ≈ d ‖ϕ‖2∞. This regret bound grows as a power of and not

logarithmically in d as is expected for sparsity regret bounds (recall that we are interested in the
case when d� T ).

The three other papers mentioned above do prove (some) regret bounds with a logarithmic de-
pendence in d, but these bounds do not have the dependence in ‖u‖1 and T we are looking for. For
p − 1 ≈ 1/(ln d), the p-norm RDA method of Xiao (2010) and the algorithm SMIDAS of Shalev-
Shwartz and Tewari (2009) – the latter being a particular case of the algorithm COMID of Duchi
et al. (2010) specialized to the p-norm divergence – satisfy regret bounds of the above form (2) with

∆̃T,d(u) ≈ µ ‖u‖1
√
T ln d, for some gradient-based constant µ. Therefore, in all three cases, the

function ∆̃ grows at least linearly in ‖u‖1 and as
√
T . This is in contrast with the logarithmic

dependence in ‖u‖1 and the fast rate O(lnT ) we are looking for and prove, e.g., in Corollary 1.

Note that the suboptimality of the aforementioned algorithms is specific to the goal we are
pursuing, i.e., prediction on `0-balls (intersected with `1-balls). On the contrary the rate ‖u‖1

√
T ln d

is more suited and actually optimal for learning on `1-balls (see Raskutti et al. 2009). Moreover,
the predictions output by our algorithm SeqSEW are not necessarily sparse linear combinations of
the base forecasts. A question left open is thus whether it is possible to design an algorithm which
both ouputs sparse linear combinations (which is statistically useful and sometimes essential for
computational issues) and satisfies a sparsity regret bound of the form (1).

PAC-Bayesian analysis in the framework of individual sequences

To derive our sparsity regret bounds, we follow a PAC-Bayesian approach combined with the choice
of a sparsity-favoring prior. We do not have the space to review the PAC-Bayesian literature in
the stochastic setting and only refer the reader to Catoni (2004) for a thorough introduction to
the subject. As for the online deterministic setting, PAC-Bayesian inequalities were proved in the
framework of prediction with expert advice, e.g., in Freund et al. (1997) and Kivinen and Warmuth
(1999), or in the same setting as ours with a Gaussian prior in Vovk (2001). More recently, Audibert
(2009) proved a PAC-Bayesian result on individual sequences for general losses and prediction sets.
The latter result relies on a unifying assumption called the online variance inequality, which holds
true, e.g., when the loss function is exp-concave. In the present paper, we only focus on the particular
case of the square loss. We first use Theorem 4.6 of Audibert (2009) to derive a non-adaptive sparsity
regret bound. We then provide an adaptive online PAC-Bayesian inequality to automatically adapt
to the unknown range of the observations max16t6T |yt|.

Open questions by Dalalyan and Tsybakov

In Section 4 we apply a parameter-free version of our algorithm SeqSEW on i.i.d. data and derive a
risk bound of the same flavor as in Dalalyan and Tsybakov (2008, 2011). However, our risk bound
holds on the whole Rd space instead of `1-balls of finite radii, which solves one question left open
by Dalalyan and Tsybakov (2011, Section 4.2). Besides, our algorithm does not need the a priori
knowledge of the variance factor of the noise when the latter is subgaussian, which solves a second
question raised in Dalalyan and Tsybakov (2011, Section 5.1, Remark 6).

1The bound stated in Langford et al. (2009, Corollary 4.1) differs from (2) in that the constant before the

infimum is equal to C = 1/(1−2c2dη), where c2d ≈ max16t6T
∑d
j=1 ϕ

2
j (xt) 6 d ‖ϕ‖2∞, and where a reasonable

choice for η can easily be seen to be η ≈ 1/
√

2c2dT . If the base forecasts ϕj(xt) are dense in the sense that

c2d ≈ d ‖ϕ‖2∞, then we have C ≈ 1 +
√

2c2d/T , which yields a regret bound with leading constant 1 as in (2)

and with ∆̃T,d(u) at least of order
√
c2dT ≈ ‖ϕ‖∞

√
dT .
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Outline of the paper

This paper is organized as follows. In Section 2 we describe our deterministic setting and main nota-
tions. In Section 3 we prove the aforementioned sparsity regret bounds for our algorithm SeqSEW,
first when the forecaster has access to some a priori knowledge on the observations (Sections 3.1
and 3.2), and then when no a priori information is available (Section 3.3), which yields a fully auto-
matic algorithm. Finally, in Section 4, we apply one version of the algorithm SeqSEW on i.i.d. data
and provide positive answers to two questions left open by Dalalyan and Tsybakov (2011).

2 Setting and notations

The main setting considered in this paper is an equivalent variant of an extension of the game of
prediction with expert advice called prediction with side information (under the square loss) or,
more simply, online linear regression; see Cesa-Bianchi and Lugosi (2006, Chapter 11) for references
on this setting. We give in Figure 1 a detailed description of our repeated game.

Parameters: input data set X , base forecasters ϕ = (ϕ1, . . . , ϕd) with ϕj : X → R, 1 6 j 6 d.

Initial step: the environment choosesa a sequence of observations (yt)t>1 in R and a sequence
of input data (xt)t>1 in X but the forecaster has not access to them.

At each time round t ∈ N∗,

1. The environment reveals the input data xt ∈ X .

2. The forecaster chooses a prediction ŷt ∈ R
(possibly as a linear combination of the ϕj(xt), but this is not necessary).

3. The environment reveals the observation yt ∈ R.

4. Each linear forecaster u ·ϕ ,
∑d
j=1 ujϕj , u ∈ Rd, incurs the loss

(
yt −u ·ϕ(xt)

)2
and the

forecaster incurs the loss (yt − ŷt)2.

aThe game is described as if the environment were oblivious to the forecaster’s predictions. Actually,
since we only consider deterministic forecasters, our results also hold when (xt)t>1 and (yt)t>1 are chosen
by an adversarial environment.

Figure 1: Description of the repeated game of online linear regression.

We now define some notations. Vectors in Rd will be denoted by bold letters. For all u,v ∈ Rd,
the standard inner product in Rd between u = (u1, . . . , ud) and v = (v1, . . . , vd) will be denoted by

u · v =
∑d
i=j uj vj ; the `0-, `1-, and `2-norms of u = (u1, . . . , ud) are respectively defined by

‖u‖0 ,
d∑
j=1

I{uj 6=0} =
∣∣{j : uj 6= 0}

∣∣ , ‖u‖1 ,
d∑
j=1

|uj | , and ‖u‖2 ,

 d∑
j=1

u2
j

1/2

.

The set of all probability distributions on a set Θ (endowed with some σ-algebra, e.g., the Borel
σ-algebra when Θ = Rd) will be denoted by M+

1 (Θ). For all ρ, π ∈ M+
1 (Θ), the Kullback-Leibler

divergence between ρ and π is defined by

K(ρ, π) ,


∫
Rd

ln

(
dρ

dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise,

where dρ
dπ

denotes the Radon-Nikodym derivative of ρ with respect to π.

For all x ∈ R and B > 0, we denote by dxe the smallest integer larger than or equal to x, and
by [x]B its thresholded value:

[x]B ,


−B if x < −B;

x if −B 6 x 6 B;

B if x > B.
Finally, we will use the (natural) convention 0 ln(1 + U/0) = 0 for all U > 0.
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3 Sparsity regret bounds for individual sequences

In this section we prove sparsity regret bounds for different variants of our algorithm SeqSEW.
We first assume in Section 3.1 that the forecaster has access in advance to a bound By on the
observations |yt| and a bound BΦ on the trace of the empirical Gram matrix. We then remove these
requirements one by one in Sections 3.2 and 3.3.

3.1 Known bounds By on the observations and BΦ on the trace of the empirical
Gram matrix

To simplify the analysis, we first assume that, at the beginning of the game, the number of rounds
T is known to the forecaster and that he has access to a bound By on all the observations y1, . . . , yT
and to a bound BΦ on the trace of the empirical Gram matrix, i.e.,

y1, . . . , yT ∈ [−By, By] and

d∑
j=1

T∑
t=1

ϕ2
j (xt) 6 BΦ .

The first version of the algorithm studied in this paper is defined in Figure 2 (adaptive variants will
be introduced later). We name it SeqSEW for it is a variant of the Sparse Exponential Weighting
algorithm introduced in the stochastic setting by Dalalyan and Tsybakov (2007, 2008) which is
tailored for the prediction of individual sequences.

The choice of the heavy-tailed prior πτ is due to Dalalyan and Tsybakov (2007). The role
of heavy-tailed priors to tackle the sparsity issue was already pointed out earlier; see, e.g., the
discussion in Seeger (2008, Section 2.1). In high dimension, such heavy-tailed priors favor sparsity:
sampling from these prior distributions (or posterior distributions based on them) typically results
in approximately sparse vectors, i.e., vectors having most coordinates almost equal to zero and the
few remaining ones with quite large values.

Parameters: threshold B > 0, inverse temperature η > 0, and prior scale τ > 0 with which we
associate the sparsity prior πτ ∈M+

1 (Rd) defined by

πτ (du) ,
d∏
j=1

(3/τ) duj

2
(
1 + |uj |/τ

)4 . (3)

Initialization: p1 , πτ .

At each time round t > 1,

1. Get the input data xt and predict as ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
B
pt(du) ;

2. Get the observation yt and compute the posterior distribution pt+1 ∈M+
1 (Rd) as

pt+1(du) ,

exp

(
−η

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)

Wt+1
πτ (du) ,

where

Wt+1 ,
∫
Rd

exp

(
−η

t∑
s=1

(
ys −

[
v ·ϕ(xs)

]
B

)2
)
πτ (dv) .

Figure 2: Definition of the algorithm SeqSEWB,η
τ .

Proposition 1 Assume that, for a known constant By > 0, the (x1, y1), . . . , (xT , yT ) are such that

y1, . . . , yT ∈ [−By, By] .

Then, for all B > By, all η 6 1/(8B2), and all τ > 0, the algorithm SeqSEWB,η
τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) . (4)
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Corollary 1 Assume that, for some known constants By > 0 and BΦ > 0, the

(x1, y1), . . . , (xT , yT ) are such that y1, . . . , yT ∈ [−By, By] and
∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ .

Then, when used with B = By, η =
1

8B2
y

, and τ =

√
16B2

y

BΦ
, the algorithm SeqSEWB,η

τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

y ‖u‖0 ln

(
1 +

√
BΦ ‖u‖1

4By ‖u‖0

)}
+ 16B2

y . (5)

To prove Proposition 1, we first need the following deterministic PAC-Bayesian inequality which
is at the core of our analysis. It is a straightforward consequence of Theorem 4.6 of Audibert (2009)
when applied to the square loss. An adaptive variant of this inequality will be provided in Section 3.2.

Lemma 2 Assume that for some known constant By > 0, we have y1, . . . , yT ∈ [−By, By].

For all τ > 0, if the algorithm SeqSEWB,η
τ is used with B > By and η 6 1/(8B2), then

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2

ρ(du) +
K(ρ, πτ )

η

}
(6)

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) +

K(ρ, πτ )

η

}
. (7)

Proof (of Lemma 2): Inequality (6) is a straightforward consequence of Theorem 4.6 of Audibert

(2009) when applied to the square loss, the set of prediction functions G ,
{
x 7→

[
u · ϕ(x)

]
B

: u ∈
Rd
}

, and the prior2 π on G induced by the prior πτ on Rd via the mapping u ∈ Rd 7→
[
u·ϕ(·)

]
B
∈ G.

To apply the aforementioned theorem, recall from Vovk (2001, Remark 3) that the square loss
is 1/(8B2)-exp-concave on [−B,B] and thus η-exp-concave3 (since η 6 1/(8B2) by assumption).
Therefore, by Theorem 4.6 of Audibert (2009) with the variance function δη ≡ 0 (see the comments
following Remark 4.1 therein), we get

T∑
t=1

(yt − ŷt)2 6 inf
µ∈M+

1

(
G
)
{∫
G

T∑
t=1

(
yt − g(xt)

)2
µ(dg) +

K(µ, π)

η

}

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2

ρ(du) +
K(ρ̃, π)

η

}
,

where the last inequality follows by restricting the infimum over M+
1

(
G
)

to the subset
{
ρ̃ : ρ ∈

M+
1 (Rd)

}
⊂ M+

1

(
G
)
, where ρ̃ ∈ M+

1

(
G
)

denotes the probability distribution induced by ρ ∈
M+

1 (Rd) via the mapping u ∈ Rd 7→
[
u ·ϕ(·)

]
B
∈ G. Inequality (6) then follows from the fact that

for all ρ ∈M+
1 (Rd), we have K(ρ̃, π) 6 K(ρ, πτ ) by joint convexity of K(·, ·).

As for Inequality (7), it follows from (6) by noting that

∀y ∈ [−B,B], ∀x ∈ R,
∣∣y − [x]B

∣∣ 6 |y − x| .
Therefore, truncation to [−B,B] can only improve prediction under the square loss if the observations
are [−B,B]-valued, which is the case here since by assumption yt ∈ [−By, By] ⊂ [−B,B] for all
t = 1, . . . , T .

Proof (of Proposition 1): Our proof mimics the proof of Theorem 5 in Dalalyan and Tsybakov
(2008). We thus only write the outline of the proof and stress the minor changes that are needed to
derive Inequality (4).

2The set G is endowed with the σ-algebra generated by all the coordinate mappings g ∈ G 7→ g(x) ∈ R,
x ∈ X (where R is endowed with its Borel σ-algebra).

3This means that for all y ∈ [−B,B], the function x 7→ exp
(
−η(y − x)2

)
is concave on [−B,B].
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Let u∗ ∈ Rd. Since B > By and η 6 1/(8B2), we can apply Lemma 2 and get

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) +

K(ρ, πτ )

η

}

6
∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) +

K(ρu∗,τ , πτ )

η
. (8)

In the last inequality, ρu∗,τ is taken as the translated of πτ at u∗, namely,

ρu∗,τ (du) ,
dπτ
du

(u− u∗) du =

d∏
j=1

(3/τ) duj

2
(
1 + |uj − u∗j |/τ

)4 .

The two terms of the right-hand side of (8) can be upper bounded as in the proof of Theorem 5 in
Dalalyan and Tsybakov (2008). It is proved therein that, by a symmetry argument,∫

Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) =

T∑
t=1

(
yt − u∗ ·ϕ(xt)

)2
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) ,

and, by elementary calculations,

K(ρu∗,τ , πτ )

η
6

4

η
‖u∗‖0 ln

(
1 +

‖u∗‖1
‖u∗‖0 τ

)
.

Combining (8) with the last two equations, which all hold for all u∗ ∈ Rd, we get Inequality (4).

Proof (of Corollary 1): Applying Proposition 1, we have, since B > By and η 6 1/(8B2),

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt)

6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+ τ2BΦ , (9)

since
∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ by assumption. The particular choices4 for η and τ given in the

statement of the corollary then yield the desired inequality (5).

3.2 Unknown bound By on the observations but known bound BΦ on the trace of the
empirical Gram matrix

In the previous section, to prove the upper bounds stated in Lemma 2 and Proposition 1, we assumed
that the forecaster had access to a bound By on the observations |yt|. In this section, we remove

this requirement and prove a sparsity regret bound for a variant of the algorithm SeqSEWB,η
τ which

is adaptive to the unknown bound By = max16t6T |yt|; see Proposition 2 and Remark 1 below.
For this purpose we consider the following algorithm called SeqSEW∗τ thereafter. It differs from

SeqSEWB,η
τ defined in the previous section in that the threshold B and the inverse temperature

η are now allowed to vary over time and are chosen at each time round as a function of the data
available to the forecaster. More precisely, the algorithm SeqSEW∗τ outputs at time t the prediction

ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du) , (10)

where

Bt ,
(

2dlog2 max16s6t−1 y
2
se
)1/2

, ηt ,
1

8B2
t

,

4The best choice of (B, η) that satisfies the assumptions of Proposition 1 is B = By and η = 1/(8B2
y). As

for the choice of τ , it minimizes the function τ 7→ C1 ln
(
C2
τ

)
+ C3τ

2 with C1 = 4/η = 32B2
y and C3 = BΦ.

7



and where, for a normalizing constant Wt, the posterior distribution pt ∈M+
1 (Rd) is defined by

pt(du) ,

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)

Wt
πτ (du) .

Note that max16s6t−1 |ys| 6 Bt 6
√

2 max16s6t−1 |ys|.

The idea of truncating the base forecasts was already used in the past; see, e.g., Györfi et al.
(2002) for the case of least squares regression and Györfi and Ottucsák (2007); Biau et al. (2010)
for sequential prediction of unbounded time series under the square loss. A key ingredient in the
present paper is to perform truncation with respect to a data-driven threshold. The online tuning of
this threshold is based on a pseudo-doubling-trick technique provided in Cesa-Bianchi et al. (2007)
(we use the prefix pseudo since the algorithm does not restart at the beginning of each new regime).

Proposition 2 For all τ > 0, the algorithm SeqSEW∗τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

T+1 ‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
(11)

+ τ2
d∑
j=1

T∑
t=1

ϕ2
j (xt) + 16B2

T+1 ,

where
B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max

16t6T
y2
t .

Remark 1 In view of Proposition 1, the algorithm SeqSEW∗τ satisfies a sparsity regret bound which
is adaptive to the unknown bound By = max16t6T |yt|. The price for the automatic tuning with
respect to By consists only of a multiplicative factor smaller than 2 and the additive factor 16B2

T+1

which is smaller than 32B2
y .

Remark 2 Just like in the previous section, several corollaries can be derived from Proposition 2.

If the forecaster has access beforehand to a quantity BΦ > 0 such that
∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ,

then a suboptimal but reasonable choice of τ is given by τ = 1/
√
BΦ; see the full version of this

paper (Gerchinovitz, 2011, Corollary 3). We will also use the simpler choice τ = 1/
√
dT for the

stochastic setting in Section 4.

As in the previous section, to prove Proposition 2, we first need a key PAC-Bayesian inequality.
The next lemma is an adaptive variant of Lemma 2.

Lemma 3 For all τ > 0, the algorithm SeqSEW∗τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) + 8B2
T+1K(ρ, πτ )

}
+ 8B2

T+1 (12)

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) + 8B2

T+1K(ρ, πτ )

}
+ 16B2

T+1 , (13)

where
B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max

16t6T
y2
t .

Proof (of Lemma 3): The proof is based on similar arguments as for Lemma 2, except that we now
need to deal withB and η changing over time. In the same spirit as in Auer et al. (2002); Cesa-Bianchi
et al. (2007); Györfi and Ottucsák (2007), our analysis relies on the control of (lnWt+1)/ηt+1 −
(lnWt)/ηt where W1 , 1 and, for all t > 2,

Wt ,
∫
Rd

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)
πτ (du) .

8



On the one hand, we have

lnWT+1

ηT+1
− lnW1

η1
=

1

ηT+1
ln

∫
Rd

exp

(
−ηT+1

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
πτ (du) − 1

η1
ln 1

=
1

ηT+1
sup

ρ∈M+
1 (Rd)

{∫
Rd

(
−ηT+1

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
ρ(du) − K(ρ, πτ )

}
(14)

= − inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +
K(ρ, πτ )

ηT+1

}
, (15)

where (14) follows from the fact that, for any measurable space (E,B), any probability distribution
π on (E,B), and any non-positive measurable function h : E → (−∞, 0], the Legendre transform of
the Kullback-Leibler divergence can be expressed as

ln

∫
E

ehdπ = sup
ρ∈M+

1 (E)

{∫
E

hdρ − K(ρ, π)

}
.

This convex duality argument for the KL divergence is proved, e.g., in Catoni (2004, p. 159).

On the other hand, we can rewrite (lnWT+1)/ηT+1 − (lnW1)/η1 as a telescopic sum and get

lnWT+1

ηT+1
− lnW1

η1
=

T∑
t=1

(
lnWt+1

ηt+1
− lnWt

ηt

)
=

T∑
t=1

(
lnWt+1

ηt+1
−

lnW ′t+1

ηt︸ ︷︷ ︸
(1)

+
1

ηt
ln
W ′t+1

Wt︸ ︷︷ ︸
(2)

)
, (16)

where W ′t+1 is obtained from Wt+1 by replacing ηt+1 with ηt; namely,

W ′t+1 ,
∫
Rd

exp

(
−ηt

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)
πτ (du) .

Let t ∈ {1, . . . , T}. The first term (1) is non-positive by Jensen’s inequality (note that x 7→ xηt+1/ηt

is concave on R∗+ since ηt+1 6 ηt by construction). As for the second term (2), by definition of W ′t+1,

1

ηt
ln
W ′t+1

Wt
=

1

ηt
ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)

Wt
πτ (du)

=
1

ηt
ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
pt(du) (17)

6

{
−(yt − ŷt)2 if Bt+1 = Bt;
−(yt − ŷt)2 + (2Bt+1)2 if Bt+1 > Bt;

(18)

where (17) follows by definition of pt. To get Inequality (18) when Bt+1 = Bt, or, equivalently,
|yt| 6 Bt, we used the fact that the square loss is 1/(8B2

t )-exp-concave on [−Bt, Bt] (as in Lemma 2).

Indeed, by definition of ηt , 1/(8B2
t ) and by Jensen’s inequality, we get∫

Rd

e
−ηt
(
yt−
[
u·ϕ(xt)

]
Bt

)2
pt(du) 6 exp

(
−ηt

(
yt −

∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du)

)2
)

= e−ηt(yt−ŷt)
2

,

where the last equality follows by definition of ŷt. Taking the logarithms of both sides of the last
inequality and dividing by ηt, we get (18) when Bt+1 = Bt.

As for the rounds t such that Bt+1 > Bt, the square loss x 7→ (yt − x)2 is no longer 1/(8B2
t )-exp-

concave on [−Bt, Bt]. In this case (18) follows from the cruder upper bound (1/ηt) ln(W ′t+1/Wt) 6
0 6 −(yt − ŷt)2 + (2Bt+1)2 (since |yt|, |ŷt| 6 Bt+1). Summing (18) over t = 1, . . . , T , Equation (16)
yields

lnWT+1

ηT+1
− lnW1

η1
6 −

T∑
t=1

(yt − ŷt)2 + 4

T∑
t=1

t:Bt+1>Bt

B2
t+1 6 −

T∑
t=1

(yt − ŷt)2 + 8B2
T+1 , (19)
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where, setting K , dlog2 max16t6T y
2
t e, we upper bounded the geometric sum

∑T
t:Bt+1>Bt

B2
t+1 6∑K

k=−∞ 2k = 2K+1 , 2B2
T+1 in the same way as in Theorem 6 of Cesa-Bianchi et al. (2007).

Putting Equations (15) and (19) together, we get the PAC-Bayesian inequality

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2

ρ(du) +
K(ρ, πτ )

ηT+1

}
+ 8B2

T+1 ,

which yields (12) by definition of ηT+1 , 1/(8B2
T+1). The other PAC-Bayesian inequality (13),

which is stated for non-truncated base forecasts, follows from (12) by the fact that truncation to Bt
can only improve prediction if |yt| 6 Bt. The remaining t’s such that |yt| > Bt then just account

for an overall additional term at most equal to
∑T
t:Bt+1>Bt

(
2Bt+1

)2
6 8B2

T+1, which concludes the

proof.

Proof (of Proposition 2): The proof follows the exact sames lines as in Proposition 1 except that
we apply Lemma 3 instead of Lemma 2.

3.3 A fully automatic algorithm

In the previous section, we proved that adaptation to By was possible. If we also no longer assume
that a bound BΦ on the trace of the empirical Gram matrix is available to the forecaster, then one
can use a doubling trick on the nondecreasing quantity

γt , ln

1 +

√√√√ t∑
s=1

d∑
j=1

ϕ2
j (xs)


and repeatedly run the algorithm SeqSEW∗τ of the previous section for rapidly-decreasing values
of τ . This yields a sparsity regret bound with extra logarithmic multiplicative factors as compared
to Proposition 2, but which holds for a fully automatic algorithm; see Theorem 4 below.

More formally, our algorithm SeqSEW∗∗ is defined as follows. The set of time rounds t = 1, 2, . . .

is partitioned into regimes r = 0, 1, . . . whose final time instances tr are data-driven. Let t−1 , 0 by
convention. We call regime r, r = 0, 1, . . ., the sequence of time rounds (tr−1 + 1, . . . , tr) where tr is
the first date t > tr−1 + 1 such that γt > 2r. At the beginning of regime r, we restart the algorithm
SeqSEW∗τ of the previous section with the parameter τ = 1/

(
exp(2r)− 1

)
.

Theorem 4 Without requiring any preliminary knowledge at the beginning of the prediction game,
the algorithm SeqSEW∗∗ satisfies, for all T > 1 and all (x1, y1), . . . , (xT , yT ) ∈ X × R,

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 256

(
max

16t6T
y2
t

)
‖u‖0 ln

e +

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)

 (20)

+ 64
(

max
16t6T

y2
t

)
AT ‖u‖0 ln

(
1 +
‖u‖1
‖u‖0

)}
+
(

1 + 38 max
16t6T

y2
t

)
AT ,

where AT , 2 + log2 ln

(
e +

√∑T
t=1

∑d
j=1 ϕ

2
j (xt)

)
.

Proof: The proof relies on the application of Proposition 2 with τ = 1/
(
exp(2r)−1

)
on all regimes r

visited up to time T . Summing the corresponding inequalities over r then concludes the proof. Due
to lack of space, we refer the reader to the full version of this paper (Gerchinovitz, 2011, Theorem 1)
for further details.

4 Adaptivity to the unknown variance in the stochastic setting

In this section we apply the algorithm SeqSEW to the regression model with random design. In
this batch setting the forecaster is given at the beginning of the game T independent random copies
(X1, Y1), . . . , (XT , YT ) of (X,Y ) ∈ X × R whose common distribution is unknown. We assume
thereafter that E[Y 2] <∞; the goal of the forecaster is to estimate the regression function f : X → R
defined by f(x) , E[Y |X = x] for all x ∈ X . We also set ‖h‖L2 ,

(
E[h(X)2]

)1/2
for all measurable

functions h : X → R such that E[h(X)2] <∞.
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4.1 Algorithm and main result

Even if the whole sample (X1, Y1), . . . , (XT , YT ) is available at the beginning of the prediction game,
we treat it in a sequential fashion. We run the algorithm SeqSEW∗τ of Section 3.2 from time 1

to time T with τ = 1/
√
dT . We then define our data-based regressor f̂T as the uniform average

f̂T , 1
T

∑T
t=1 f̃t of the regressors f̃t : X → R sequentially built by the algorithm SeqSEW∗τ as

f̃t(x) ,
∫
Rd

[
u ·ϕ(x)

]
Bt
pt(du) .

This technique is now quite standard in the machine learning community. Though we only state our
risk bounds in expectation (which already improves on existing results in the stochastic setting), we
refer to Kakade and Tewari (2009) to transform our results into risk bounds with large probability.

Note that, contrary to much prior work from the statistics community such as Catoni (2004) and

Dalalyan and Tsybakov (2011), the regressors f̃t : X → R are tuned online. Therefore, f̂T does not
depend on any prior knowledge on the unknown distribution of the (Xt, Yt), 1 6 t 6 T , such as the
unknown variance E

[
(Y − f(X))2

]
of the noise, the ‖ϕj‖∞, or the ‖f − ϕj‖∞ (actually, the ϕj and

the f − ϕj do not even need to be bounded in `∞-norm).

Theorem 5 Assume that (X1, Y1), . . . , (XT , YT ) ∈ X×R are independent random copies of (X,Y ) ∈
X×R, where E[Y 2] < +∞ and ‖ϕj‖2L2 , E[ϕj(X)2] < +∞ for all j = 1, . . . , d. Then, the data-based

regressor f̂T defined above satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf

u∈Rd

{
‖f − u ·ϕ‖2L2 + 64

E
[
max16t6T Y

2
t

]
T

‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 + 32
E
[
max16t6T Y

2
t

]
T

.

Proof: By Proposition 2 with τ = 1/
√
dT and by definition of f̃t above and ŷt , f̃t(Xt) in

Equation (10), we have, almost surely,

T∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
+ 64

(
max

16t6T
Y 2
t

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

T∑
t=1

ϕ2
j (Xt) + 32 max

16t6T
Y 2
t .

Taking the expectations of both sides and applying Jensen’s inequality straightforwardly concludes
the proof (we refer the reader to the full version of this paper (Gerchinovitz, 2011, Theorem 2) for
more details).

The above theorem can be used under several assumptions on the distribution of the output Y .
We only discuss below its application to one important set of assumptions studied, e.g., in Dalalyan
and Tsybakov (2011).

4.2 Questions left open by Dalalyan and Tsybakov

Theorem 5 above provides answers to two questions left open in Dalalyan and Tsybakov (2011) when

the regression function f is bounded and when the i.i.d. errors εt , Yt − f(Xt) are subgaussian
(conditionally on the Xt) in the sense that, for some constant σ2 > 0,

‖f‖∞ < +∞ and E
[
eλε1

∣∣∣ X1

]
6 eλ

2σ2/2 a.s., ∀λ ∈ R . (21)

Under the above assumptions, we prove in Gerchinovitz (2011, Corollary 5 and Remark 8) that
Theorem 5 above yields, for some universal constant C > 0, that for all T > 2,

E
[wwwf − f̂Twww2

L2

]
6 inf

u∈Rd

{
‖f − u ·ϕ‖2L2 + 2C

(
‖f‖2∞ + σ2 lnT

) ‖u‖0
T

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}
(22)

+
1

dT

d∑
j=1

‖ϕj‖2L2 +
C

T

(
‖f‖2∞ + σ2 lnT

)
,
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The above bound is of the same order (up to a lnT factor) as the sparsity oracle inequality proved
in Proposition 1 of Dalalyan and Tsybakov (2011). For the sake of comparison we state below with
our notations (e.g., β therein corresponds to 1/η in this paper) a straightforward consequence of

this proposition, which follows by Jensen’s inequality and the particular5 choice τ = 1/
√
dT .

Proposition 3 (A consequence of Proposition 1 of Dalalyan and Tsybakov 2011) Assume
that sup16j6d ‖ϕj‖∞ < ∞ and that the set of assumptions (21) above hold true. Then, for every

R > 0 and η 6
(

2σ2 + 2 sup‖u‖16R ‖u ·ϕ− f‖
2
∞

)−1

, the mirror averaging aggregate f̂T : X → R
defined in Dalalyan and Tsybakov (2011, Equations (1) and (3)) satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
‖u‖16R−2dτ

{
‖f − u ·ϕ‖2L2 +

4 ‖u‖0
η(T + 1)

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
4

dT

d∑
j=1

‖ϕj‖2L2 +
1

η(T + 1)
.

We can now discuss the two questions left open by Dalalyan and Tsybakov (2011). Despite the
similarity of the two bounds, the sparsity oracle inequality stated in Proposition 3 above only holds
for vectors u within `1-balls of finite radii. The authors thus asked in Dalalyan and Tsybakov (2011,
Section 4.2) whether it was possible to extend the infimum to the whole Rd space. Our results show
that, thanks to data-driven truncation, the answer is positive.

The second open question, which was raised in Dalalyan and Tsybakov (2011, Section 5.1, Re-
mark 6), deals with the prior knowledge of the variance factor σ2 of the noise. The latter is indeed
required by their algorithm for the choice of the inverse temperature parameter η. The authors thus
asked whether adaptivity to σ2 was possible. Our sparsity oracle inequality (22) above provides a
positive answer (up to a lnT factor).

Remark 3 Similar adaptivity results hold in the regression model with fixed design; see the full
version of this paper (Gerchinovitz, 2011, Section 5.2). The framework of prediction of individual
sequences thus seems to offer a unifying setting to address tuning issues both in the random and in
the fixed design regression models.
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