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Abstract

We address the issue of variable selection in the regression model with very high ambient
dimension, i.e., when the number of covariates is very large. The main focus is on the situation
where the number of relevant covariates, called intrinsic dimension, is much smaller than
the ambient dimension. Without assuming any parametric form of the underlying regression
function, we get tight conditions making it possible to consistently estimate the set of relevant
variables. These conditions relate the intrinsic dimension to the ambient dimension and to
the sample size. The procedure that is provably consistent under these tight conditions is
simple and is based on comparing the empirical Fourier coefficients with an appropriately
chosen threshold value.

1 Introduction

Real-world data such as those obtained from neuroscience, chemometrics, data mining, or sensor-
rich environments are often extremely high-dimensional, severely underconstrained (few data samples
compared to the dimensionality of the data), and interspersed with a large number of irrelevant or re-
dundant features. Furthermore, in most situations the data is contaminated by noise making it even
more difficult to retrieve useful information from the data. Relevant variable selection is a compelling
approach for addressing statistical issues in the scenario of high-dimensional and noisy data with small
sample size. Starting from Mallows (1973), Akaike (1973), Schwarz (1978) who introduced respectively
the famous criteria Cp , AIC and BIC, the problem of variable selection has been extensively studied in
the statistical and machine learning literature both from the theoretical and algorithmic viewpoints.
It appears, however, that the theoretical limits of performing variable selection in the context of non-
parametric regression are still poorly understood, especially in the case where the ambient dimension
of covariates, denoted by d , is much larger than the sample size n . The purpose of the present work
is to explore this setting under the assumption that the number of relevant covariates, hereafter called
intrinsic dimension and denoted by d ∗, may grow with the sample size but remains much smaller than
the ambient dimension d .

In the important particular case of linear regression, the latter scenario has been the subject of a
number of recent studies. Many of them rely on `1-norm penalization (as for instance in Tibshirani
(1996), Zhao and Yu (2006), Meinshausen and Bühlmann (2010)) and constitute an attractive alternative
to iterative variable selection procedures proposed by Alquier (2008), Zhang (2009), Ting et al. (2010)
and to marginal regression or correlation screening explored in Wasserman and Roeder (2009), Fan
et al. (2009). Promising results for feature selection are also obtained by minimax concave penalties
in Zhang (2010), by Bayesian approach in Scott and Berger (2010) and by higher criticism in Donoho
and Jin (2009). Extensions to other settings including logistic regression, generalized linear model and
Ising model have been carried out in Bunea and Barbu (2009), Ravikumar et al. (2010), Fan et al. (2009),
respectively. Variable selection in the context of groups of variables with disjoint or overlapping groups
has been studied by Jenatton et al. (2009), Lounici et al. (2010), Obozinski et al. (2011). Hierarchical
procedures for selection of relevant covariates have been proposed by Bach (2009), Bickel et al. (2010)
and Zhao et al. (2009).



It is now well understood that in the high-dimensional linear regression, if the Gram matrix sat-
isfies some variant of irrepresentable condition, then consistent estimation of the pattern of relevant
variables—also called the sparsity pattern—is possible under the condition d ∗ log(d /d ∗) =o(n ) as n →
∞. Furthermore, it is well known that if (d ∗ log(d /d ∗))/n remains bounded from below by some pos-
itive constant when n →∞, then it is impossible to consistently recover the sparsity pattern. Thus, a
tight condition exists that describes in an exhaustive manner the interplay between the quantities d ∗,
d and n that guarantees the existence of consistent estimators. The situation is very different in the
case of non-linear regression, since, to our knowledge, there is no result providing tight conditions for
consistent estimation of the sparsity pattern.

The papers Lafferty and Wasserman (2008) and Bertin and Lecué (2008), closely related to the present
work, consider the problem of variable selection in nonparametric Gaussian regression model. They
prove the consistency of the proposed procedures under some assumptions that—in the light of the
present work—turn out to be suboptimal. More precisely, in Lafferty and Wasserman (2008), the un-
known regression function is assumed to be four times continuously differentiable with bounded deriva-
tives. The algorithm they propose, termed Rodeo, is a greedy procedure performing simultaneously
local bandwidth choice and variable selection. Under the assumption that the density of the sampling
design is continuously differentiable and strictly positive, Rodeo is shown to converge when the ambi-
ent dimension d is O(log n/log log n )while the intrinsic dimension d ∗ does not increase with n . On the
other hand, Bertin and Lecué (2008) propose a procedure based on the `1-penalization of local polyno-
mial estimators and prove its consistency when d ∗ = O(1) but d is allowed to be as large as log n , up
to a multiplicative constant. They also have a weaker assumption on the regression function which is
merely assumed to belong to the Holder class with smoothness β > 1.

This brief review of the literature reveals that there is an important gap in consistency conditions
for the linear regression and for the non-linear one. For instance, if the intrinsic dimension d ∗ is fixed,
then the condition guaranteeing consistent estimation of the sparsity pattern is (log d )/n → 0 in lin-
ear regression whereas it is d = O(log n ) in the nonparametric case. While it is undeniable that the
nonparametric regression is much more complex than the linear one, it is however not easy to find a
justification to such an important gap between two conditions. The situation is even worse in the case
where d ∗ →∞. In fact, for the linear model with at most polynomially increasing ambient dimension
d = O(n k ), it is possible to estimate the sparsity pattern for intrinsic dimensions d ∗ as large as n 1−ε,
for some ε > 0. In other words, the sparsity index can be almost on the same order as the sample size.
In contrast, in nonparametric regression, there is no procedure that is proved to converge to the true
sparsity pattern when both n and d ∗ tend to infinity, even if d ∗ grows extremely slowly.

In the present work, we fill this gap by introducing a simple variable selection procedure that selects
the relevant variables by comparing some well chosen empirical Fourier coefficients to a prescribed
significance level. Consistency of this procedure is established under some conditions on the triplet
(d ∗, d , n ) and the tightness of these conditions is proved. The main take-away messages deduced from
our results are the following:

• When the number of relevant covariates d ∗ is fixed and the sample size n tends to infinity, there ex-
ist positive real numbers c∗ and c ∗ such that (a) if (log d )/n ≤ c∗ the estimator proposed in Section 3
is consistent and (b) no estimator of the sparsity pattern may be consistent if (log d )/n ≥ c ∗.

• When the number of relevant covariates d ∗ tends to infinity with n → ∞, then there exist real
numbers c i and c̄ i , i = 1, . . . , 4 such that c i > 0, c̄ i > 0 for i = 1, 2, 3 and (a) if c 1d ∗ + c 2 log d ∗ +
c 3 log log d − log n < c 4 the estimator proposed in Section 3 is consistent and (b) no estimator of
the sparsity pattern may be consistent if c̄1d ∗+ c̄2 log d ∗+ c̄3 log log d − log n > c̄4.

• In particular, if d grows not faster than a polynomial in n , then there exist positive real numbers
c0 and c 0 such that (a) if d ∗ ≤ c0 log n the estimator proposed in Section 3 is consistent and (b) no
estimator of the sparsity pattern may be consistent if d ∗ ≥ c 0 log n .

Very surprisingly, the derivation of these results required from us to apply some tools from complex
analysis, such as the Jacobi θ -function and the saddle point method, in order to evaluate the number
of lattice points lying in a ball of an Euclidean space with increasing dimension.

The rest of the paper is organized as follows. The notation and assumptions necessary for stating
our main results are presented in Section 2. In Section 3, an estimator of the set of relevant covariates
is introduced and its consistency is established. The principal condition required in the consistency
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result involves the number of lattice points in a ball of a high-dimensional Euclidean space. An asymp-
totic equivalent for this number is obtained in Section 4 via the Jacobi θ -function and the saddle point
method. Results on impossibility of consistent estimation of the sparsity pattern are derived in Sec-
tion 5, while the relation between consistency and inconsistency results are discussed in Section 6. The
technical parts of the proofs are postponed to the Appendix.

2 Notation and assumptions

We assume that n independent and identically distributed pairs of input-output variables (X i , Yi ), i =
1, . . . , n are observed that obey the regression model

Yi = f(X i )+σεi , i = 1, . . . , n .

The input variables X 1, . . . , X n are assumed to take values inRd while the output variables Y1, . . . , Yn are
scalar. As usual, the noise ε1, . . . ,εn is such that E[εi |X i ] = 0, i = 1, . . . , n ; some additional conditions will
be imposed later. Without requiring from f to be of a special parametric form, we aim at recovering the
set J ⊂ {1, . . . , d } of its relevant covariates.

It is clear that the estimation of J cannot be accomplished without imposing some further assump-
tions on f and the distribution PX of the input variables. Roughly speaking, we will assume that f is
differentiable with a squared integrable gradient and that PX admits a density which is bounded from
below. More precisely, let g denote the density of PX w.r.t. the Lebesgue measure.

[C1] We assume that g(x ) = 0 for any x 6∈ [0, 1]d and that g(x )≥ g min for any x ∈ [0, 1]d .

To describe the smoothness assumption imposed on f, let us introduce the Fourier basis

ϕk (x ) =







1, k = 0,p
2 cos(2πk ·x ), k ∈ (Zd )+,p
2 sin(2πk ·x ), −k ∈ (Zd )+,

(1)

where (Zd )+ denotes the set of all k ∈ Zd \ {0} such that the first nonzero element of k is positive and
k ·x stands for the the usual inner product inRd . In what follows, we use the notation 〈·, ·〉 for designing
the scalar product in L2([0, 1]d ;R), that is 〈h, h̃〉 =

∫

[0,1]d
h(x )h̃(x )d x for every h, h̃ ∈ L2([0, 1]d ;R). Using

this orthonormal Fourier basis, we define

ΣL =
�

f :
∑

k∈Zd

k 2
j 〈f,ϕk 〉2 ≤ L; ∀j ∈ {1, . . . , d }

�

.

To ease notation, we set θk [f] = 〈f,ϕk 〉 for all k ∈ Zd . In addition to the smoothness, we need also
to require that the relevant covariates are sufficiently relevant for making their identification possible.
This is done by means of the following condition.

[C2(κ, L)] The regression function f belongs to ΣL . Furthermore, for some subset J ⊂ {1, . . . , d } of car-
dinality ≤ d ∗, there exists a function f̄ :R|J |→R such that f(x ) = f̄(x J ), ∀x ∈Rd and it holds that

Q j [f]¬
∑

k :k j 6=0

θk [f]2 ≥ κ, ∀j ∈ J . (2)

Hereafter, we will refer to J as the sparsity pattern of f.

One easily checks that Q j [f] = 0 for every j that does not lie in the sparsity pattern. This provides a
characterization of the sparsity pattern as the set of indices of nonzero coefficients of the vector Q[f] =
(Q1[f], . . . ,Qd [f]).

The next assumptions imposed to the regression function and to the noise require their bounded-
ness in an appropriate sense. These assumptions are needed in order to prove, by means of a concen-
tration inequality, the closeness of the empirical coefficients to the true ones.

[C3(L∞, L 2)] The L∞([0, 1]d ,R, PX ) and L2([0, 1]d ,R, PX ) norms of the function f are bounded from above
respectively by L∞ > 0 and L 2, i.e., PX

�

x ∈ [0, 1]d : |f(x )| ≤ L∞
�

= 1 and
∫

[0,1]d
f(x )2g(x )d x ≤ L2

2.
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[C4] The noise variables satisfy a.e. E[e t εi |X i ]≤ e t 2/2 for all t > 0.

Remark 1 The primary aim of this work is to understand when it is possible to estimate the sparsity pat-
tern (with theoretical guarantees on the convergence of the estimator) and when it is impossible. The
estimator that we will define in the next section is intended to show the possibility of consistent estima-
tion, rather than being a practical procedure for recovering the sparsity pattern. Therefore, the estimator
will be allowed to depend on the parameters g min, L, κ and M appearing in conditions [C1-C3].

3 Consistent estimation of the set of relevant variables

The estimator of the sparsity pattern J that we are going to introduce now is based on the following
simple observation: if j 6∈ J then θk [f] = 0 for every k such that k j 6= 0. In contrast, if j ∈ J then there
exists k ∈ Zd with k j 6= 0 such that |θk [f]| > 0. To turn this observation into an estimator of J , we start
by estimating the Fourier coefficients θk [f] by their empirical counterparts:

bθk =
1

n

n
∑

i=1

ϕk (X i )
g(X i )

Yi , k ∈Zd .

Then, for every ` ∈N and for any γ > 0, we introduce the notation Sm ,` =
�

k ∈Zd : ‖k ‖2 ≤m , ‖k ‖0 ≤ `
	

and N (d ∗,γ) =Card{k ∈Zd ∗ : ‖k ‖2
2 ≤ γd ∗& k1 6= 0}. Finally our estimator is defined by

bJn (m ,λ) =
n

j ∈ {1, . . . , d } : max
k∈Sm ,d ∗ : k j 6=0

|bθk |>λ
o

, (3)

where m and λ are some parameters to be defined later. The notation a ∧b , for two real numbers a and
b , stands for min(a ,b ).

Theorem 1 Let conditions [C1-C4] be fulfilled with some known constants g min, L,κ and L 2. Assume
furthermore that the design density g and an upper estimate on the noise magnitudeσ are available. Set
m = (2Ld ∗/κ)1/2 and λ= 4(σ+ L 2)

�

d ∗ log(6m d )/n g 2
min)

1/2. If

L2
∞d ∗ log(6m d )

n
≤ L2

2, and
128(σ+ L 2)2d ∗N (d ∗, 2L/κ) log(6m d )

n g 2
min

≤ κ, (4)

then the estimator bJ (m ,λ) satisfies P
�

bJ (m ,λ) 6= J
�

≤ 3(6m d )−d ∗ .

If we take a look at the conditions of Theorem 1 ensuring the consistency of the estimator bJ , it be-
comes clear that the strongest requirement is the second inequality in (4). To some extent, this condi-
tion requires that (d ∗N (d ∗, 2L/κ) log d )/n is bounded from above by some constant. To further analyze
the interplay between d ∗, d and n implied by this condition, we need an equivalent to N (d ∗, 2L/κ) as
the intrinsic dimension d ∗ tends to infinity. As proved in the next section, N (d ∗, 2L/κ) diverges expo-
nentially fast, making inequality (4) impossible for d ∗ larger than log n up to a multiplicative constant.

It is also worth stressing that although we require the PX -a.e. boundedness of f by some constant L∞,
this constant is not needed for computing the estimator proposed in Theorem 1. Only constants related
to some quadratic functionals of the sequence of Fourier coefficients θk [f] are involved in the tuning
parameters m and λ. This point might be important for designing practical estimators of J , since the
estimation of quadratic functionals is more realistic, see for instance Laurent and Massart (2000), than
the estimation of sup-norm.

The result stated above can be reformulated to provide also a level of relevanceκ for the covariates of
X making their identification possible. In fact, an alternative way of stating Theorem 1 is the following:
if conditions [C1-C4] and L2

∞d ∗ log(6m d )≤ n L2
2 are fulfilled, then the estimator bJ (m ,λ)—with arbitrary

tuning parameters m and λ—satisfies P( bJ (m ,λ) 6= J ) ≤ 3(6m d )−d ∗ provided that the smallest level of
relevance κ for components X j of X with j ∈ J is not smaller than 8λ2N (d ∗, m 2/d ∗). This statement can
be easily deduced from the proof presented in Appendix A.

4 Counting lattice points in a ball

The aim of the present section is to investigate the properties of the quantity N (d ∗, m 2/d ∗) that is in-
volved in the conditions ensuring the consistency of the proposed procedure. Quite surprisingly, the
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asymptotic behavior of N (d ∗, m 2/d ∗) turns out to be related to the Jacobi θ -function. In order to show
this, let us introduce some notation. For a positive number γ, we set

C1(d ∗,γ) =
n

k ∈Zd ∗ : k 2
1 + ...+k 2

d ∗ ≤ γd ∗
o

, C2(d ∗,γ) =
n

k ∈Zd ∗ : k 2
2 + ...+k 2

d ∗ ≤ γd ∗ & k1 = 0
o

along with N1(d ∗,γ) = CardC1(d ∗,γ) and N2(d ∗,γ) = CardC2(d ∗,γ). In simple words, N1(d ∗,γ) is the
number of (integer) lattice points lying in the d ∗-dimensional ball with radius (γd ∗)1/2 and centered at
the origin, while N2(d ∗,γ) is the number of (integer) lattice points with the first coordinate equal to zero
and lying in the d ∗-dimensional ball with radius (γd ∗)1/2 and centered at the origin. With this notation,
the quantity N (d ∗, 2L/κ) of Theorem 1 can be written as N1(d ∗, 2L/κ)−N2(d ∗, 2L/κ).

In order to determine the asymptotic behavior of N1(d ∗,γ) and N2(d ∗,γ) when d ∗ tends to infinity,
we will rely on their integral representation through Jacobi’s θ -function. Recall that the latter is given
by h(z ) =

∑

r∈Z z r 2 , which is well defined for any complex number z belonging to the unit ball |z |< 1. To
briefly explain where the relation between Ni (γ) and the θ -function comes from, let us denote by {a r }
the sequence of coefficients of the power series of h(z )d ∗ , that is h(z )d ∗ =

∑

r≥0 a r z r . One easily checks
that ∀r ∈ N, a r = Card{k ∈ Zd ∗ : k 2

1 + ...+ k 2
d ∗ = r }. Thus, for every γ such that γd ∗ is integer, we have

N1(d ∗,γ) =
∑γd ∗

r=0 a r . As a consequence of Cauchy’s theorem, we get :

N1(d ∗,γ) =
1

2πi

∮

h(z )d ∗

z γd ∗
d z

z (1− z )
.

where the integral is taken over any circle |z |=w with 0<w < 1. Exploiting this representation and ap-
plying the saddle-point method thoroughly described in Dieudonné (1968), we get the following result.

Proposition 1 Let γ> 0 be such that γd ∗ is an integer and let lγ(z ) = logh(z )−γ log z .

1. There is a unique solution z γ in (0, 1) to the equation l′γ(z ) = 0. Furthermore, the function γ 7→ z γ is
increasing and l′′γ (z )> 0.

2. The following equivalences hold true:

N1(d ∗,γ) =
�h(z γ)

z γγ

�d ∗ 1+o(1)
z γ(1− z γ)(2l′′γ (z γ)πd ∗)1/2

,

N2(d ∗,γ) =
�h(z γ)

z γγ

�d ∗ 1+o(1)
h(z γ)z γ(1− z γ)(2l′′γ (z γ)πd ∗)1/2

,

as d ∗ tends to infinity.

Furthermore, the convergence to zero of the terms replaced by o(1) in the previous formulae is uniform in
γ on any compact set [γ,γ]⊂ (0,∞).

In the sequel, it will be useful to remark that the second part of Proposition 1 yields

log
�

N1(d ∗,γ)−N2(d ∗,γ)
�

= d ∗lγ(z γ)−
1

2
log d ∗− log

¨h(z γ)z γ(1− z γ)(2l′′γ (z γ)π)1/2

h(z γ)−1

«

+o(1). (5)

In order to get an idea of how the terms z γ and lγ(z γ) depend on γ, we depicted in Figure 1 the plots of
these quantities as functions of γ> 0.

5 Tightness of the assumptions

In this section, we assume that the errors εi are i.i.d. Gaussian with zero mean and variance 1 and we
focus our attention on the functional class eΣ(κ, L) of all functions satisfying assumption [C2(κ, L)]. In
order to avoid irrelevant technicalities and to better convey the main results, we assume that κ= 1 and
denote eΣL = eΣ(1, L). Furthermore, we will assume that the design X 1, . . . , X n is fixed and satisfies

1

n

n
∑

i=1

ϕk (X i )ϕk ′ (X i )≤
n

N1(d ∗, L)2
(6)
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Figure 1: The plots of mappings γ 7→ z γ and γ 7→ lγ(z γ).

for all distinct k , k ′ ∈ S(d ∗L)1/2,d ∗ ⊂ Zd . The goal in this section is to provide conditions under which the
consistent estimation of the sparsity support is impossible, that is there exists a positive constant c > 0
and an integer n 0 ∈N such that, if n ≥ n 0,

inf
eJ

sup
f∈eΣL

Pf ( eJ 6= Jf )≥ c ,

where the inf is over all possible estimators of Jf . To lower bound the LHS of the last inequality, we
introduce a set of M +1 probability distributions µ0, . . . ,µM on Σ̃L and use the fact that

inf
eJ

sup
f∈eΣL

Pf ( eJ 6= Jf )≥ inf
eJ

1

M +1

M
∑

`=0

∫

eΣL

Pf ( eJ 6= Jf )µ`(d f). (7)

These measures µ` will be chosen in such a way that for each `≥ 1 there is a set J` of cardinality d ∗ such
that µ`{Jf = J`} = 1 and all the sets J1, . . . , JM are distinct. The measure µ0 is the Dirac measure in 0.
Considering theseµ`s as “prior” probability measures on Σ̃L and defining the corresponding “posterior”
probability measures P0,P1, . . . ,PM by

P`(A) =
∫

Σ̃L

Pf (A)µ`(d f), for every measurable set A ⊂Rn ,

we can write the inequality (7) as

inf
eJ

sup
f∈eΣL

Pf ( eJ 6= Jf )≥ inf
ψ

1

M +1

M
∑

`=0

P`(ψ 6= `), (8)

where the inf is taken over all random variables ψ taking values in {0, . . . , M }. The latter inf will be
controlled using a suitable version of the Fano lemma, see Fano (1961). In what follows, we denote
byK (P,Q) the Kullback-Leibler divergence between two probability measures P and Q defined on the
same probability space.

Lemma 2 (Corollary 2.6 of Tsybakov (2009)) Let (X ,A ) be a measurable space and let P0, . . . , PM be
probability measures on (X ,A ). Let us set p̄e ,M = infψ(M + 1)−1

∑M
`=0 P`

�

ψ 6= `
�

where the inf is taken
over all measurable functionsψ :X →

�

0, . . . , M
	

. If for some 0<α< 1

1

M +1

M
∑

`=0

K
�

P`, P0
�

≤α log M ,

then

p̄e ,M ≥
log(M +1)− log 2

log M
−α.
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It follows from this lemma that one can deduce a lower bound on p̄e ,M , which is the quantity we are
interested in, from an upper bound on the average Kullback-Leibler divergence between the measures
P` and P0. This roughly means that the measures µ` should not be very far from µ0 but the probability
measures µ` should be very different one from another in terms of the sparsity pattern of a function f
randomly drawn according to µ`. This property is ensured by the following result.

Lemma 3 Suppose µ0 = δ0, the Dirac measure at 0∈ ΣL . Let S be a subset of Zd of cardinality |S| and A
be a constant. Define µS as a discrete measure supported on the finite set of functions {fω =

∑

k∈S Aωkϕk :
ω ∈ {±1}S} such that µS(f = fω) = 2−|S| for every ω ∈ {±1}S , i.e., the ωk ’s are i.i.d. Rademacher random
variables under µS . If, for some ε≥ 0, the condition

1

n

n
∑

i=1

ϕk (X i )ϕk ′ (X i )≤ ε ∀k , k ′ ∈S

is fulfilled, then

K (P1,P0)≤ log

�

∫

�dP1

dP0
(y )
�2
P0(dy )

�

≤ 4|S|A4n 2
n

1+
|S|ε

4nA2

o

.

These evaluations lead to the following theorem, that tells us that the conditions to which we have
resorted for proving the consistency in Section 3 are nearly optimal.

Theorem 4 Let the design X 1, . . . , X n ∈ [0, 1]d be deterministic and satisfy (6). Let γ∗ the largest real num-
ber such that d ∗γ∗ is integer and L ≥ γ∗(1+1/2z γ∗ ). If for some positive number α< (log 3− log 2)/log 3

(N1(d ∗,γ∗)−N2(d ∗,γ∗))2 log
� d

d ∗
�

n 2N1(d ∗,γ∗)
≥
α

5
, (9)

then there exists a positive constant c > 0 and a d 0 ∈N such that, if d ∗ ≥ d 0,

inf
eJ

sup
f∈eΣL

Pf ( eJ 6= Jf )≥ c .

Proof: We apply the Fano lemma with M =
� d

d ∗
�

. We chooseµ0, . . . ,µM as follows. µ0 is the Dirac measure

δ0, µ1 is defined as in Lemma 3 with S =C1(d ∗,γ∗) and A =
�

N1(d ∗,γ∗)−N2(d ∗,γ∗)
�−1/2. The measures

µ2, . . . ,µM are defined similarly and correspond to the M − 1 remaining sparsity patterns of cardinality
d ∗.

In view of inequality (8) and Lemma 2, it suffices to show that the measures µ` satisfy µ`(eΣL) = 1 and
∑M
`=0K (P`,P0)≤ (M +1)α log M . Combining Lemma 3 with Card(S) =N1(d ∗,γ∗) and condition (6), one

easily checks that equation (9) implies the desired bound on
∑M
`=0K (P`,P0).

Let us show now that µ1(eΣL) = 1. By symmetry, this will imply that µ`(eΣL) = 1 for every `. Since µ1 is
supported by the set {fω :ω∈ {±1}C1(d ∗,γ∗)}, it is clear that

∑

k1 6=0

θ 2
k [fω] = A2[N1(d ∗,γ∗)−N2(d ∗,γ∗)] = 1

and, for every j = 1, . . . , d ∗,

∑

k∈Zd

k 2
j θ

2
k [fω] =

∑

k∈C1(d ∗,γ∗)

k 2
j A2 =

1

d ∗

d ∗
∑

j=1

∑

k∈C1(d ∗,γ∗)

k 2
j A2 ≤ A2γ∗N1(d ∗,γ∗).

By virtue of Proposition 1, as d ∗ tends to infinity, N1(d ∗,γ∗)/N2(d ∗,γ∗) is asymptotically equivalent to
h(z γ∗ )> 1+2z γ∗ . Hence, for d ∗ large enough,

A2N1(d ∗,γ∗) =
N1(d ∗,γ∗)

N1(d ∗,γ∗)−N2(d ∗,γ∗)
<

1

2z γ∗
+1.

As a consequence, for every j = 1, . . . , d ∗,
∑

k∈Zd

k 2
j θ

2
k [fω]≤ γ

∗
� 1

2z γ∗
+1
�

≤ L,
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where the last inequality follows from the definition of γ∗.

Note that Theorem 4 is concerned by the case where the intrinsic dimension is not too small, which
is the most interesting case in the present context. However, a much simpler result can be established
showing that the conditions of Theorem 1 are tight in the case of fixed intrinsic dimension as well.

Proposition 2 Let the design X 1, . . . , X n ∈ [0, 1]d be either deterministic or random. If for some positive
α< (log 3− log 2)/log 3, the inequality

d ∗
�

log d − log d ∗
�

n
≥α−1

holds true, then there is a constant c > 0 such that inf
eJn

sup f ∈eΣL
Pf ( eJn 6= Jf )≥ c .

6 Discussion

The results proved in previous sections almost exhaustively answer the questions on the existence of
consistent estimators of the sparsity pattern in the problem of nonparametric regression. In fact as
far as only rates of convergence are of interest, the result obtained in Theorem 1 is shown in Section 5
to be unimprovable. Thus only the problem of finding sharp constants remains open. To make these
statements more precise, let us consider the simplified set-up σ = κ = 1 and define the following two
regimes:

• The regime of fixed sparsity, i.e., when the sample size n and the ambient dimension d tend to
infinity but the intrinsic dimension d ∗ remains constant or bounded.

• The regime of increasing sparsity, i.e., when the intrinsic dimension d ∗ tends to infinity along with
the sample size n and the ambient dimension d . For simplicity, we will assume that d ∗ =O(d 1−ε)
for some ε> 0.

In the fixed sparsity regime, in view of Theorem 1, consistent estimation of the sparsity pattern can be
achieved using the estimator bJ as soon as (log d )/n ≤ c?, where c? is the constant defined by

c? =min
� L2

2

2d ∗L2
∞

,
g 2

min

28(1+ L 2)2d ∗N (d ∗, 2L)

�

.

This follows from the fact that the tuning parameter m is fixed and that the probability of the error,
bounded by 3(6m d )d ∗ tends to zero as d →∞. On the other hand, by virtue of Proposition 2, consistent
estimation of the sparsity pattern is impossible if (log d )/n > c ?, where c ? = 2 log 3/(d ∗ log(3/2)). Thus,
up to multiplicative constants c? and c ? (which are clearly not sharp), the result of Theorem 1 cannot
be improved.

In the regime of increasing sparsity, the second inequality in (4) is the most stringent one. Taking
the logarithm of both sides and using formula (5) for N (d ∗, 2L) = N1(d ∗, 2L)−N2(d ∗, 2L), we see that
consistent estimation of J is possible when

c 1d ∗+
1

2
log d ∗+ log log d − log n < c 2, (10)

with c 1 = l2L(z 2L) and c 2 = 2(log(g min)− log(17(σ+ L 2)) + log
n

h(z 2L )z 2L (1−z 2L )(2l′′2L (z 2L )π)1/2

h(z 2L )−1

o

. On the other

hand, by virtue of (5), log
n

[N1(d ∗,γ)−N2(d ∗,γ)]2

N1(d ∗,γ)

o

= d ∗lγ(z γ) − 1
2

log d ∗ − log
nh(z γ)2z γ(1−z γ)(2l′′γ (z γ)π)1/2

(h(z γ)−1)2

o

+ o(1).
Therefore, Theorem 4 yields that it is impossible to consistently estimate J if

c̄1d ∗+
1

2
log d ∗+ log log d −2 log n > c̄2, (11)

where c̄1 = lγ∗ (z γ∗ ) and c̄2 = log
nh(z γ∗ )2z γ∗ (1−z γ∗ )(2l′′γ∗ (z γ∗ )π)

1/2

(h(z γ∗ )−1)2

o

+ log log(3/2)− log 5− log log 3. A very sim-

ple consequence of inequalities (10) and (11) is that the consistent recovery of the sparsity pattern is
possible under the condition d ∗/ log n → 0 and impossible for d ∗/ log n →∞ as n →∞, provided that
log log d =o(log n ).
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Let us stress now that, all over this work, we have deliberately avoided any discussion on the com-
putational aspects of the variable selection in nonparametric regression. The goal in this paper was to
investigate the possibility of consistent recovery without paying attention to the complexity of the se-
lection procedure. This lead to some conditions that could be considered a benchmark for assessing the
properties of sparsity pattern estimators. As for the estimator proposed in Section 3, it is worth noting
that its computational complexity is not always prohibitively large. A recommended strategy is to com-
pute the coefficients bθk in a stepwise manner; at each step K = 1, 2, . . . , d ∗ only the coefficients bθk with
‖k ‖0 = K need to be computed and compared with the threshold. If some bθk exceeds the threshold,
then all the covariates X j corresponding to nonzero coordinates of k are considered as relevant. We
can stop this computation as soon as the number of covariates classified as relevant attains d ∗. While
the worst-case complexity of this procedure is exponential, there are many functions f for which the
complexity of the procedure will be polynomial in d . For example, this is the case for additive models
in which f(x ) = f1(x i 1 )+ . . .+ fd ∗ (x i d ∗ ) for some univariate functions f1, . . . , fd ∗ .

Note also that in the present study we focused exclusively on the consistency of variable selection
without paying any attention to the consistency of regression function estimation. A thorough analysis
of the latter problem being left to a future work, let us simply remark that in the case of fixed d ∗, under
the conditions of Theorem 1, it is straightforward to construct a consistent estimator of the regression
function. In fact, it suffices to use a projection estimator with a properly chosen truncation parameter
on the set of relevant variables. The situation is much more delicate in the case when the sparsity
d ∗ grows to infinity along with the sample size n . Presumably, condition (10) is no longer sufficient
for consistently estimating the regression function. The rationale behind this conjecture is that the
minimax rate of convergence for estimating f in our context, if we assume in addition that the set of
relevant variables is known, is equal n−2/(2+d ∗) = exp(−2 log n/(2+ d ∗)). If the left hand side of (10) is
equal to a constant and log log d = o(log n ), then the aforementioned minimax rate does not tend to
zero, making thus the estimator inconsistent. This heuristical argument shows that there is still some
work to do for getting tight conditions ensuring the consistent estimation of the regression function in
the high dimensional set-up.
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Appendix

A Proof of Theorem 1

The empirical Fourier coefficients can be decomposed as follows:

bθk = θ̃k + z k , where θ̃k =
1

n

n
∑

i=1

ϕk (X i )
g(X i )

f(X i ) and z k =
σ

n

n
∑

i=1

ϕk (X i )
g(X i )

εi . (12)

If, for a multi index k , θk = 0, then the corresponding empirical Fourier coefficient will be close to zero
with high probability. To show this, let us first look at what happens with z k ’s. We have, for every real
number x ,

P
�

|z k |> x
�

�X 1, . . . , X n
�

≤ exp
�

−
x 2

2σ2
k

�

∀k ∈Sm ,d ∗

with

σ2
k =

σ2

n 2

n
∑

i=1

ϕk (X i )2

g(X i )2
≤

2σ2

g 2
minn

.

Therefore, for every k ∈ Sm ,d ∗ , it holds that P
�

|z k | > x |X 1, . . . , X n
�

≤ exp(−n g 2
minx 2/4σ2). This entails

that by setting λ1 = (8σ2d ∗ log(6m d )/n g 2
min)

1/2 and by using the inequalities

Card(Sm ,d ∗ ) =
d ∗
∑

i=0

�

d

i

�

(2m )i ≤ (2m )d
∗

d ∗
∑

i=0

d i

i !

≤ 3(2m d )d
∗ ≤ (6m d )d

∗
,

we get

P
�

max
k∈Sm ,d ∗

|z k |>λ1 |X 1, . . . , X n

�

≤
∑

k∈Sm ,d ∗

P
�

|z k |>λ1 |X 1, . . . , X n

�

≤Card(Sm ,d ∗ )e−n g 2
minλ

2
1/4σ

2 ≤ (6m d )−d ∗ .

Next, we use a concentration inequality for controlling large deviations of θ̃k ’s from θk ’s. Recall that in
view of the definition θ̃k = 1

n

∑n
i=1

ϕk (X i )
g(X i )

f(X i ), we have E(θ̃k ) = θk . By virtue of the boundedness of f, it

holds that |ϕk (X i )
g(X i )

f(X i )| ≤
p

2L∞/g min. Furthermore, the bound V ¬ Var
�ϕk (X i )

g(X i )
f(X i )

�

≤
∫

f 2(x )ϕ
2
k (x )
g(x ) d x ≤

2L2
2/g 2

min combined with Bernstein’s inequality yields

P
�

|θ̃k −θk |> t
�

≤ 2 exp
�

−
nt 2

2(V + t
p

2L∞/3g min)

�

≤ 2 exp
�

−
g 2

minnt 2

4L2
2+ t L∞g min

�

, ∀t > 0.

Let us define λ2 = 4L 2

�

d ∗ log(6m d )
n g 2

min

�1/2
. Then,

P
�

|θ̃k −θk |>λ2
�

≤ 2 exp

�

−
4L2

2d ∗ log(6m d )

L2
2+ L∞L 2

� d ∗ log(6m d )
n

�1/2

�

.

The first inequality in condition (4) implies that the denominator in the exponential is not larger than
2L2

2. Hence,

P
�

max
k∈Sm ,d ∗

|θ̃k −θk |>λ2

�

≤ 2/(6m d )d
∗
.

LetA1 =
�

maxk∈Sm ,d ∗ |z k | ≤λ1
	

andA2 =
�

maxk∈Sm ,d ∗ |θ̃k | ≤λ2
	

. One easily checks that

P
�

J c 6⊂ bJ c �≤P
�

A c
1

�

+P
�

A c
2

�

≤ 3/(6m d )d
∗
.

As for the converse inclusion, we have

P(J 6⊂ bJ )≤P
�

∃j ∈ J s.t. max
k∈Sm ,d ∗ : k j 6=0

|bθk | ≤λ
�

≤ 1
n

∃j ∈ J s.t. max
k∈Sm ,d ∗ :k j 6=0

|θk | ≤ 2λ
o

+P
�

A c
1

�

+P
�

A c
2

�

.

11



We show now that the first term in the last line is equal to zero. If this was not the case, then for some
value j0 we would have Q j0 ≥ κ and |θk | ≤ 2λ, for all k ∈Sm ,d ∗ such that k j0 6= 0. This would imply that

Q j0,m ,d ∗¬
∑

k∈Sm ,d ∗ :k j0 6=0

θ 2
k ≤ 4λ2N (d ∗, m 2/d ∗).

On the other hand,

Q j0 −Q j0,m ,d ∗ ≤
∑

‖k ‖2≥m

θ 2
k ≤m−2

∑

‖k ‖2≥m

∑

j∈J

k 2
j θ

2
k ≤

Ld ∗

m 2
.

Remark now that the choice of the truncation parameter m proposed in the statement of the proposi-
tion implies that Q j0 −Q j0,m ,d ∗ ≤ κ/2. Combining these estimates, we get Q j0 ≤

κ
2
+ 4λ2N (d ∗, m 2/d ∗),

which is impossible since Q j0 ≥ κ.

B Proof of Proposition 1

Proof of the first assertion. This proof can be found in Mazo and Odlyzko (1990), we repeat here the
arguments therein for the sake of keeping the paper self-contained. Recall that N1(d ∗,γ) admits an
integral representation with the integrand:

h(z )d ∗

z γd ∗
1

z (1− z )
=

1

z (1− z )
exp

�

d ∗ log

�

h(z )
z γ

��

.

For any real number y > 0, we defineφ(y ) = e−y h′(e−y )/h(e−y ) =
∑k=+∞

k=−∞ k 2e−y k 2
/
∑k=+∞

k=−∞ e−y k 2 in such
a way that

φ(y ) = γ ⇐⇒
h′(e−y )
h(e−y )

=
γ

e−y
⇐⇒ l′γ(e

−y ) = 0.

By virtue of the Cauchy-Schwarz inequality, it holds that
∑

k 4e−y k 2
∑

e−y k 2
>
�∑

k 2e−y k 2
�2

, ∀y ∈ (0,∞),

implying that φ′(y ) < 0 for all y ∈ (0,∞), i.e., φ is strictly decreasing. Furthermore, φ is obviously
continuous with limy→0φ(y ) = +∞ and limy→∞φ(y ) = 0. These properties imply the existence and the
uniqueness of yγ ∈ (0,∞) such that φ(yγ) = γ. Furthermore, as the inverse of a decreasing function, the
function γ 7→ yγ is decreasing as well. We set z γ = e−yγ so that γ 7→ z γ is increasing.

We also have

l′′γ (z γ) =
h′′h− (h′)2

h2
(z γ)+

γ

z 2
γ

= z−2
γ

�

∑

k (k
4−k 2)z k 2

γ
∑

k z k 2

γ

−
�

∑

k k 2z k 2

γ
∑

k z k 2

γ

�2

+γ
�

= z−2
γ

�

−φ′(yγ)−φ(yγ)+γ
	

=−z−2
γ φ

′(yγ)> 0.

Proof of the second assertion. We apply the saddle-point method to the integral representing N1 see,
e.g., Chapter IX in Dieudonné (1968). It holds that

N1(d ∗,γ) =
1

2πi

∮

|z |=z γ

h(z )d ∗

z γd ∗
d z

z (1− z )
=

1

2πi

∮

|z |=z γ

{z (1− z )}−1e d ∗lγ(z )d z . (13)

The first assertion of the proposition provided us with a real number z γ such that l′γ(z γ) = 0 and l′′γ (z γ)>
0. The tangent to the steepest descent curve at z γ is vertical. The path we choose for integration is the
circle with center 0 and radius z γ. As this circle and the steepest descent curve have the same tangent
at z γ, applying formula (1.8.1) of Dieudonné (1968) (with α= 0 since l′′(z γ) is real and positive), we get
that

1

2πi

∮

|z |=z γ

{z (1− z )}−1e d ∗lγ(z )d z =
1

2πi

È

2π

d ∗l′′γ (z γ)
e iπ/2{z γ(1− z γ)}−1e d ∗lγ(z γ)(1+o(1)),

when d ∗→∞, as soon as the condition1 ℜ[lγ(z )− lγ(z γ)]≤−µ is satisfied for some µ > 0 and for any z
belonging to the circle |z | = |z γ| and lying not too close to z γ. To check that this is indeed the case, we

1ℜu stands for the real part of the complex number u .
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remark thatℜ[lγ(z )] = log
�

�

h(z )
z γ

�

�. Hence, if z = z γe iω withω∈ [ω0, 2π−ω0] for someω0 ∈]0,π[, then

�

�

�

h(z )
z γ

�

�

�=
|1+2z +2

∑

k>1 z k 2 |
z γγ

≤
|1+ z |+ z γ+2

∑

k>1 z k 2

γ

z γγ
≤
|1+ e iω0 z γ|+ z γ+2

∑

k>1 z k 2

γ

z γγ
.

Therefore ℜ[lγ(z )−ℜlγ(z γ)] ≤ −µ with µ = log
�

1+2z γ+
∑

k≥1 z k 2
γ

|1+z γe iω0 |+z γ+
∑

k≥1 z k 2
γ

�

> 0. This completes the proof for

the term N1(d ∗,γ). The term N2(d ∗,γ) can be dealt in the same way.

C Proof of Lemma 3

Letφ(·) be the density ofN (0, 1) and let

pf (y )¬
n
∏

i=1

φ
�

yi − f(X i )
�

, ∀y ∈Rn .

Since the errors εi are Gaussian, the posterior probabilities P0 and P1 are absolutely continuous w.r.t.
the Lebesgue measure on Rn and admit the densities

p0(y ) =
n
∏

i=1

φ(yi ), and p1(y ) =Ef∼µS pf (y ), ∀y ∈Rn .

Simple algebra yields:

pf (y ) =Cfp0(y )
n
∏

i=1

exp
n

yi f(X i )
o

, ∀y ∈Rn ,

where Cf =
∏n

i=1 exp
�

− f(X i )2/2
	

. Thus,

p1

p0
(y ) =Ef∼µS

h

Cf

n
∏

i=1

exp
n

yi f(X i )
oi

.

Therefore,
∫

Rn

�p1

p0
(y )
�2

p0(y )d y =E(f ,f ′)∼µS⊗µS

h

CfCf ′

∫

Rn

n
∏

i=1

�

exp
n

yi (f + f ′)(X i )
o

φ(yi )
�

d y
i

=E(f ,f ′)∼µS⊗µS

h

CfCf ′

n
∏

i=1

exp
�1

2
(f + f ′)2(X i )

�i

=E(f ,f ′)∼µS⊗µS

h

exp
�

n
∑

i=1

f(X i )f ′(X i )
�i

=
1

22|S|

∑

ω,ω′∈{±1}S

∏

k ,k ′∈S

exp
�

ωkω
′
k ′bk k ′

�

,

where bk k ′ = A2
∑n

i=1ϕk (X i )ϕk ′ (X i ), for all k , k ′ ∈S. Note that 0≤bk k ≤ 2A2n and |bk k ′ | ≤ A2nε, for all
k , k ′ ∈S such that k ′ 6= k . Now, on the one hand, for a fixed pair (ω,ω′), we have

∏

k 6=k ′
exp

�

ωkω
′
k ′bk k ′

�

≤ exp
�

|S|2A2nε
�

.

On the other hand, if we are given a sequence of numbers (bk k ) indexed by S, we have

1

22|S|

∑

ω,ω′

∏

k∈S

eωkω
′
k bk k =

∏

k∈S

e bk k + e−bk k

2
≤
∏

k∈S

e b 2
k k ≤ exp

�

4|S|A4n 2
�

.

From these remarks it results that
∫ d

R

�p1

p0
(y )
�2

p0(y )dy ≤ exp
�

4|S|A4n 2
n

1+
|S|ε

4nA2

o�

,

and the claim of the lemma follows.
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D Proof of Proposition 2

Let M =
� d

d ∗
�

and let {f0, f1, . . . , fM } be a set included in eΣL . Let I1, . . . , IM be all the subsets of {1, . . . , d }
containing exactly d ∗ elements somehow enumerated. Let us set f0 ≡ 0 and define f`, for ` 6= 0, by its
Fourier coefficients {θ `k : k ∈Zd } as follows:

θ `k =

¨

1, k = (k1, . . . , kd ) = (11∈I` , . . . , 1d∈I` ),
0, otherwise.

Obviously, all the functions f` belong to Σ and, moreover, each f` has I` as sparsity pattern. One easily
checks that our choice of f` impliesK (Pf` , Pf0 ) = n‖f` − f0‖2

2 = n . Therefore, if α log M = α log
� d

d ∗
�

≥ n ,

the desired inequality is satisfied. To conclude it suffices to note that log
� d

d ∗
�

is larger than or equal to
d ∗ log(d /d ∗) = d ∗

�

log d − log d ∗
�

.
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