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Abstract

Approachability has become a standard tool in analyzing learning algorithms in the adversarial
online learning setup. We develop a variant of approachability for games where there is ambiguity
in the obtained reward that belongs to a set, rather than being a single vector. Using this variant
we tackle the problem of approachability in games with partial monitoring and develop simple and
efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider
external and internal regret in repeated games with partial monitoring, for which we derive regret-
minimizing strategies based on approachability theory.

1 Introduction
Blackwell’s approachability theory and its variants has become a standard and useful tool in analyzing online
learning algorithms (Cesa-Bianchi and Lugosi, 2006) and algorithms for learning in games (Hart and Mas-
Colell, 2000, 2001). The first application of Blackwell’s approachability to learning in the online setup is
due to Blackwell himself in Blackwell (1956b). Numerous other contributions are summarized in Cesa-
Bianchi and Lugosi (2006). Blackwell’s approachability theory enjoys a clear geometric interpretation that
allows it to be used in situations where online convex optimization or exponential weights do not seem to be
easily applicable and, in some sense, to go beyond the minimization of the regret and/or to control quantities
of a different flavor; e.g., in Mannor et al. (2009), to minimize the regret together with path constraints,
and in Mannor and Shimkin (2008), to minimize the regret in games whose stage duration is not fixed.
Recently, it has been shown that approachability and low regret learning are equivalent in the sense that
efficient reductions exist from one to the other (Abernethy et al., 2011). Another recent paper (Rakhlin et al.,
2011) showed that approachability can be analyzed from the perspective of learnability using tools from
learning theory.

In this paper we consider approachability and online learning with partial monitoring in games against
Nature. In partial monitoring the decision maker does not know how much reward was obtained and only gets
a (random) signal whose distribution depends on the action of the decision maker and the action of Nature.
There are two extremes of this setup that are well studied. On the one extreme we have the case where
the signal includes the reward itself (or a signal that can be used to unbiasedly estimate the reward), which is
essentially the celebrated bandits setup. The other extreme is the case where the signal is not informative (i.e.,
it tells the decision maker nothing about the actual reward obtained); this setting then essentially consists of
repeating the same situation over and over again, as no information is gained over time. We consider a setup
encompassing these situations and more general ones, in which the signal is indicative of the actual reward,
but is not necessarily a sufficient statistics thereof. The difficulty is that the decision maker cannot compute
the actual reward he obtained nor the actions of Nature.

Regret minimization with partial monitoring has been studied in several papers in the learning theory
community. Piccolboni and Schindelhauer (2001), Mannor and Shimkin (2003), Cesa-Bianchi et al. (2006)
study special cases where an accurate estimation of the rewards (or worst-case rewards) of the decision
maker is possible thanks to some extra structure. A general policy with vanishing regret is presented in
Lugosi et al. (2008). This policy is based on exponential weights and a specific estimation procedure for
the (worst-case) obtained rewards. In contrast, we provide approachability-based results for the problem of
regret minimization. On route, we define a new type of approachability setup, with enables to re-derive the
extension of approachability to the partial monitoring vector-valued setting proposed by Perchet (2011a).
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More importantly, we provide algorithms for this approachability problem that are more efficient in the sense
that, unlike previous works in the domain, their complexity is constant over all steps. Moreover, their rates
of convergence are, as in Blackwell (1956b) but for the first time in this general framework, independent of
the game at hand.

The paper is organized as follows. In Section 2 we recall some basic facts from approachability theory.
In Section 3 we propose a novel setup for approachability, termed “robust approachability,” where instead of
obtaining a vector-valued reward, the decision maker obtains a set, that represents the ambiguity concerning
his reward. We provide a simple characterization of approachable convex sets and an algorithm for the set-
valued reward setup. In Section 4 we show how to apply the robust approachability framework to the repeated
vector-valued games with partial monitoring. We provide a simple and constructive algorithm for this setup.
Previous results for approachability in this setup were either non-constructive (Rustichini, 1999) or were
highly inefficient as they relied on some sort of lifting to the space of probability measures on mixed actions
(Perchet, 2011a) and typically required a grid that is progressively refined (leading to a step complexity that
is exponential in the number T of past steps). In Section 5 we apply our results for both external and internal
regret minimization with partial monitoring. In both cases our proofs are simple, lead to algorithms with
constant complexity at each step, and are accompanied with rates. Our results for external regret have rates
similar to Lugosi et al. (2008), but our proof is direct and simpler. For internal regret minimization we present
the first algorithm not relying on a grid being refined over time and the first convergence rates.

2 Some basic facts from approachability theory

In this section we recall the most basic versions of Blackwell’s approachability theorem for vector-valued
payoff functions.

We consider a vector-valued game between two players, a decision maker (first player) and Nature (second
player), with respective finite action sets A and B, whose cardinalities are referred to as NA and NB. We
denote by d the dimension of the reward vector and equip Rd with the `2–norm ‖ · ‖2. The payoff function of
the first player is given by a mapping m : A× B → Rd, which is multi-linearly extended to ∆(A)×∆(B),
the set of product-distributions over A× B.

We consider two frameworks, depending on whether pure or mixed actions are taken.

Pure actions taken and observed. We denote by A1, A2, . . . and B1, B2, . . . the actions in A and B
sequentially taken by each player; they are possibly given by randomized strategies, i.e., the actions At and
Bt were obtained by random draws according to respective probability distributions denoted by xt ∈ ∆(A)
and yt ∈ ∆(B). For now, we assume that the first player has a full monitoring of the pure actions taken
by the opponent player: at the end of round t, when receiving the payoff m(At, Bt), the pure action Bt is
revealed to him.

Definition 1 A set C ⊆ Rd is m–approachable with pure actions if there exists a strategy1 of the first player
such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
At, Bt

)wwwww
2

= 0 a.s.

That is, the first player has a strategy that ensures that the average of his vector-valued payoffs converges to
the set C.

Mixed actions taken and observed. In this case, we denote by x1, x2, . . . and y1, y2, . . . the actions in
∆(A) and ∆(B) sequentially taken by each player. We also assume a full monitoring for the first player: at
the end of round t, when receiving the payoff m(xt,yt), the mixed action yt is revealed to him.

Definition 2 In this context, a set C ⊆ Rd is m–approachable with mixed actions if there exists a strategy of
the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

= 0 a.s.

1The original definition given by Blackwell requires uniformity w.r.t. the strategy set of the opponent. We ignore the
uniformity to avoid excessive nomenclature.
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Necessary and sufficient condition for approachability. For closed convex sets there is a simple charac-
terization of approachability that is a direct consequence of the minimax theorem; the condition is the same
for the two settings, whether pure or mixed actions are taken and observed.

Theorem 3 (Blackwell 1956a, Theorem 3) A closed convex set C ⊆ Rd is approachable (with pure or
mixed actions) if and only if

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ∈ C .

In the latter case, an explicit strategy achieves the following convergence rates. We denote by M a bound in
norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6M .

With mixed actions taken and observed, for all strategies of the second player, with probability 1,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6
2M√
T
.

With pure actions taken and observed, for all δ ∈ (0, 1) and for all strategies of the second player, with
probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
At, Bt

)wwwww
2

6
2M√
T

(
1 + 2

√
ln(2/δ)

)
.

The proof is standard and is omitted from this article; it is detailed in the extended version of this paper (Man-
nor et al., 2011).

An associated strategy (that is efficient depending on the geometry of C). Blackwell suggested a simple
strategy with a geometric flavor.

Play an arbitrary x1. For t > 1, given the vector-valued quantities

m̂t =
1

t

t∑
τ=1

m(xτ , Bτ ) or m̂t =
1

t

t∑
τ=1

m(xτ ,yτ ) ,

depending on whether pure or mixed actions are taken and observed, compute the projection ct (in `2–norm)
of m̂t on C. Find a mixed action xt+1 that solves the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂t − ct,m(x,y)

〉
, (1)

where 〈 · , · 〉 is the Euclidian inner product in Rd. The minimax problem above is easily seen to be a (scalar)
zero-sum game and is therefore efficiently solvable using, e.g., linear programming: the associated com-
plexity is polynomial in NA and NB. All in all, this strategy is efficient as soon as the computations of the
required projections onto C in `2–norm can be performed efficiently.

In the case when pure actions are taken and observed, it only remains to draw At+1 at random according
to xt+1.

3 Robust approachability
In this section we extend the results of the previous section to set-valued payoff functions. To this end, we
denote by S

(
Rd
)

the set of all subsets of Rd and consider a set-valued payoff function m : A×B → S
(
Rd
)
.

Pure actions taken and observed. At each round t, the players choose simultaneously respective actions
At ∈ A and Bt ∈ B, possibly at random according to mixed distributions xt and yt. Full monitoring still
takes place for the first player: he observes Bt at the end of round t. However, as a result, the first player
gets the subset m(At, Bt) as a payoff. This models the ambiguity or uncertainty associated with some true
underlying payoff gained.

We extend m multi-linearly to ∆(A)×∆(B) and even to ∆(A×B), the set of joint probability distribu-
tions on A× B, as follows. Let

µ =
(
µa,b

)
(a,b)∈A×B
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be such a joint probability distribution; then m(µ) is defined as a finite convex combination2 of subsets of
Rd,

m(µ) =
∑
a∈A

∑
b∈B

µa,bm(a, b) .

When µ is the product-distribution of some x ∈ ∆(A) and y ∈ ∆(B), we use the notation m(µ) = m(x,y).
We denote by

πT =
1

T

T∑
t=1

δ(At,Bt)

the empirical distribution of the pairs (At, Bt) of actions taken during the first T rounds and will be interested
in the behavior of

1

T

T∑
t=1

m(At, Bt) ,

which can also be rewritten here in a compact way as m(πT ), by linearity of the extension of m.

Definition 4 Let C ⊆ Rd be some set; C is m–approachable with pure actions if there exists a strategy of the
first player such that for all strategies of the second player,

lim sup
T→∞

sup
d∈m(πT )

inf
c∈C
‖c− d‖2 = 0 a.s.

That is, when C is m–approachable with pure actions, the first player has a strategy that ensures that the
average of the sets of payoffs converges to the set C: the sets m(πT ) are included in εT –neighborhoods of C,
where the sequence of εT tends almost-surely to 0.

Mixed actions taken and observed. At each round t, the players choose simultaneously respective mixed
actions xt ∈ ∆(A) and yt ∈ ∆(B). Full monitoring still takes place for the first player: he observes yt at the
end of round t; he however gets the subset m(xt,yt) as a payoff (which, again, accounts for the uncertainty).

The product-distribution of two elements x = (xa)a∈A ∈ ∆(A) and y = (yb)b∈B ∈ ∆(B) will be
denoted by x⊗ y; it gives a probability mass of xayb to each pair (a, b) ∈ A×B. We consider the empirical
joint distribution of mixed actions taken during the first T rounds,

νT =
1

T

T∑
t=1

xt ⊗ yt ,

and will be interested in the behavior of
1

T

T∑
t=1

m(xt,yt) ,

which can also be rewritten here in a compact way as m(νT ), by linearity of the extension of m.

Definition 5 Let C ⊆ Rd be some set; C is m–approachable with mixed actions if there exists a strategy of
the first player such that for all strategies of the second player,

lim sup
T→∞

sup
d∈m(νT )

inf
c∈C
‖c− d‖2 = 0 a.s.

A useful continuity lemma. Before proceeding we provide a continuity lemma. It can be reformulated
as indicating that for all joint distributions µ and ν over A× B, the set m(µ) is contained in a M ‖µ− ν‖1–
neighborhood of m(ν), where M is a bound in `2–norm on m; this is a fact that we will use repeatedly
below.

Lemma 6 Let µ and ν be two probability distributions over A× B. We assume that the set-valued function
m is bounded in norm by M , i.e., that there exists a real number M > 0 such that

∀(a, b) ∈ A× B, sup
d∈m(a,b)

‖d‖2 6M .

Then
sup

d∈m(µ)

inf
c∈m(ν)

‖d− c‖2 6M ‖µ− ν‖1 6M
√
NANB ‖µ− ν‖2 ,

where the norms in the right-hand side are respectively the `1 and `2–norms between probability distributions.
2For two sets S, T and α ∈ [0, 1], the convex combination αS + (1− α)T is defined as{

αs+ (1− α)t, s ∈ S and t ∈ T
}
.
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Proof: Let d be an element of m(µ); it can be written as

d =
∑
a∈A

∑
b∈B

µa,b θa,b

for some elements θa,b ∈ m(a, b). We consider

c =
∑
a∈A

∑
b∈B

νa,b θa,b ,

which is an element of m(ν). Then by the triangle inequality,

‖d− c‖2 =

wwwww∑
a∈A

∑
b∈B

(
µa,b − νa,b

)
θa,b

wwwww
2

6
∑
a∈A

∑
b∈B

∣∣µa,b − νa,b∣∣ ‖θa,b‖2 6M ∑
a∈A

∑
b∈B

∣∣µa,b − νa,b∣∣ .
This entails the first claimed inequality. The second one follows from an application of the Cauchy-Schwarz
inequality.

Necessary and sufficient condition for approachability. We state the condition in the theorem below, as
well as the associated convergence rates. Explicit strategies can be deduced from the proof, which is based
on Theorem 3; these strategies are efficient as soon as projections in `2–norm onto the set C̃ defined in (3)
can be computed efficiently. The latter fact depends on the respective geometries of m and C.

Theorem 7 Suppose that the set-valued function m is bounded in norm by M . A closed convex set C ⊆ Rd
is approachable (with pure or mixed actions) if and only if the following robust approachability condition is
satisfied,

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ⊆ C . (RAC)
In the latter case, the following convergence rates are achieved by a strategy constructed in the proof. With
mixed actions taken and observed, for all strategies of the second player, with probability 1,

sup
d∈m(νT )

inf
c∈C
‖c− d‖2 6

2M√
T

√
NANB .

With pure actions taken and observed, for all δ ∈ (0, 1) and for all strategies of the second player, with
probability at least 1− δ,

sup
d∈m(πT )

inf
c∈C
‖c− d‖2 6

2M√
T

√
NANB

(
1 + 2

√
ln(2/δ)

)
.

Proof: Condition (RAC) is necessary. If the condition does not hold, then there exists y0 ∈ ∆(B) such that
for every x ∈ A, the set m(x,y0) is not included in C, i.e., it contains at least one point not in C. We then
define a mapping D : ∆(A)→ R by

∀x ∈ ∆(A), D(x) = sup
d∈m(x,y0)

inf
c∈C
‖c− d‖2 .

Since C is closed, distances of given individual points to C are achieved; therefore, by the choice of y0, we
get that D(x) > 0 for all x ∈ ∆(A).

We now show that D is continuous on the compact set ∆(A); it thus attains its minimum, whose value
we denote by Dmin > 0. More precisely, it suffices to show that for all x, x′ ∈ ∆(A), the condition
‖x′ − x‖1 6 ε implies that D(x)−D(x′) 6Mε. Indeed, fix δ > 0 and let dδ,x ∈ m(x,y0) be such that

D(x) 6 inf
c∈C

wwc− dδ,xww2
+ δ . (2)

By Lemma 6 (with the choices µ = x ⊗ y0 and ν = x′ ⊗ y0) there exists dδ,x′ ∈ m(x′,y0) such thatwwdδ,x − dδ,x′
ww

2
6Mε+ δ. The triangle inequality entails that

inf
c∈C

wwc− dδ,xww2
6 inf
c∈C

wwc− dδ,x′
ww

2
+Mε+ δ .

Substituting in (2), we get that

D(x) 6Mε+ 2δ + inf
c∈C

wwc− dδ,x′
ww

2
6Mε+ 2δ +D(x′) ,

which, letting δ → 0, proves our continuity claim.
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Assume now that the second player chooses at each round yt = y0 as his mixed action. In the case of
mixed actions taken and observed, denoting

xT =
1

T

T∑
t=1

xt ,

we get that νt = xT ⊗ y0, and hence, for all strategies of the first player and for all T > 1,

sup
d∈m(νT )

inf
c∈C
‖c− d‖2 = D(xT ) > Dmin > 0 ,

which shows that C is not approachable. The case of pure actions taken and observed is treated similarly, with
the sole addition of a concentration argument. By repeated uses of the Hoeffding-Azuma inequality together
with an application of the Borel-Cantelli lemma, δT = ‖πT − νT ‖1 → 0 almost surely as T → ∞. By
applying Lemma 6 as above, we get

sup
d∈m(πT )

inf
c∈C
‖c− d‖2 > sup

d∈m(νT )

inf
c∈C
‖c− d‖2 −MδT > Dmin −MδT ;

we simply take the lim inf in the above inequalities to conclude the argument.

Proof: Condition (RAC) is sufficient. We first show that there exists a strategy of the first player such that,
for all strategies of the opponent player, the sequences (πT ) or (νT ) of the empirical distributions of actions
converge to the set

C̃ =
{
µ ∈ ∆(A× B) : m(µ) ⊆ C

}
(3)

in `2–norm, at the rates prescribed by Theorem 3.
To do so, we identify probability distributions overA×B with vectors in RA×B and consider the vector-

valued payoff function
m : (a, b) ∈ A× B 7−→ δ(a,b) ∈ RA×B ,

which we extend multi-linearly to ∆(A)×∆(B). We have that

πT =
1

T

T∑
t=1

m(At, Bt) and νT =
1

T

T∑
t=1

m(xt,yt)

and we therefore only need to show that C̃ is m–approachable (with pure or mixed actions).
Since m is a linear function on ∆(A × B) and C is convex, the set C̃ is convex as well. In addition,

since C is closed, C̃ is also closed. We can therefore apply the original version of the approachability theorem
(stated in Theorem 3). The desired existence result follows therefore from the fact that by assumption, for all
y ∈ ∆(B), there exists some x ∈ ∆(A) such that µ = m(x,y), the product-distribution between x and y,
belongs to C̃, as it satisfies m(µ) = m(x,y) ⊆ C.

Let PC̃ denote the projection operator onto C̃. We therefore have proved the existence of explicit (and
possibly efficient) strategies—along the lines of the ones presented around (1)—such that, for all strategies
of the second player, with probability 1− δ,

εT :=
wwwπT − PC̃(πT )

www
2

= inf
µ∈C̃
‖πT − µ‖2 6

2√
T

(
1 +

√
2 ln(2/δ)

)
,

and with probability 1, ε′T :=
wwwνT − PC̃(νT )

www
2

= inf
µ∈C̃
‖νT − µ‖2 6

2√
T
.

Lemma 6 entails that the sets m(πT ) are included in M
√
NANB εT –neighborhoods of m

(
PC̃(πT )

)
, and

thus, by definition of C̃, inM
√
NANB εT –neighborhoods of C. A similar statement holds for the sets the sets

m(νT ) and this completes the proof.

4 Application to games with partial monitoring
A repeated vector-valued game with partial monitoring is described as follows (see, e.g., Mertens et al., 1994,
Rustichini, 1999 and the references therein). The players have respective finite action sets I and J . We
denote by r : I × J → Rd the vector-valued payoff function of the first player and extend it multi-linearly
to ∆(I)×∆(J ). At each round, players simultaneously choose their actions It ∈ I and Jt ∈ J , possibly at
random according to probability distributions denoted by pt ∈ ∆(I) and qt ∈ ∆(J ). At the end of a round,
the first player does not observe Jt or r(It, Jt) but only a signal. There is a finite set H of possible signals;
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the feedback St that is given to the first player is drawn at random according to the distribution H(It, Jt),
where the mapping H : I × J → ∆(H) is known by the first player.

Some additional notation will be useful. We denote by R the norm of (the linear extension of) r,

R = max
(i,j)∈I×J

wwr(i, j)ww
2
.

The cardinalities of the finite sets I, J , andH will be referred to as NI , NJ , and NH.
Definition 1 can be extended as follows in this setting; the only new ingredient is the signaling structure,

the aim is unchanged.

Definition 8 Let C ⊆ Rd be some set; C is r–approachable for the signaling structure H if there exists a
strategy of the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

= 0 a.s.

That is, the first player has a strategy that ensures that the sequence of his average vector-valued payoffs
converges to the set C, even if he only observes the random signals St as a feedback.

A necessary and sufficient condition for r–approachability with the signaling structure H was stated and
proved by Perchet (2011a); we therefore need to indicate where our contribution lies. First, both proofs
are constructive but our strategy can be efficient (as soon as some projection operator can be efficiently
implemented) whereas the one of Perchet (2011a) relies on auxiliary strategies that are calibrated and that
require a grid that is progressively refined to be so (leading to a step complexity that is exponential in the
number T of past steps). Second, we are able to exhibit convergence rates. Third, as far as elegancy is
concerned, our proof is short, compact, and more direct than the one of Perchet (2011a), which relied on
several layers of complicated notions (internal regret in partial monitoring, calibration of auxiliary strategies,
etc.).

To recall the mentioned approachability condition of Perchet (2011a) we need some additional notation:
for all q ∈ ∆(J ), we denote by H̃(q) the element in ∆(H)I defined as follows. For all i ∈ I, its i–th
component is given by the following convex combination of probability distributions overH,

H̃(q)i = H(i, q) =
∑
j∈J

qjH(i, j) .

Finally, we denote by F the set of feasible vectors of probability distributions overH:

F =
{
H̃(q) : q ∈ ∆(J )

}
.

A generic element of F will be denoted by σ ∈ F . The necessary and sufficient condition exhibited
by Perchet (2011a) for the r–approachability of C for the signaling structure H can now be recalled.

Condition 1 The signaling structure H , the vector-payoff function r, and the set C satisfy

∀ q ∈ ∆(J ), ∃p ∈ ∆(I), ∀ q′ ∈ ∆(J ), H̃(q) = H̃(q′) ⇒ r(p, q′) ∈ C .

Defining the set-valued function m, for all p ∈ ∆(I) and σ ∈ F , by

m(p, σ) =
{
r(p, q′) : q′ ∈ ∆(J ) such that H̃(q′) = σ

}
,

the condition can be equivalently reformulated as

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C .

This condition is necessary. The next two sections show (in a constructive way and by constructing
strategies) that Condition 1 is sufficient for r–approachability of closed convex sets C given the signaling
structure H . That this condition is necessary was already proved in Perchet (2011a); a slightly simpler
argument can however be found in the extended version of this paper (Mannor et al., 2011).
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4.1 Approachability for deterministic feedback signals only depending on outcome
In this section, we assume that H is of the following form: it only contains Dirac masses, and these Dirac
masses H(i, j) only depend on j. Put differently, the signals St are deterministic functions of the actions Jt;
we thus denote by h : J → H the function such that St = h(Jt) for all t and extend it linearly to ∆(J ).
The condition stated above takes the following simpler form (we assume with no loss of generality that all
elements inH are associated with at least one action j ∈ J , so that F can be identified withH):

∀σ ∈ ∆(H), ∃p ∈ ∆(I), m(p, σ) ⊆ C , (4)
where

m(p, σ) =
{
r(p, q′) : q′ ∈ ∆(J ) such that h(q′) = σ

}
.

The fact that p and σ are unrelated in the definition above entails that m is linear, i.e., that for all p ∈ ∆(I)
and σ ∈ ∆(H),

m(p, σ) =
∑
i∈I

∑
s∈H

pi σsm(i, s) .

In addition, m is also bounded in norm by R. Therefore, we are exactly in the setting of Section 3.

Theorem 9 A closed convex C is r–approachable for the signaling structure h if and only if (4) holds. In this
case, there exists an explicit strategy to do so, at the following rate: for all T , with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6
2R√
T

√
NINH

(
1 + 2

√
ln(2/δ)

)
.

Proof: We need only to show that the stated condition entails approachability. Since by definition of m and
because of the particular signaling structure h,

1

T

T∑
t=1

r(It, Jt) ∈
1

T

T∑
t=1

m(It, St) ,

it is enough to show that C is m–approachable (when the signals St are observed, which is the case). But
Theorem 7 indicates that this is the case when (4) holds.

The efficiency of the obtained strategy depends on the respective geometries ofm and C, as was indicated
before the statement of Theorem 7.

4.2 Approachability with general signaling structures
In this section we consider the case where the signal structure is general. We start from a technical lemma
that is needed to show that m(p, σ) can be written as a finite convex combination of sets of the form m(i, b).
We then describe a (possibly) efficient strategy for approachability followed by convergence rate guarantees.

4.2.1 A preliminary technical result.
With general signaling structures, m is not linear, it only satisfies that for all p ∈ ∆(I), all pairs σ, σ′ ∈ F ,
and all α ∈ [0, 1],

αm(p, σ) + (1− α)m(p, σ′) ⊆ m(p, ασ + (1− α)σ′) ,

with a strict inclusion in general. (Specific examples can be provided.) Therefore, a direct appeal to Theo-
rem 7 is not possible anymore.

However, a similar linearity property on a lifted finite set is given by the geometric lemma stated below.
It follows from an application of Rambau and Ziegler (1996, Proposition 2.4), which entails that since H̃ is
linear on the polytope ∆(J ), its inverse application H̃−1 is a piecewise linear mapping of F into the subsets
of ∆(J ); the detailed proof can be found in the extended version of this paper (Mannor et al., 2011).

Lemma 10 There exist a finite subset B ⊆ F and a mapping Φ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
i∈I

∑
b∈B

pi Φb(σ)m(i, b) ,

where we denoted the convex weight vector Φ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B.

Definition 11 We denote by m the linear extension to ∆(I × B) of the restriction of m to I × B, so that for
all p ∈ ∆(I) and σ ∈ F ,

m(p, σ) = m
(
p, Φ(σ)

)
.

Remark 1 The proof shows that Φ is piecewise linear on a finite decomposition ofF ; it is therefore Lipschitz
on F . We denote by κΦ its Lipschitz constant with respect to the `2–norm.
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Parameters: an integer block length L > 1, an exploration parameter γ ∈ [0, 1], a strategy Ψ for m–approachability of C
Notation: u ∈ ∆(I) is the uniform distribution over I, PF denotes the projection operator in `2–norm of RH×I onto F
Initialization: compute the finite set B and the mapping Φ : F → ∆(B) of Lemma 10, pick an arbitrary x1 ∈ ∆(I)

For all blocks n = 1, 2, . . .,

1. define pn = (1− γ)xn + γ u;

2. for rounds t = (n− 1)L+ 1, . . . , nL,

2.1 drawn an action It ∈ I at random according to pn;
2.2 get the signal St;

3. form the estimated vector of probability distributions over signals,

σ̃n =

 1

L

nL∑
t=(n−1)L+1

I{St=s}I{It=i}

pIt,n


(i,s)∈I×H

;

4. compute the projection σ̂n = PF
(
σ̃n

)
;

5. choose xn+1 = Ψ
(
x1, Φ

(
σ̂1

)
, . . . , xn, Φ

(
σ̂n

))
.

Figure 1: The proposed strategy, which plays in blocks.

4.2.2 Construction of a strategy to approach C.
The approaching strategy for the original problem is based on a strategy Ψ for m–approachability of C,
provided by Theorem 7 and thus solving repeatedly minimax problems of the form (1). We therefore first
need to prove the existence of such a Ψ.

Lemma 12 Under Condition 1, the closed convex set C is approachable.

Proof: We show that Condition (RAC) in Theorem 7 is satisfied, that is, that for all y ∈ ∆(B), there exists a
p ∈ ∆(I) such that m(p,y) ⊆ C. By linearity of m (for the following equality) and by definition of m (for
the following inclusion),

m(p,y) =
∑
b∈B

ybm(p, b) ⊆ m

(
p,
∑
b∈B

yb b

)
.

The existence of the desired p is therefore ensured by Condition 1, applied with σ =
∑
b∈B yb b.

We consider the strategy described in Figure 1. It forces exploration at a γ rate, as is usual in situations
with partial monitoring. One of its key ingredient, that conditionally unbiased estimators are available, is
extracted from Lugosi et al. (2008, Section 6): in block n we consider

Ĥt =
I{St=s}I{It=i}

pIt,n
∈ RH×I ;

averaging over the respective random draws of It and St according to pn and H(It, Jt), i.e., taking the
conditional expectation Et with respect to pn and Jt, we get

Et
[
Ĥt

]
= H̃

(
δJt
)
. (5)

This is why, by concentration-of-the-measure argument, we will be able to show that for L large enough, σ̃n
is close to H̃

(
q̂n
)
, where

q̂n =
1

L

nL∑
t=(n−1)L+1

δJt . (6)

Actually, since F ⊆ ∆(H)I , we have a natural embedding of F into RH×I and we can define PF , the
convex projection operator onto F (in `2–norm). Instead of using directly σ̃n, we consider in our strategy
σ̂n = PF

(
σ̃n
)
, which is even closer to H

(
q̂n
)
.

9



4.2.3 Performance guarantee.
We provide a performance bound for fixed parameters γ and L tuned as functions of T . The proof is provided
in the extended version of this paper (Mannor et al., 2011). Adaptation to T → ∞ can be performed either
by resorting to a standard doubling trick (see, e.g., Cesa-Bianchi and Lugosi 2006, page 17) or by taking
time-varying parameters γt and Lt.

Theorem 13 Under the assumptions of Lemma 12, consider the strategy of Figure 1, run with parameters
γ ∈ [0, 1] and L > 1 and fed with a strategy Ψ for m–approachability of C, provided by the indicated lemma.
Then, for all rounds T > L+ 1 and with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6
2L

T
R+ 4R

√
ln
(
(2T )/(Lδ)

)
T

+ 2γR+
2R√

T/L− 1

√
NINB

+RκΦNH
√
NI

(√
2NI
γL

ln
2NINHT

Lδ
+

1

3

NI
γL

ln
2NINHT

Lδ

)
.

In particular, for all T > 1, the choices of L =
⌈
T 3/5

⌉
and γ = T−1/5 imply that with probability at least

1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 �

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant � depending only on C and on the game (r, H) at hand.

The efficiency of the strategy of Figure 1 depends on whether it can be fed with an efficient approach-
ability strategy Ψ, which in turn depends on the respective geometries of m and C, as was indicated before
the statement of Theorem 7. (Note that the projection onto F can be performed in polynomial time, as the
latter closed convex set is defined by finitely many linear constraints, and that the computation of m can be
performed beforehand.)

5 Application to regret minimization
In this section we analyze external and internal regret minimization in repeated games with partial monitor-
ing from the approachability perspective. Using the results developed for vector-valued games with partial
monitoring, we show how to—in particular—minimize regret in both setups.

5.1 External regret
We consider in this section the framework and aim introduced by Rustichini (1999) and studied, sometimes
in special cases, by Piccolboni and Schindelhauer (2001), Mannor and Shimkin (2003), Cesa-Bianchi et al.
(2006), Lugosi et al. (2008). We show that our general strategy can be used for regret minimization.

Scalar payoffs are obtained (but not observed) by the first player: the payoff function r is a mapping
I × J → R; we still denote by R a bound on |r|. We define in this section

q̂T =
1

T

T∑
t=1

δJT

as the empirical distribution of the actions taken by the second player. The external regret of the first player
at round T equals by definition

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt) ,

where ρ : ∆(I)×F is defined as follows: for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q) : q such that H̃(q) = σ

}
.

The function ρ is continuous in its first argument and therefore the supremum in the defining expression of
Rext
T is a maximum.

We recall briefly why, intuitively, this is the natural notion of external regret to consider in this case.
Indeed, the first term in the definition of Rext

T is (close to) the worst-case average payoff obtained by the first
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player when playing consistently a mixed action p against a sequence of mixed actions inducing the same
laws on the signals.

The following result is an easy consequence of Theorem 13, as is explained below; it corresponds to the
main result of Lugosi et al. (2008), with the same convergence rate but with a different strategy. (However,
Perchet 2011b, Section 2.3 exhibited an efficient strategy achieving a convergence rate of order T−1/3, which
is optimal; a question is thus whether the rates exhibited in Theorem 13 could be improved.)

Corollary 14 For all T , the first player has a strategy such that, for all strategies of the second player and
with probability at least 1− δ,

Rext
T 6 �

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant � depending only on the game (r, H) at hand.

The proof below is an extension to the setting of partial monitoring of the original proof and strategy
of Blackwell (1956b) for the case of external regret under full monitoring: in the case of full monitoring the
vector-payoff function r and the set C considered in our proof are equal to the ones considered by Blackwell.

Proof: As usual, we embed ∆(J ) into RJ so that in this proof we will be working in the vector space
R× RJ . We consider the convex set C and the vector-valued payoff function r respectively defined by

C =

{
(z, q) ∈ R×∆(J ) : z > max

p∈∆(I)
ρ
(
p, H̃(q)

)}
and r(i, j) =

[
r(i, j)
δj

]
,

for all (i, j) ∈ I × J . We now show that C is r–approachable for H , i.e., by the results of Section 4, that
Condition 1 is satisfied. To do so, we associate with each q ∈ ∆(J ) an element φ(q) ∈ ∆(I) such that

φ(q) ∈ argmax
p∈∆(I)

ρ
(
p, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), we have, by definition of ρ,

r
(
φ(q), q′

)
> ρ
(
φ(q), H̃(q′)

)
= max

p∈∆(I)
ρ
(
p, H̃(q′)

)
,

which shows that r
(
φ(q), q′

)
∈ C. The required condition is thus satisfied.

To exhibit the convergence rates, we use the fact that the mapping

q ∈ ∆(J ) 7−→ max
p∈∆(I)

ρ
(
p, H̃(q)

)
is Lipschitz, with Lipschitz constant in `2–norm denoted by Lρ; this fact is proved below. Now, the regret is
non positive as soons as

∑T
t=1 r(It, Jt)/T belongs to C; we therefore only need to consider the case when

this average is not in C. In the latter case, we denote by (r̃T , q̃T ) its projection in `2–norm onto C. We have
first that the defining inequality of C is an equality on its border, so that

r̃T = max
p∈∆(I)

ρ
(
p, H̃

(
q̃T
))

;

and second, that

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt)

6

∣∣∣∣ max
p∈∆(I)

ρ
(
p, H̃

(
q̂T
))
− max

p∈∆(I)
ρ
(
p, H̃

(
q̃T
))∣∣∣∣+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6 Lρ

wwq̂T − q̃T
ww

2
+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6
√

2 max
{
Lρ, 1

} wwwww
[
r̃T
q̃T

]
− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

=
√

2 max
{
Lρ, 1

}
inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

.
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The rates follow from the ones indicated in Theorem 13.
It only remains to prove the indicated Lipschitzness. (All Lipschitzness statements that follow will be

with respect to the `2–norm.) We prove that Lρ = RκΦ

√
NINJNB. On the one hand, for every i ∈ I, the

mappings q ∈ ∆(J ) 7→ H(i, q) are
√
NJ –Lipschitz as the ‖H(i, j)‖2 are bounded by 1 for all j. Thus, the

mapping q ∈ ∆(J ) 7→ H̃(q) is
√
NINJ –Lipschitz. On the other hand, we have by definition that for all

p ∈ ∆(I) and σ ∈ F ,
ρ(p, σ) = min m

(
p,Φ(σ)

)
,

and that (by Remark 1) the mapping σ ∈ F 7→ Φ(σ) is κΦ–Lipschitz; this entails, by Lemma 6, that for all
p ∈ ∆(I), the mapping σ ∈ F 7→ ρ(p, σ) is R

√
NB κΦ–Lipschitz. In particular, since the latter Lipschitz

constant is independent of p, the mapping σ ∈ F 7→ maxp∈∆(I) ρ(p, σ) is R
√
NB κΦ–Lipschitz as well.

Combining the two Lipschitz mappings yields yet another Lipschitz mapping, whose Lipschitz constant is
the product of the Lipschitz constants of the base two mappings.

5.2 Internal / swap regret
Foster and Vohra (1999) defined internal regret with full monitoring as follows. A player has no internal
regret if, for every action i ∈ I, he has no external regret on the stages when this specific action i was played.
In other words, i is the best response to the empirical distribution of action of the other player on these stages.

With partial monitoring, the first player evaluates his payoffs in some pessimistic way through the function
ρ defined above. This function is not linear over ∆(I) in general (it is concave), so that the best responses
are not necessarily pure actions i ∈ I but mixed actions, i.e., elements of ∆(I). Following Lehrer and Solan
(2007) we therefore should partition the stages not depending on the pure actions actually played but on the
mixed actions pt ∈ ∆(I) used to draw them. To this end, it is convenient to assume that the strategies of
the first player need to pick these mixed actions in a finite (but possibly thin) grid of ∆(I), which we denote
by
{
pg, g ∈ G

}
, where G is a finite set. At each round, the first player picks an index Gt ∈ G and uses

the distribution pGt
to draw his action It. Up to a standard concentration-of-the-measure argument, we will

measure the payoff at round t with r
(
pGt

, Jt
)

rather than with r(It, Jt).
For each g ∈ G, we denote by NT (g) the number of stages in {1, . . . , T} for which we had Gt = g and,

whenever NT (g) > 0,

q̂T,g =
1

NT (g)

∑
t:Gt=g

δJt .

We define q̂T,g is an arbitrary way when NT (g) = 0. The internal regret of the first player at round T is
measured as

Rint
T = max

g,g′∈G

NT (g)

T

(
ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Actually, our proof technique rather leads to the minimization of some swap regret (see Blum and Mansour,
2007 for the definition of swap regret in full monitoring):

Rswap
T =

∑
g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Again, the following bound on the swap regret easily follows from Theorem 13; the latter constructs a
simple and direct strategy to control the swap regret, thus also the internal regret. It therefore improves on
the results of Lehrer and Solan (2007), Perchet (2009), two articles which presented complicated strategies
to do so (strategies based on auxiliary strategies using a grid that needs to be refined over time and whose
complexities is exponential in the size of these grids). Moreover, we provide convergence rates.

Corollary 15 For all T , the first player has an explicit strategy such that, for all strategies of the second
player and with probability at least 1− δ,

Rswap
T 6 �

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant � depending only on the game (r, H) at hand and on the size of the finite grid G.

The proof of this corollary is based on ideas similar to the ones used in the proof of Corollary 14; it can
be found in the extended version of this paper (Mannor et al., 2011).
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In the analyses performed in Section 4 of the original paper, we used a linearity property which we
realized was incorrect; all mentioned results still hold up to a slight twist on the algorithms to be used. We
use below the notation of the original paper without explicitly redefining them.

1 Description of Error
The incorrect statement can be found at the end of the proof of the geometric lemma (Lemma 10):

[...] The proof is concluded by noting that by definition, for all σ ∈ F , the applications p ∈ ∆(I) 7→ m(p, σ)
are linear.

A similar incorrect property of linearity in the first argument was also used in the (warm-up) Section 4.1.
However, with the needed correction, the special case of Section 4.1 will no longer be much easier to handle
than the general result; hence, this section should simply be discarded.

The example below illustrates why m is in general not linear in its first argument (just as it is not linear
in its second argument neither).

Example 1 We consider a game in which the second player (when playing L and M ) can force the first
player to play a game of matching pennies in the dark; in the matrix below, the real numbers denote the
payoff while ♣ and ♥ denote the two possible signals.

L M R

T 1 / ♣ −1 / ♣ 2 / ♥
B −1 / ♣ 1 / ♣ 3 / ♥

A straightforward calculation shows that

m(δT ,♣) = m(δB ,♣) = [−1, 1] while m

(
1

2
δT +

1

2
δB , ♣

)
= {0} .

Actually, the inclusion
m(p, σ) ⊆

∑
i∈I

pim(i, σ)

is true for all games, all p ∈ ∆(I), and σ ∈ F , but it is a strict inclusion in general. Therefore, the linear
extension m to ∆(I × B) of the restriction of m to I × B considered in the original paper does not coincide
with m, contrary to what is stated in Definition 11. Yet, we need some linear set-valued mapping to apply the
general results of Section 3.
∗CNRS – Ecole normale supérieure, Paris – INRIA, within the project-team CLASSIC



A study of the properties of the mapping p 7→ m(p,♣) sheds however some light on a possible patch,
along the same lines as the construction already exhibited in Lemma 10 to get some linearity for m in its
second argument, up to the extension of the set of pure actions J to a finite set of possibly mixed actions B.

Indeed, p 7→ m(p,♣) is piecewise linear, which can be seen by introducing a set A of possibly mixed
actions extending the set I = {T, B} of pure actions and containing

pT = δT , pB = δB , and p1/2 =
1

2
δT +

1

2
δB .

Each mixed action in ∆(I) can be uniquely written as pλ = λ δB + (1−λ) δT for some λ ∈ [0, 1]. Now, for
λ > 1/2, by definition of m,

m
(
pλ, ♣

)
= [1− 2λ, 2λ− 1] ,

so that we have the convex decomposition

m
(
pλ, ♣

)
= (2λ− 1)m(δB ,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) ,

which can be restated as

m
(

(2λ− 1) δB +
(
1− (2λ− 1)

)
p1/2, ♣

)
= (2λ− 1)m(δB ,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) .

That is, m( · , ♣) is linear on the subset of ∆(I) corresponding to mixed actions pλ with λ > 1/2. Since a
similar property holds the subset of distributions with λ 6 1/2, we have proved that m( · , ♣) is piecewise
linear on ∆(I).

We now prove that —just as in Lemma 10 of the original paper— this entails a linearity property on a
lifted space.

Outline of this corrigendum
In the next section, we adapt the statement and proof of convergence of our approachability strategy to the
class of games of partial monitoring such that the mappings m( · , b) are piecewise linear for all b ∈ B; we
also show that the minimization of (external or internal) regrets fall in this case. In a third and last section,
we will show how the approachability of a general closed convex set for a general game can be handled.

2 Bi-Piecewise Linear Games — Minimization of Regrets
We first state what the proof of Lemma 10 of the original paper correctly shows.

Lemma 1 For any game of partial monitoring, there exists a finite set B ⊂ F and a piecewise-linear (injec-
tive) mapping Φ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
b∈B

Φb(σ)m(p, b) ,

where we denoted the convex weight vector Φ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B.

The results of this section will rely on the following assumption.

Assumption 1 A game is bi-piecewise linear if m( · , b) is piecewise linear on ∆(I) for every b ∈ B.

Assumption 1 means that for all b ∈ B there exists a decomposition of ∆(I) into polytopes each on which
m( · , b) is linear. Since B is finite, there exists a finite number of such decompositions, and thus there exists a
polytopial decomposition that refines all of them. (The latter is generated by the intersection of all considered
polytopes as b varies.) By construction, every m( · , b) is linear on any of the polytopes of this common
decomposition. We denote by A ⊂ ∆(I) the finite subset of all their vertices: a construction similar to the
one used in the proof of Lemma 10 then leads to a piecewise linear (injective) mapping Θ : ∆(I)→ ∆(A),
where Θ(p) is the decomposition of p on the vertices of the polytope(s) of the decomposition to which it
belongs, satisfying

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) =
∑
a∈A

Θa(p)m(a, b) ,

where we denoted the convex weight vector Θ(p) ∈ ∆(B) by
(
Θa(p)

)
a∈A. Therefore, on a lifted space, m

is seen to coincide with a bi-linear mapping.

Definition 2 We denote by m the linear extension to ∆(A× B) of the restriction of m to A× B, so that for
all p ∈ ∆(I) and σ ∈ F ,

m(p, σ) = m
(
Θ(p), Φ(σ)

)
.
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The main argument follows the same lines as Section 4.2.2 of the original paper: we construct an (r,H)–
approachability strategy for the original problem based on a strategy for m–robust approachability of C. We
do so by considering the following equivalent to Lemma 12 of the original paper. Condition 1 refers to the
condition

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C
stated in the original paper; we indicated therein that it was necessary and we need to adapt the proof of its
sufficiency.

Lemma 3 Under Condition 1, the closed convex set C is m–robust approachable.

Proof: We show that Condition (RAC) in Theorem 7 of the original paper is satisfied, that is, that for all
y ∈ ∆(B), there exists some x ∈ ∆(A) such that m(x,y) ⊆ C. With a given such y ∈ ∆(B), we associate
the feasible vector of signals σ =

∑
b∈B yb b and let p be given by Condition 1, so1 that m(p, σ) ⊂ C. By

linearity of m (for the first equality), by definition of m (for the first inclusion), by Lemma 1 (for the second
and fourth equalities), by construction of A (for the third equality),

m
(
Θ(p),y

)
=
∑
a∈A

Θa(p)
∑
b∈B

ybm(a, b) ⊆
∑
a∈A

Θa(p)m(a, σ) =
∑
a∈A

Θa(p)
∑
b∈B

Φb(σ)m(a, b)

=
∑
b∈B

Φb(σ)m(p, b) = m(p, σ) ⊂ C ,

which concludes the proof.

We now indicate how our algorithm (stated in Figure 1 of the original paper) should be slightly adapted;
we only write the steps that need a modification.

[...]

Initialization: [...] pick an arbitrary θ1 ∈ ∆(A)

For all blocks n = 1, 2, . . .,

1. define xn =
∑

a∈A θn,a a and pn = (1− γ)xn + γ u;

[...]

5. choose θn+1 = Ψ
(
θ1, Φ

(
σ̂1

)
, . . . , θn, Φ

(
σ̂n

))
.

Figure 1: The modifications to perform on the proposed strategy.

The proof that this strategy indeed approaches C at T−1/5 rate with overwhelming probability is adapted
as follows from the proof of Theorem 13, which can be found in the extended arXiv version of the original
paper. The approximation and concentration results stated in Equations (9)–(11) remain unchanged, so that

1

T

T∑
t=1

r(It, Jt) is close to
1

N

N∑
n=1

r
(
xn, q̂n

)
=

1

N

N∑
n=1

∑
a∈A

θn,a r
(
a, q̂n

)
.

Now, by definition of m,

1

N

N∑
n=1

∑
a∈A

θn,a r
(
a, q̂n

)
belongs to the set

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))
.

By definition of Φ and by linearity of m,

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

=
1

N

N∑
n=1

∑
(a,b)∈A×B

θn,a Φb

(
H̃
(
q̂n
))
m(a, b)

=
1

N

N∑
n=1

m

(
θn, Φb

(
H̃
(
q̂n
)))

.

1Note however that we do not necessarily have that Φ(σ) and y are equal, as Φ is not a one-to-one mapping.
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Equation (12) can be adapted along the same lines as in the original paper, since its proof only relied on a
Lipschitzness property and a concentration argument:

1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

is close to the set
1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))
.

Finally, since Ψ is a strategy designed for the m–robust approachability of C,

1

N

N∑
n=1

m
(
xn, Φ

(
σ̂n
))

gets closer and closer to the set C when n→∞,

which concludes this (sketch of) proof.

Minimization of Regrets
It only remains to indicate why the results of Section 5 of the original paper (on minimization of regrets)
still hold. For the case of external regret, for instance, we can find a convex set C and a vector-valued payoff
function r, that first, satisfy Assumption 1 and second, are such that Rext

T is still upper bounded by (a constant
depending on the game only times) the distance of the average payoff vector (1/T )

∑
t6T r(It, Jt) to C.

These are indeed given by

C =

{
(z, σ) ∈ R×F : z > max

p∈∆(I)
ρ(p, σ)

}
and r(i, j) =

[
r(i, j)

H̃(δj)

]
,

for all (i, j) ∈ I × J . That (r, H)–approachability of C entails minimization of the regret Rext
T is straight-

forward along the same lines as the first part of the proof of Corollary 14 in the original paper.
It only remains to prove that Assumption 1 is satisfied. To do so, we will actually prove the stronger

property that the mappings m(·, σ) are piecewise linear for all σ ∈ F ; we fix such a σ in the sequel. Only the
first coordinate of r depends on p, so the desired property is true if and only if the mapping m1( · , σ) defined
by

p ∈ ∆(I) 7−→ m1(p, σ) =
{
r(p, q′) : q ∈ ∆(J ) such that H̃(q) = σ

}
is piecewise linear. Since H̃ is linear, the set{

q ∈ ∆(J ) such that H̃(q) = σ
}

is a polytope, thus, the convex hull of some finite set {qσ,1, . . . , qσ,M} ⊂ ∆(J ). Therefore, for every
p ∈ I, by linearity of r (and by the fact that it takes one-dimensional values),

m1(p, σ) = co
{
r(p, qσ,1), . . . , r(p, qσ,M )

}
=

[
min

k∈{1,..,M}
r(p, qσ,k) , max

k′∈{1,..,M}
r(p, qσ,k′)

]
,

where co stands for the convex hull. Since all applications r( · , qσ,k) are linear, their minimum and their
maximum are piecewise linear functions, thus m1( · , σ) is also piecewise linear.

For the internal regret, the bi-piecewise linearity of the game (up to the same slight modification of the
payoff function r and of the definition of C) follows from a similar argument.

3 The Case of General Games
Unfortunately, as the example below illustrates, there exist game that are not bi-piecewise linear.

Example 2 Consider the following game.

L M R

T (1, 0, 0, 0) / ♣ (0, 0, 1, 0) / ♣ (2, 0, 4, 0) / ♥
B (0, 1, 0, 0) / ♣ (0, 0, 0, 1) / ♣ (0, 3, 0, 5) / ♥
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We denote mixed actions of the first player by (p, 1− p), where p ∈ [0, 1] denotes the probability of playing
T and 1 − p is the probability of playing B. It is immediate that m

(
(p, 1 − p), ♣

)
can be identified with

the set of all product-distributions on 2× 2 elements with first marginal distribution (p, 1− p). The proof of
Lemma 1 shows that the set B associated with any game always contains the Dirac masses on each signal;
that is, δ♣ ∈ B. But for p 6= p′ and λ ∈ (0, 1), denoting p = λ p+ (1− λ)p′, one necessarily has that

m
(
(p, 1− p), ♣

)
 λm

(
(p, 1− p), ♣

)
+ (1− λ)m

(
(p′, 1− p′), ♣

)
;

the inclusion ⊆ holds by definition of m but this inclusion is always strict here since the left-hand side
is formed by product-distributions while the right-hand side also contains distributions with correlations.
Hence, bi-piecewise linearity cannot hold for this game.

However, we will show that if Condition 1 holds there exist strategies with a constant per-round com-
plexity to approach polytopes even when the game is not bi-piecewise linear. That is, by considering simpler
convex sets C, no assumption is needed on the pair (r,H). We will conclude this note by indicating that
thanks to a doubling trick, Condition 1 is still seen to be sufficient for approachability in the most general
case when no assumption is made neither on (r,H) nor on C, at the cost however of inefficiency.

Approachability of the Negative Orthant in the Case of General Games
For the sake of simplicity, we start with the case of the negative orthant Rd−. Our argument will be based on
Lemma 1; we use in the sequel the objects and notation introduced therein. We denote by r = (rk)16k6d
the components of the d–dimensional payoff function r and introduce, for all k ∈ {1, . . . , d}, the set-valued
mapping m̃k defined by

m̃k : (p, b) ∈ ∆(I)× B 7−→ m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
.

The mapping m̃ is then defined as the Cartesian product of the m̃k; formally, for all p ∈ ∆(I) and b ∈ B,

m̃(p, b) =
{

(z1, . . . , zd) : ∀k ∈ {1, . . . , d}, zk ∈ m̃k(p, b)
}
.

We then linearly extend this mapping into a set-valued mapping m̃ defined on ∆(I) × ∆(B) and finally
consider the set-valued mapping m̆ defined on ∆(I)×F by

∀ b ∈ B, ∀p ∈ ∆(I), m̆(p, σ) = m̃
(
p,Φ(σ)

)
=
∑
b∈B

Φb(σ) m̃(p, b) ,

where Φ refers to the mapping defined in Lemma 1. The lemma below indicates why m̆ is an excellent
substitute to m in the case of the approachability of the orthant Rd−.

Lemma 4 The set-valued mappings m̆ and m are linked by the following two properties: for all p ∈ ∆(I)
and σ ∈ F ,

1. the inclusion m(p, σ) ⊆ m̆(p, σ) holds;
2. if m(p, σ) ⊆ Rd−, then one also has m̆(p, σ) ⊆ Rd−.

The interpretations of these two properties are that 1. m̆–robust approaching a set C is more difficult than
m–robust approaching it; and 2. that if Condition 1 holds for m and Rd−, it also holds for m̆ and Rd−.

Proof: For property 1., note that by construction of m̆,

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) ⊆ m̃(p, b) ;

Lemma 1 and the linear extension of m̃ then show that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) ⊆ m̃
(
p, Φ(σ)

)
= m̆(p, σ) .

As for property 2., it suffices to note that (by Lemma 1 again) the stated assumption exactly means
that

∑
b∈B Φb(σ)m(p, b) ⊂ Rd−. In particular, rewriting the non-positivity constraint for each of the d

components of the payoff vectors, we get∑
b∈B

Φb(σ) m̃k(p, b) ⊆ R− ,

for all k ∈ {1, . . . , d}; thus, in particular,
∑
b∈B Φb(σ) m̃(p, b) = m̆(p, σ) ⊆ Rd−.

We can then extend the result of the previous section as announced; note that no bi-piecewise linearity
assumption is needed on the game.

5



Theorem 5 If Condition 1 is satisfied form, then there exists a strategy for (r,H)–approaching Rd− at a rate
of the order of T−1/5, with a constant per-round complexity.

Proof: We will apply the result of the previous section. By checking the proof of the main theorem (The-
orem 13) of the original paper, one can see that the only ingredient needed is a strategy for m–robust ap-
proaching C = Rd−. But by Lemma 4, it is therefore enough to m̃–robust approach C = Rd−. Now, a strategy
performing this exists because of the result stated in Theorem 13 and corrected in the previous section, as first,
Condition 1 holds for m̆ as well (as indicated by Lemma 4) and second, m̆ is bi-piecewise linear. The latter
fact can be seen by showing —similarly to what was done in the section devoted to regret minimization—
that each m̃k, thus also m̆, is piecewise linear.

Approachability of Polytopes in the Case of General Games
If that the target set C is a polytope, then C can be written as the intersection of a finite number of half-planes,
i.e., there exits a finite family

{
(ek, fk) ∈ Rd × R, k ∈ K

}
such that

C =
{
z ∈ Rd : 〈z, ek〉 6 fk, ∀ k ∈ K

}
.

Given the original (not necessarily bi-piecewise linear) game (r,H), we introduce another game (rC , H),
whose payoff function rC : I × J → RK is defined as

∀ i ∈ I, ∀ j ∈ J , rC(i, j) =
[
〈r(i, j), ek〉 − fk

]
k∈K

.

The following lemma is an exercise of mere rewriting.

Lemma 6 Given a polytope C, the (r,H)–approachability of C and the
(
rC , H

)
–approachability of Rd− are

equivalent in the sense that all strategies for one problem translates to a strategy for the other problem.
In addition, Condition 1 holds for (r,H) and C if and only if it holds for

(
rC , H

)
and Rd−.

Via the lemma above, Theorem 5 indicates that Condition 1 for (r,H) and C is a sufficient condition for
the (r,H)–approachability of C.

Approachability of General Convex Sets in the Case of General Games
A general closed convex set can always be approximated arbitrarily well by a polytope (where the number of
vertices of the latter however increases as the quality of the approximation does). There, via a doubling trick,
Condition 1 is also seen to be sufficient to (r,H)–approach any general closed convex set C, However, the
computational complexity of the resulting strategy is much larger: the per-round complexity increases over
time (as the numbers of vertices of the approximating polytopes do).
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