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Abstract

We consider the problem of combining a (possibly uncountably infinite) set of affine estima-
tors in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on
the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to
sharp oracle inequalities in discrete but also in continuous settings. The framework is general
enough to cover the combinations of various procedures—such as the least square regression,
the kernel ridge regression, the shrinkage estimators, etc.—used in the literature on statisti-
cal inverse problems. As a consequence, we show that the proposed aggregate provides an
adaptive estimator in the exact minimax sense without neither discretizing the range of tun-
ing parameters nor splitting the set of observations. We also illustrate numerically the good
performance achieved by the exponentially weighted aggregate.

1 Introduction

There is a growing empirical evidence of superiority of aggregated statistical procedures, also referred
to as blending, stacked generalization, or ensemble methods, with respect to “pure” ones. Since their
introduction in the 1990’s, the most famous aggregation procedures such as Boosting (Freund, 1990),
Bagging (Breiman, 1996) or Random Forest (Amit and Geman, 1997) were successfully used in practice
for a large variety of applications. Moreover, the most recent Machine Learning competitions such as
the Pascal VOC or the Netflix challenge were won by procedures combining different types of classifiers
/ predictors / estimators. It is therefore of central interest to understand from a theoretical point of
view what kind of aggregation strategies should be used for getting the best possible combination of the
available statistical procedures.

1.1 Historical remarks and motivation

In the statistical literature, to the best of our knowledge, the lecture notes of Nemirovski (2000) was the
first work concerned by the theoretical analysis of aggregation procedures. It was followed by a paper by
Juditsky and Nemirovski (2000), as well as by a series of papers by Catoni (see Catoni (2004) for a com-
prehensive account) and Yang (2000, 2003, 2004). For the regression model, a significant progress was
achieved by Tsybakov (2003) with introducing the notion of optimal rates of aggregation and proposing
aggregation-rate-optimal procedures for the tasks of linear, convex and model selection aggregation.
This point was further developed by Lounici (2007), Rigollet and Tsybakov (2007), Lecué (2007), Bunea
et al. (2007), especially in the context of high dimension with sparsity constraints.

From a practical point of view, an important limitation of the previously cited results on the aggre-
gation is that they are valid under the assumption that the aggregated procedures are deterministic (or
random, but independent of the data used for the aggregation). In the Gaussian sequence model, a
breakthrough was reached by Leung and Barron (2006). Building on a very elegant but not very well
known result of George (1986), they established sharp oracle inequalities for the exponentially weighted
aggregate (EWA) under the condition that the aggregated estimators are obtained from the data vector
by orthogonally projecting it on some linear subspaces. Dalalyan and Tsybakov (2007, 2008), established
the validity of Leung and Barron’s result under more general (non Gaussian) noise distributions provided
that the constituent estimators are independent of the data used for the aggregation. A natural question
arises whether a similar result can be proved for a larger family of constituent estimators containing
projection estimators and deterministic ones as specific examples. The main aim of the present paper
is to answer this question by considering families of affine estimators.



Our interest in affine estimators is motivated by several reasons. First of all, affine estimators encom-
pass many popular estimators such as the smoothing splines, the Pinsker estimator Pinsker (1980), Efro-
movich and Pinsker (1996), the local polynomial estimators, the non-local means Buades et al. (2005),
Salmon and Le Pennec (2009), etc. For instance, it is known that if the underlying (unobserved) signal
belongs to a Sobolev ball, then the (linear) Pinsker estimator is asymptotically minimax up to the opti-
mal constant, while the best projection estimator is only rate-minimax. A second motivation is that—as
proved by Juditsky and Nemirovski (2009)—the set of signals that are well estimated by linear estimators
is very rich. It contains, for instance, sampled smooth functions, sampled modulated smooth functions
and sampled harmonic functions (cf. Juditsky and Nemirovski (2009) for precise definitions). It is worth
noting that oracle inequalities for the penalized empirical risk minimizer were also established by Gol-
ubev (2010), and for the model selection by Arlot and Bach (2009), Baraud et al. (2010).

In the present work, we establish sharp oracle inequalities in the statistical model of heteroscedastic
regression, under various conditions on the constituent estimators assumed to be affine functions of
the data. We assume that the design is deterministic and that the noise is Gaussian with a given covari-
ance matrix. Our results provide theoretical guarantees of optimality, in terms of the expected loss, for
the exponentially weighted aggregate. They have the advantage of covering in a unified fashion the par-
ticular cases of deterministic estimators considered by Dalalyan and Tsybakov (2008) and of projection
estimators treated by Leung and Barron (2006).

1.2 Notation

Throughout this work, we focus on the heteroscedastic regression model with Gaussian additive noise.
More precisely, we assume that we are given a vector Y = (y1, · · · , yn)> ∈Rn obeying the model:

yi = fi +ξi , for i = 1, . . . ,n, (1)

where ξ = (ξ1, . . . ,ξn)> is a centered Gaussian random vector, fi = f(xi ) where f is an unknown func-
tion X → R and x1, . . . , xn ∈ X are deterministic points. Here, no assumption is made on the set X .
Our objective is to recover the vector f = ( f1, . . . , fn), often referred to as signal, based on the data
y1, . . . , yn . In our work, the noise covariance matrix Σ = E[ξξ>] is assumed to be diagonal (so it can
be written Σ = diag(σ2

1, · · · ,σ2
n)), with a known upper bound on the spectral norm ‖|Σ‖|. In our case,

‖|Σ‖| = maxi=1,··· ,nσ2
i . We measure the performance of an estimator f̂ by its expected empirical quadratic

loss: r = E(‖ f − f̂ ‖2
n) where ‖ f − f̂ ‖2

n = 1
n

∑n
i=1( fi − f̂i )2. We also denote by 〈·|·〉n the corresponding em-

pirical inner product.
In this paper, we only focus on affine estimators f̂ λ, i.e., estimators that can be written as affine

transforms of the data Y = (y1, . . . , yn)> ∈ Rn . Using the convention that all vectors are one-column
matrices, affine estimators can be defined by

f̂ λ = AλY +bλ, (2)

where the n ×n real matrix Aλ and the vector bλ ∈ Rn are deterministic. This means that the entries of
Aλ and bλ may depend on the points x1, . . . , xn but not on the data vector Y . It is well-known that the
quadratic risk of the estimator (2) is given by

rλ = E
(‖ f − f̂ λ‖2

n

)= ‖(Aλ− In×n) f +bλ‖2
n + Tr(AλΣA>

λ
)

n
(3)

and that r̂λ, defined by

r̂λ =
∥∥Y − f̂ λ

∥∥2
n + 2

n
Tr(ΣAλ)− 1

n

n∑
i=1

σ2
i (4)

is an unbiased estimator of rλ (direct application of Stein’s Lemma, cf. Appendix).
Let us describe now different families of linear and affine estimators successfully used in the statis-

tical literature (cf., for instance, Arlot and Bach (2009)). Our results apply to all these families and lead
to a procedure that behaves nearly as well as the best one of the family.

Ordinary least squares Let {Sλ :λ ∈Λ} be a set of linear subspaces of Rn . A well known family of affine
estimators, successfully used in the context of model selection by Barron et al. (1999), is the set
of orthogonal projections onto Sλ. In the case of a family of linear regression models with design
matrices Xλ, one has Aλ = Xλ(X >

λ
Xλ)−1X >

λ
.

Diagonal filters Another set of common estimators are the so called diagonal filters f̂ = AY , where A is
a diagonal matrix A = diag(a1, . . . , an). Popular examples include:
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• Ordered projections : ak = 1l(k≤λ) for some integer λ (where 1l(·) is the indicator function).
Those weights are also called truncated SVD or spectral cut-off. In this case the natural para-
metrization is Λ= {1, . . . ,n}, indexing the number of elements conserved.

• Block projections: ak = 1l(k≤w1) +
∑m−1

j=1 λ j 1l(w j ≤k≤w j+1), k = 1, . . . ,n, where λ j ∈ {0,1}. Here the

natural parametrization is Λ= {0,1}m−1, indexing subsets of {1,m −1}.

• Tikhonov-Philipps filter: ak = 1
1+(k/w)α , where w,α> 0. The set Λ= (R∗+)2 indexes continuously

the smoothing parameters.

• Pinsker filter: ak = (
1− kα

w

)
+, where x+ = max(x,0) and w,α> 0. In this case also Λ= (R∗+)2.

Kernel ridge regression Assume that we have a positive definite kernel k : X ×X → R and we aim at
estimating the true function f in the associated reproducing kernel Hilbert space (Hk ,‖ · ‖k ). The
kernel ridge estimator is obtained by minimizing the criterion ‖Y − f ‖2

n +λ‖ f ‖2
k w.r.t. f ∈ Hk (see

(Shawe-Taylor and Cristianini, 2000, page 118)).Denoting by K the n×n kernel-matrix with element
Ki , j = k(xi , x j ), the unique solution f̂ is a linear estimate of the data, f̂ = AλY , with Aλ = K (K +
nλIn×n)−1, where In×n is the identity matrix of size n ×n.

Multiple Kernel learning As proposed in Arlot and Bach (2009), it is also possible to handle the case
of several kernels k1, . . . ,kM , with associated positive definite matrices K1, . . . ,KM . For a parameter
λ= (λ1, . . . ,λM ) ∈Λ=RM+ one can define the estimators f̂ λ = AλY with

Aλ =
( M∑

m=1
λmKm

)( M∑
m=1

λmKm +nIn×n

)−1
. (5)

It is worth mentioning that the formulation in Eq.(5) can be linked to the group Lasso Yuan and
Lin (2006) and to the multiple kernel Lanckriet et al. (2003/04) — see Bach (2008), Arlot and Bach
(2009) for more details.

1.3 Organization of the paper

In Section 2, we introduce EWA and state a PAC-Bayes type bound assessing the optimality of EWA in
combining affine estimators. As a consequence, we provide in Section 3 sharp oracle inequalities in
various set-ups: ranging from finite to continuous families of constituent estimators and including the
sparsity scenario. In Section 4, we apply our main results to prove that combining Pinsker’s type filters
with EWA leads to an asymptotically sharp adaptive procedure over the Sobolev ellipsoids. Section 5
is devoted to a numerical comparison of EWA with other classical filters (soft thresholding, blockwise
shrinking, etc.), and illustrates the potential benefits of the aggregation. Some concluding remarks are
presented in Section 6, while technical proofs are postponed to the Appendix.

2 Aggregation of estimators: main result

In this section we describe the statistical framework for aggregating estimators and we also introduce
the exponentially weighted aggregate. The task of aggregation consists in estimating f by a suitable
combination of the elements of a family of constituent estimators FΛ = ( f̂ λ)λ∈Λ ∈ Rn . The target ob-
jective of the aggregation is to build an aggregate f̂ aggr, not necessarily in the family FΛ, that mimics
the performance of the best constituent estimator. It is called oracle because of its dependence on the
unknown function f . We assume that Λ is a measurable subset of RM , for some M ∈N.

The theoretical tool commonly used for evaluating the quality of an aggregation procedure is the
oracle inequality (OI), generally written in the following form:

E‖ f̂ aggr − f ‖2
n ≤Cn inf

λ∈Λ

(
E‖ f̂ λ− f ‖2

n

)
+Rn , (6)

with residual term Rn tending to zero, and leading constant Cn being bounded. The OIs with leading
constant one are of central theoretical interest since they allow to bound the excess risk and to assess
the aggregation-rate-optimality. The residual term Rn depends on the complexity (size) of the family
FΛ, as on the amount of noise, measured in term of variance in our context.
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2.1 Exponentially Weighted Aggregate (EWA)

Let rλ = E(‖ f̂ λ− f ‖2
n) denote the risk of the estimator f̂ λ, for any λ ∈Λ, and let r̂λ be an estimator of rλ.

The precise form of r̂λ strongly depends on the nature of the constituent estimators. For any probability
distribution π over the set Λ and for any β> 0, we define the probability measure of exponential weights,
π̂, by the following formula:

π̂(dλ) = θ(λ)π(dλ) with θ(λ) = exp(−nr̂λ/β)∫
Λ exp(−nr̂ω/β)π(dω)

. (7)

The corresponding exponentially weighted aggregate, henceforth denoted by f̂ EWA, is the expectation of
the f̂ λ w.r.t. the probability measure π̂:

f̂ EWA =
∫
Λ

f̂ λ π̂(dλ) . (8)

It is convenient and customary to use the terminology of Bayesian statistics: the measure π is called
prior, the measure π̂ is called posterior and the aggregate f̂ EWA is then the posterior mean. The parame-
ter β will be referred to as the temperature parameter. In the framework of aggregating statistical proce-
dures, the use of such an aggregate can be traced back to George (1986).

The interpretation of the weights θ(λ) is simple: they up-weight estimators all the more that their
performance, measured in terms of the risk estimate r̂λ, is good. The temperature parameter reflects the
confidence we have in this criterion: if the temperature is small (β≈ 0) the distribution concentrates on
the estimators achieving the smallest value for r̂λ, assigning almost zero weights to the other estimators.
On the other hand, if β→ +∞ then the probability distribution over Λ is simply the prior π, and the
data do not modify our confidence in the estimators. It should also be noted that averaging w.r.t. the
posterior π̂ is not the only way of constructing an estimator of f , some alternative estimators based on
π̂ have been studied, see for instance Zhang (2006), Audibert (2009).

2.2 Main result

To state our main result, we denote by PΛ the set of all probability measures on Λ and by K (p, p ′) the
Kullback-Leibler divergence between two probability measures p, p ′ ∈PΛ:

K (p, p ′) =
{∫

Λ log
(

d p
d p ′ (λ)

)
p(dλ) if p ¿ p ′,

+∞ otherwise.
.

Theorem 1 (PAC Bayesian Bound) If either one of the following conditions is satisfied:

C1 : The matrices Aλ are orthogonal projections (i.e., symmetric and idempotent) and the vectors bλ sat-
isfy Aλbλ = 0, for all λ ∈Λ.

C2 : The matrices Aλ are all symmetric, positive semidefinite and satisfy AλAλ′ = Aλ′ Aλ, AλΣ = ΣAλ for
all λ,λ′ ∈Λ. All the vectors bλ are zero.

Then, the risk of the aggregate f̂ EWA defined by Equations (7), (8) and (4) satisfies the inequality

rEWA = E(‖ f̂ EWA − f ‖2
n) ≤ inf

p∈PΛ

(∫
Λ
E
(∥∥ f̂ λ− f

∥∥2
n

)
p(dλ)+ β

n
K (p,π)

)
(9)

provided that β≥α‖|Σ‖|, where α= 4 if C1 holds true and α= 8 if C2 holds true.

All the proofs of our results are given in the appendix, at the end of the paper.
Note also that the result of Theorem 1 applies to the estimator f̂ EWA that uses the full knowledge of

the covariance matrix Σ. Indeed, even if for the choice of β only an upper bound on the spectral norm of
Σ is required, the entire matrix Σ enters in the definition of the unbiased risks r̂λ that is used for defining
f̂ EWA. The exponentially weighted aggregate f̂ EWA is easily extended to handle the more realistic situation
where an unbiased estimate Σ̂, independent of Y , of the covariance matrix Σ is available. Simply replace
Σ by Σ̂ in the definition of the unbiased risk estimate (4). When the estimators f̂ λ satisfy π-a.e. condition
C1 or C2, choosing β=α‖|Σ̂‖|, it can be checked that a claim similar to Theorem 1 remains valid.

Another observation is that using the extension of Stein’s lemma presented in (Dalalyan and Tsy-
bakov, 2008, Lemma 1), a result similar to Theorem 1 can be established for some specific non Gaussian
noise distributions, provided that the components of the noise vector are independent.
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3 Sharp oracle inequalities

In this section, we discuss consequences of the main result for specific choices of prior measures. Some
of them are closely related to the oracle inequalities presented in Dalalyan and Tsybakov (2007, 2008),
Alquier and Lounici (2010), Rigollet and Tsybakov (2011) especially when dealing with the sparsity sce-
nario in the high dimensional framework.

3.1 Discrete oracle inequality

In order to demonstrate that Inequality (9) can be reformulated in terms of an OI as defined by (6), let us
consider the simple case when the prior π is discrete. That is, we assume that π(Λ0) = 1 for a countable
set Λ0 ⊂Λ. Without loss of generality, we assume that Λ0 =N. Then, the following result holds true.

Proposition 1 If either one of the conditions C1 and C2 (cf. Theorem 1) is fulfilled and π is supported by
N, then the aggregate f̂ EWA defined by Equations (7), (8) and (4) satisfies the inequality

E(‖ f̂ EWA − f ‖2
n) ≤ inf

j∈N:π j >0

(
E‖ f̂ j − f ‖2

n + β log(1/π j )

n

)
(10)

provided that β≥α‖|Σ‖|, where α= 4 if C1 holds true and α= 8 if C2 holds true.

Proof: It suffices to apply Theorem 1 and to bound the RHS from above by the minimum over all Dirac
measures p = δ j with j such that π j > 0.

3.2 Continuous oracle inequality

It may be useful in practice to combine a family of affine estimators indexed by an open subset of RM ,
for some integer M > 0, for instance when the aim is to build an estimator that is nearly as accurate as
the best kernel estimator with fixed kernel and varying bandwidth. In order to state an oracle inequality
in such a “continuous” setup, let us denote by d2(λ,Λ) the largest real τ> 0 such that the ball centered
at λ with radius τ is included in Λ. In what follows, Leb(·) stands for the Lebesgue measure.

Proposition 2 Let Λ ⊂ RM be an open and bounded set and let π be the uniform probability on Λ. As-
sume that the mapping λ 7→ rλ is Lipschitz continuous, i.e., |rλ′ − rλ| ≤ Lr ‖λ′−λ‖2, ∀λ,λ′ ∈Λ. Under the
conditions C1 or C2 aggregate f̂ EWA satisfies the inequality

E‖ f̂ EWA − f ‖2
n ≤inf

λ∈Λ

{
E‖ f̂ λ− f ‖2

n + βM

n
log

( p
M

2min(n−1,d2(λ,Λ))

)}
+ Lr +β log

(
Leb(Λ)

)
n

. (11)

for every β≥α‖|Σ‖| where α= 4 if C1 holds true and α= 8 if C2 holds true.

3.3 Sparsity oracle inequality

The continuous oracle inequality stated in previous subsection is well adapted to the case where the
dimension M of Λ is small compared to the sample size n (or, more precisely, the signal to noise ratio
n/maxi σ

2
i ). If this is not the case, the choice of the prior should be done more carefully. For instance,

consider the case of a setΛ⊂RM with large M under the sparsity scenario: there is a sparse vector λ∗ ∈Λ
such that the risk of f̂ λ∗ is small. Then, it is natural to choose a prior π that promotes the sparsity of
λ. This can be done in the same vein as in Dalalyan and Tsybakov (2007, 2008), by means of the heavy
tailed prior:

π(dλ) ∝
M∏

j=1

1

(1+|λ j /τ|2)2 1lΛ(λ)d(λ), (12)

where τ> 0 is a tuning parameter.

Proposition 3 Let Λ=RM and let π be defined by (12). Assume that the mapping λ 7→ rλ is continuously
differentiable and, for some M ×M matrix M , satisfies:

rλ− rλ′ −∇r>
λ′ (λ−λ′) ≤ (λ−λ′)>M (λ−λ′), ∀λ,λ′ ∈Λ. (13)

If either one of the conditions C1 and C2 (cf. Theorem 1) is fulfilled, then the aggregate f̂ EWA defined by
Equations (7), (8) and (4) satisfies the inequality

E
(‖ f̂ EWA − f ‖2

n

)≤ inf
λ∈RM

{
E‖ f̂ λ− f ‖2

n + 4β

n

M∑
j=1

log
(
1+ |λ j |

τ

)}
+Tr(M )τ2 (14)

provided that β≥α‖|Σ‖|, where α= 4 if C1 holds true and α= 8 if C2 holds true.

5



Let us discuss here some consequences of this sparsity oracle inequality. First of all, let us remark that
in most cases Tr(M ) is on the order of M and the choice τ = √

β/(nM) ensures that the last term in
the RHS of Eq. (14) decreases at the parametric rate 1/n. This is the choice we recommend for practical
applications.

Assume now that we are given a large number of linear estimators ĝ 1 = G1Y , . . . , ĝ M = GM Y sat-
isfying, for instance, condition C2. We will focus on matrices G j having a spectral norm bounded by
one (it is well known that the failure of this condition makes the linear estimator inadmissible, cf. Co-
hen (1966)). Assume furthermore that our aim is to propose an estimator that mimics the behavior of
the best possible convex combination of a pair of estimators chosen among ĝ 1, . . . , ĝ M . This task can
be accomplished in the framework of the present paper by setting Λ = RM and f̂ λ = λ1ĝ 1 + . . .λM ĝ M ,
where λ = (λ1, . . . ,λM ). If the collection {ĝ i } satisfies condition C2, then it is also the case for the col-
lection of their linear combinations { f̂ λ}. Moreover, the mapping λ 7→ rλ is quadratic with the Hes-
sian matrix ∇2rλ given by the entries 2〈G j f |G j ′ f 〉n + 2

n Tr(G j ′ΣG j ), j , j ′ = 1, . . . , M . This implies that
Inequality (13) holds with M being the Hessian divided by 2. Therefore, setting σ= (σ1, . . . ,σn), we get
Tr(M ) ≤ ‖|∑M

j=1 G2
j ‖|(‖ f ‖2

n +‖σ‖2
n) ≤ M(‖ f ‖2

n +‖σ‖2
n), where the norm of a matrix is understood as its

largest singular value. Applying Proposition 3 with τ=√
β/(nM), we get for β≥ 8‖|Σ‖|,

E
(‖ f̂ EWA − f ‖2

n

)≤ inf
α, j , j ′

E‖αĝ j + (1−α)ĝ j ′ − f ‖2
n + 8β

n
log

(
1+

√
Mn

β

)
+ β

n
(‖ f ‖2

n +‖σ‖2
n), (15)

where the inf is taken over all α ∈ [0,1] and j , j ′ ∈ {1, . . . , M }. This shows that, using EWA with a suf-
ficiently large temperature, one can achieve the best possible risk over the convex combinations of a
pair of linear estimators—selected from a large (but finite) family—at the price of a residual term that
decreases at the parametric rate up to a log factor.

3.4 Oracle inequalities for varying-block-shrinkage estimators

Let us consider now the problem of aggregation of two-block shrinkage estimators. It means that the
constituent estimators have the following form: for λ= (a,b,k) ∈ [0,1]2 × {1, . . . ,n} :=Λ, f̂ λ = AλY where
Aλ = diag

(
a1l(i ≤ k)+b1l(i > k), i = 1, · · · ,n

)
. Let us choose the prior π as the uniform probability distri-

bution on the set Λ.

Proposition 4 Let f̂ EWA be the exponentially weighted aggregate having as constituent estimators two-
block shrinkage estimators AλY . If Σ is a diagonal matrix, then for any λ ∈Λ and for any β≥ 8‖|Σ‖|,

E(‖ f̂ EWA − f ‖2
n) ≤ E(‖ f̂λ− f ‖2

n)+ β

n

{
1+ log

(n2‖ f ‖2
n +n Tr(Σ)

12β

)}
. (16)

The proof of this result can be found in Dalalyan and Salmon (2011).
In the case Σ= In×n , this result is comparable to (Leung, 2004, page 20, Theorem 2.49), which states

that in the model of homoscedastic regression (Σ = In×n), the EWA acting on two-block positive-part
James-Stein shrinkage estimators satisfies, for any k = 3, · · · ,n −3, and for β= 8, the oracle inequality

E(‖ f̂ Leung − f ‖2
n) ≤ E(‖ f̂λ− f ‖2

n)+ 9

n
+ 8

n
min
K>0

{
K ∨

(
log

n −6

K
−1

)}
. (17)

4 Application to minimax adaptive estimation

In the celebrated paper Pinsker (1980)proved that in the model (1) the minimax risk over ellipsoids
can be asymptotically attained by a linear estimator. Let us denote by θk ( f ) = 〈 f |ϕk〉n the coeffi-
cients of the (orthogonal) discrete sine transform of f , hereafter denoted by D f . Pinsker’s result—
restricted to Sobolev ellipsoids F (α,R) = {

f ∈ Rn :
∑n

k=1 k2αθk ( f )2 ≤ R
}

and to the homoscedastic noise
(Σ=σ2In×n)—states that, as n →∞, the equivalences

inf
f̂

sup
f ∈F (α,R)

E
(‖ f̂ − f ‖2

n

)∼ inf
A

sup
f ∈F (α,R)

E
(‖AY − f ‖2

n

)
(18)

∼ inf
w>0

sup
f ∈F (α,R)

E
(‖Aα,w Y − f ‖2

n

)
(19)

hold (Tsybakov, 2009, Theorem 3.2), where the first inf is taken over all possible estimators f̂ and Aα,w =
D>diag

(
(1−kα/w)+;k = 1, . . . ,n

)
D is the Pinsker filter in the discrete sine basis. In simple words, this

implies that the (asymptotically) minimax estimator can be chosen from the quite narrow class of linear
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estimators with Pinsker’s filter. However, it should be emphasized that the minimax linear estimator
depends on the parameters α and R, that are generally unknown. An (adaptive) estimator, that does
not depend on (α,R) and is asymptotically minimax over a large scale of Sobolev ellipsoids has been
proposed by Efromovich and Pinsker (1984). The next result, that is a direct consequence of Theorem 1,
shows that EWA with linear constituent estimators is also asymptotically sharp adaptive over Sobolev
ellipsoids.

Proposition 5 Let λ= (α, w) ∈Λ=R2+ and consider the prior

π(dλ) = 2n−α/(2α+1)
σ(

1+n−α/(2α+1)
σ w

)3 e−αdαd w, (20)

where nσ = n/σ2. Then, in model (1) with homoscedastic errors, the aggregate f̂ EWA based on the tempera-
ture β= 8σ2 and the constituent estimators f̂ α,w = Aα,w Y (with Aα,w being the Pinsker filter) is adaptive
in the exact minimax sense1 on the family of classes {F (α,R) :α> 0,R > 0}.

It is worth noting that the exact minimax adaptivity property of our estimator f̂ EWA is achieved with-
out any tuning parameter. All previously proposed methods that are provably adaptive in exact minimax
sense depend on some parameters such as the lengths of blocks for blockwise Stein and Efromovich-
Pinsker estimators or the step of discretization and the maximal value of bandwidth Cavalier et al.
(2002). Another nice property of the estimator f̂ EWA is that it does not require any pilot estimator based
on the data splitting device Efromovich (1996), Yang (2004).

5 Experiments

In this section we present some numerical experiments on synthetic data, by focusing only on the case
of homoscedastic Gaussian noise (Σ=σ2In×n) with known variance. Following the philosophy of repro-
ducible research, a toolbox is made available freely for download at:
www.math.jussieu.fr/~salmon/code/index_codes.php

We evaluate different estimation routines on several 1D signals, introduced by Donoho and John-
stone (1994, 1995) and considered as benchmark in literature on signal processing. The six signals we
retained for our experiments because of their diversity are depicted in Figure 1. Since all these sig-
nals are non-smooth, we have also carried out experiments on their smoothed versions obtained by
taking an antiderivative, see Figure 1. In what follows, the experiment on non-smooth signals will be
referred to as Experiment I, whereas the experiment on their smoothed counterparts will be referred to
as Experiment II. In both cases, prior to applying estimation routines, we normalize the (true) sampled
signal to have an empirical norm equal to one and use the Discrete Sine Transform (DST) denoted by

θ(Y ) = (
θ1(Y ), . . . ,θn(Y )

)>.
The four estimation routines—including EWA—used in our experiments are detailed below:

Soft Thresholding (ST), Donoho and Johnstone (1994): For a given threshold parameter t , the soft thresh-
olding estimator of the vector of DST coefficients θk ( f ) is defined by

θ̂k = sgn
(
θk (Y )

)(|θk (Y )|−σt
)
+ . (21)

In our experiments, we use the threshold minimizing the estimated unbiased risk defined via Stein’s
lemma. This procedure is referred to as SURE-shrink in Donoho and Johnstone (1995).

Blockwise James-Stein (BJS) shrinkage, Cai (1999): The set of indices {1, · · · ,n} is partitioned into N =
[n/log(n)] non-overlapping blocks B1,B2, · · ·BN of equal size L. (If n is not a multiple of N , the
last block may be of smaller size than all the others.) The corresponding blocks of true coefficients
θBk ( f ) = (

θ j ( f )
)

j∈Bk
are estimated by shrinking the blocks of noisy coefficients θBk (Y ):

θ̂Bk =
(

1− λLσ2

S2
k (Y )

σ

)
+
θBk (Y ), k = 1, · · · , N (22)

where S2
k (Y ) = ‖θBk (Y )‖2

2 and λ= 4.50524 as in Cai (1999).

1see (Tsybakov, 2009, Definition 3.8)
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Figure 1: Test signals used in our experiment: Piece-Regular, Ramp, Piece-Polynomial, HeaviSine,
Doppler and Blocks. (a) non-smooth (Experiment I) and (b) smooth (Experiment II).

Unbiased risk estimate (URE) minimization, Golubev (1992), Cavalier et al. (2002): it consists in using
a Pinsker filter, as defined in Section 4, with a data-driven choice of parameters α and w . This
choice is done by minimizing an unbiased estimate of the risk over a suitably chosen grid for the
values of α and w . Here, we use geometric grids ranging from 0.1 to 100 for α and from 1 to n for
w . The bi-dimensional grid used in all the experiments has 100×100 elements. We refer to Cavalier
et al. (2002) for the closed-form formula of the unbiased risk estimator.

EWA on Pinsker’s filters: We consider the same finite family of linear smoothers—defined by Pinsker’s
filters—as in the URE routine described above. According to Proposition 1, this leads to an estima-
tor which is nearly as accurate as the best Pinsker’s estimator in the given finite family.

To report the result of our experiments, we have also computed the best linear smoother based on
a Pinsker filter chosen among the candidates that we used for defining URE and EWA routines. By best
smoother we mean the one minimizing the squared error, which can be computed since we know the
ground truth. This pseudo-estimator will be referred to as oracle. The results summarized in Table 1
for Experiment I and Table 2 for Experiment II correspond to the average over 1000 trials of the mean
squared error (MSE) from which we subtract the MSE of the oracle and multiply the resulting difference
by the sample size. We report the results for σ= 0.33 and for n ∈ {28,29,210,211}.

Simulations show that EWA and URE have very comparable performances and are significantly more
accurate than Soft Thresholding and Block James-Stein (see Table 1) for every size n of signals consid-
ered. The improvement is particularly important when the signal has large peaks (cf. Figure 2) or dis-
continuities (cf. Figure 3). In most cases, the EWA method also outperforms URE, but this difference
is much less pronounced. One can also observe that in the case of smooth signals, the difference of
the MSEs between EWA and the oracle, multiplied by n, remains nearly constant when n varies. This is
in perfect agreement with our theoretical results in which the residual term decreases to zero inversely
proportionally to the sample size.

Of course, soft thresholding and blockwise James-Stein procedures have been designed for being
applied to the wavelet transform of a Besov smooth function, rather than to the Fourier transform of a
Sobolev-smooth function. However, the point here is not to demonstrate the superiority of EWA as com-
pared to ST and BJS procedures. The point is to stress the importance of having sharp adaptivity up to
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Figure 2: Heavisine. The first row is the true signal (left) and a noisy version corrupted by Gaussian noise
with standard deviation σ= 0.33 (right). The second row gives denoised version obtained by EWA (left),
BJS, ST and URE (right). The PSNR is computed by the formula PSNR = 10log10

(
max( f )2/MSE

)
.
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Figure 3: Piece-Regular. The first row is the true signal (left) and a noisy version corrupted by Gaus-
sian noise with standard deviation σ = 0.33 (right). The second row gives denoised version ob-
tained by EWA (left) and by BJS, ST and URE (right). The PSNR is computed by the formula PSNR =
10log10

(
max( f )2/MSE

)
.

optimal constant and not simply adaptivity in the sense of rate of convergence. Indeed, the procedures
ST and BJS are provably rate-adaptive when applied to Fourier transform of a Sobolev-smooth function,
but they are not sharp adaptive—they do not attain the optimal constant—whereas EWA and URE do
attain.

6 Summary and future work

In this paper, we have addressed the problem of aggregating a set of affine estimators in the context
of regression with fixed design and heteroscedastic noise. Under some assumptions on the constituent
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Figure 4: Piece-Regular. The first row is the true signal (left) and a noisy version corrupted by Gaus-
sian noise with standard deviation σ = 1 (right). The second row gives denoised version obtained
by EWA (left) and by BJS, ST and URE (right). The PSNR is computed by the formula PSNR =
10log10

(
max( f )2/MSE

)
.

estimators, we have proven that the EWA with a suitably chosen temperature parameter satisfies PAC-
Bayesian type inequality, from which different types of oracle inequalities have been deduced. All these
inequalities are with leading constant one and with rate-optimal residual term. As a by-product of our
results, we have shown that EWA applied to the family of Pinsker’s estimators produces an estimator,
which is adaptive in the exact minimax sense. Next in our agenda is carrying out an experimental evalu-
ation of the proposed aggregate using the approximation schemes described by Dalalyan and Tsybakov
(2009), Rigollet and Tsybakov (2011) and Alquier and Lounici (2010). It will also be interesting to extend
the results of this work to the case of the unknown noise variance in the same vein as in Giraud (2008).
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Appendix

A Stein’s Lemma with heteroscedastic noise

To define the EWA estimator, we first need to determine an unbiased risk estimate for any of the con-
stituent estimators. We adapt a systematic method based on Stein’s Lemma to the heteroscedastic
framework. We recall this lemma given in Stein (1981), for our setting:
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Stein’s Lemma 1 With the model (1), if the estimator f̂ is almost everywhere differentiable in Y and if
each ∂yi f̂ i has finite first moment, then

r̂ = ‖Y − f̂ ‖2
n + 2

n

n∑
i=1

σ2
i ∂yi f̂i − 1

n

n∑
i=1

σ2
i , (23)

is an unbiased estimate of r , ie. Er̂ = r .

Proof: For any i = 1, · · · ,n, one has

E(Yi − f̂i )2 = E(Yi − fi )2 +E( fi − f̂i )2 +2E
[
(Yi − fi )( fi − f̂i )

]
,

The following identity is the classical Stein Lemma (cf. Tsybakov (2009) p.157), based on integration by
parts:

E
[
(Yi − fi ) f̂i

]=σ2
i E

[
∂yi fi

]
. (24)

where the differentiation is according to Yi . Using the last two displays, one has:

E‖Y − f̂ ‖2
n = E‖Y − f ‖2

n +E‖ f − f̂ ‖2
n − 2

n
E

n∑
i=1

σ2
i ∂yi fi , (25)

leading to the announced unbiased risk estimate.

B Main Result

Now, we can apply Stein’s Lemma for any estimator f̂ λ, so that we can build r̂λ for any λ ∈ Λ. In this
paper, we only focus on affine estimators f̂ λ, i.e., estimators that can be written as affine transforms of
the data Y = (y1, · · · , yn)> ∈Rn . Affine estimators can be defined by

f̂ λ = AλY +bλ, (26)

where the n ×n real matrix Aλ and the vector bλ ∈ Rn are deterministic. This means that the entries of
Aλ and bλ may depend on the design points x1, · · · , xn but not on the data vector Y . It is easy to check
that the the divergence term

∑n
i=1σ

2
i ∂yi f̂ i in Stein’s Lemma is simply Tr(ΣAλ) for affine estimators. Then

r̂λ, defined by

r̂λ =
∥∥Y − f̂ λ

∥∥2
n + 2

n
Tr(ΣAλ)− 1

n

n∑
i=1

σ2
i (27)

is an unbiased estimator of rλ.
In order to state our main result, we denote by PΛ the set of all probability measures on Λ and by

K (p, p ′) the Kullback-Leibler divergence between two probability measures p, p ′ ∈PΛ.

K (p, p ′) =
{ ∫

Λ log
(

d p
d p ′ (λ)

)
p(dλ) if p ¿ p ′,

+∞ otherwise.

Theorem 1 If either one of the following conditions is satisfied:

C1 : The matrices Aλ are orthogonal projections (i.e., symmetric and idempotent) and the vectors bλ sat-
isfy Aλbλ = 0, for all λ ∈Λ.

C2 : The matrices Aλ are all symmetric, positive semidefinite and satisfy AλAλ′ = Aλ′ Aλ, AλΣ = ΣAλ for
all λ,λ′ ∈Λ. All the vectors bλ are zero.

Then, the aggregate f̂ EWA defined by Equations (7), (8) and (4) satisfies the inequality

E(‖ f̂ EWA − f ‖2
n) ≤ inf

p∈PΛ

(∫
Λ
E‖ f̂ λ− f ‖2

n p(dλ)+ β

n
K (p,π)

)
provided that β≥α‖|Σ‖|, where α= 4 if C1 holds true and α= 8 if C2 holds true.
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Proof:[when C2 is satisfied] According to Stein’s lemma, the quantity

r̂EWA = ‖Y − f̂ EWA‖2
n + 2

n

n∑
i=1

σ2
i ∂yi f̂EWA,i − 1

n

n∑
i=1

σ2
i (28)

is an unbiased estimate of the risk rEWA = E(‖ f̂ EWA − f ‖2
n). Using simple algebra, one checks that

‖Y − f̂ EWA‖2
n =

∫
Λ

(
‖Y − f̂ λ‖2

n −‖ f̂ λ− f̂ EWA‖2
n

)
θ(λ)π(dλ). (29)

By interchanging the integral and differential operators, we get the following expression for the deriva-
tives of f̂EWA,i :

∂yi f̂EWA,i =
∫
Λ

(
∂yi f̂λ,i

)
θ(λ)π(dλ)+

∫
Λ

f̂λ,i
(
∂yi θ(λ)

)
π(dλ). (30)

Let us defined AEWA ,
∫
Λ Aλθ(λ)π(dλ). With this notation, the last equality, combined with Equations

(4), (28), (29) and the fact that
∑n

i=1σ
2
i ∂yi f̂λ,i = Tr(ΣAλ), implies that

r̂EWA =
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n

)
θ(λ)π(dλ)+ 2

n

n∑
i=1

σ2
i

∫
Λ

f̂λ,i
(
∂yi θ(λ)

)
π(dλ).

Taking into account that
∫
Λ f̂EWA,i

(
∂yi θ(λ)

)
π(dλ) = f̂EWA,i∂yi

(∫
Λθ(λ)π(dλ)

) = 0, we come up with the fol-
lowing expression for the unbiased risk estimate:

r̂EWA =
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n +2
〈∇Y logθ(λ)|Σ( f̂ λ− f̂ EWA)

〉
n

)
θ(λ)π(dλ) (31)

=
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n −2nβ−1〈∇Y r̂λ|Σ( f̂ λ− f̂ EWA)
〉

n

)
θ(λ)π(dλ). (32)

Note that, so far, the precise form of the constituent estimators has not been exploited. This form is
important for computing ∇Y r̂λ. In view of Equations (26) and (4), as well as the assumptions A>

λ
= Aλ

and bλ ≡ 0 (holding thanks to C2), we get

∇Y r̂λ =
2

n
(In×n − Aλ)>(In×n − Aλ)Y − 2

n
(In×n − Aλ)>bλ =

2

n
(In×n − Aλ)2Y . (33)

In what follows, we use the shorthand I = In×n . Using this notation and Eq. (33), we get

r̂EWA =
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n − 4

β

〈
(I − Aλ)2Y |Σ(Aλ− AEWA)Y

〉
n

)
θ(λ)π(dλ). (34)

Recall now that for any pair of commuting matrices P and Q the identity (I−P )2 = (I−Q)2+2
(
I−P+Q

2

)
(Q−

P ) holds true. Applying this formula to P = Aλ and Q = AEWA we get the following expression:
〈

(I −
Aλ)2Y |Σ(Aλ − AEWA)Y

〉
n = 〈

(I − AEWA)2Y |Σ(Aλ − AEWA)Y
〉

n − 2
〈(

I − Â+Aλ
2

)
(AEWA − Aλ)Y |Σ(AEWA − Aλ)Y

〉
n .

When one integrates over Λ with respect to the measure θ ·π, the term of the first scalar product in the
RHS of the last equation vanishes. On the other hand, positive semidefiniteness of matrices Aλ implies

that of the matrix AEWA and, therefore,
〈(

I − Â+Aλ
2

)
(AEWA−Aλ)Y |Σ(AEWA−Aλ)Y

〉
n ≤ 〈(AEWA−Aλ)Y |Σ(AEWA−

Aλ)Y
〉

n . This inequality, in conjunction with (34) implies that

r̂EWA ≤
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n + 8

β
〈(AEWA − Aλ)Y |Σ(AEWA − Aλ)Y

〉
n

)
θ(λ)π(dλ)

=
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n + 8

β
〈 f̂ EWA − f̂ λ |Σ( f̂ EWA − f̂ λ)

〉
n

)
θ(λ)π(dλ)

≤
∫
Λ

(
r̂λ−

(
1− 8maxi σ

2
i

β

)
‖ f̂ λ− f̂ EWA‖2

n

)
θ(λ)π(dλ).

Taking into account the fact that β≥ 8maxi σ
2
i , we get r̂EWA ≤

∫
Λ r̂λθ(λ)π(dλ) ≤ ∫

Λ r̂λπ̂(dλ)+ β
n K (π̂,π). To

conclude, it suffices to remark that π̂ is the probability measure minimizing the criterion
∫
Λ r̂λp(dλ)+

β
n K (p,π) among all p ∈PΛ (see for instance Catoni (2004) p.160). Thus, for every p ∈PΛ, it holds that

r̂EWA ≤
∫
Λ

r̂λp(dλ)+ β

n
K (p,π).
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Taking the expectation of both sides, the desired result follows with Fatou’s lemma.

Proof:[ when C1 is satisfied] We can do the same calculation as when C2 is satisfied until (32). In view
of Equations (2) and (4), as well as the assumptions A2

λ
= A>

λ
= Aλ and A>

λ
bλ ≡ 0, we get

∇Y r̂λ =
2

n
(In×n − Aλ)>(In×n − Aλ)Y − 2

n
(In×n − Aλ)>bλ =

2

n
(In×n − Aλ)Y − 2

n
bλ. (35)

Using the same shorthand I = In×n with Eq. (35) we come up with

r̂EWA =
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n − 4

β

〈
Y − f̂ λ|Σ( f̂ λ− f̂ EWA)

〉
n

)
θ(λ)π(dλ). (36)

Now, since f̂ is the expectation of f̂ λ with respect to the measure θ ·π, we have

r̂EWA =
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n + 4

β
〈Y − f̂ EWA + f̂ EWA − f̂ λ|Σ( f̂ λ− f̂ EWA)

〉
n

)
θ(λ)π(dλ)

=
∫
Λ

(
r̂λ−‖ f̂ λ− f̂ EWA‖2

n + 4

β
〈 f̂ EWA − f̂ λ |Σ( f̂ EWA − f̂ λ)

〉
n

)
θ(λ)π(dλ)

≤
∫
Λ

(
r̂λ−

(
1− 4maxi σ

2
i

β

)
‖ f̂ λ− f̂ EWA‖2

n

)
θ(λ)π(dλ).

Taking into account the fact that β ≥ 4maxi σ
2
i , we get the same results as with condition C2: r̂EWA ≤∫

Λ r̂λθ(λ)π(dλ) ≤ ∫
Λ r̂λπ̂(dλ) + β

n K (π̂,π). The end of the proof is unchanged and leads to the same
general result as with condition C2, except for the choice of α.

C Continuous oracle inequality

Proposition 2 Let Λ ⊂ RM be an open and bounded set and let π be the uniform probability on Λ. As-
sume that the mapping λ 7→ rλ is Lipschitz continuous, i.e., |rλ′ − rλ| ≤ Lr ‖λ′−λ‖2, ∀λ,λ′ ∈Λ. Under the
conditions C1 or C1 aggregate f̂ EWA satisfies the inequality

E‖ f̂ EWA − f ‖2
n ≤inf

λ∈Λ

{
E‖ f̂ λ− f ‖2

n + βM

n
log

( p
M

2min(n−1,d2(λ,Λ))

)}
+ Lr +β log

(
Leb(Λ)

)
n

.

for every β≥α‖|Σ‖| where α= 4 if C1 holds true and α= 8 if C2 holds true.

Proof: It suffices to apply Theorem 1 and to bound from above the RHS of inequality (9)

E(‖ f̂ EWA − f ‖2
n) ≤ inf

p∈PΛ

(∫
Λ

rλ p(dλ)+ β

n
K (p,π)

)
E(‖ f̂ EWA − f ‖2

n) ≤ inf
p∈PΛ

(∫
Λ

[|rλ− rλ0 |+ rλ0

]
p(dλ)+ β

n
K (p,π)

)
Then, the RHS of the last inequality can be bounded from above by the minimum over all measures
having as density pλ0,τ0 (λ) = 1lBλ0 (τ0)(λ)/Leb(Bλ0 (τ0)), with λ0 ∈ Λ and τ0 = min(1/n,d2(λ0,Λ)) (hence
Bλ0 (τ0) ⊂Λ). Using the Lipschitz condition on rλ, the bound on the risk becomes

E(‖ f̂ EWA − f ‖2
n) ≤

∫
Λ

[|rλ− rλ0 |+ rλ0

]
pλ0,τ0 (dλ)+ β

n
K (pλ0,τ0 ,π)

E(‖ f̂ EWA − f ‖2
n) ≤ rλ0 +Lr

∫
Λ
‖λ−λ0‖2 pλ0,τ0 (dλ)+ β

n
K (pλ0,τ0 ,π)

E(‖ f̂ EWA − f ‖2
n) ≤ rλ0 +Lrτ0 + β

n
K (pλ0,τ0 ,π) (37)

Now, since λ0 is such that Bλ0 (τ0) ⊂Λ, the measure pλ0,τ0 (λ)dλ is absolutely continuous w.r.t. π and the
Kullback-Leibler divergence between these measures equals log

{
Leb(Λ)/Leb

(
Bλ0 (τ0)

)}
. By the simple

inequality ‖x‖2
2 ≤ M‖x‖2∞ for any x ∈ RM , one can see that the Euclidean ball of radius τ0 contains the

hypercube of width 2τ0p
M

. So we have the following lower bound for the volume Bλ0 : Leb
(
Bλ0 (τ0)

) ≥
(2τ0/

p
M)M . By combining this with inequality (37) the results of Proposition 2 is straightforward.
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D Sparsity oracle inequality

Let us choose a prior π that promotes the sparsity of λ. This can be done in the same vein as in Dalalyan
and Tsybakov Dalalyan and Tsybakov (2007, 2008), by means of the heavy tailed prior (Student t (3) dis-
tribution):

π(dλ) ∝
M∏

j=1

1

(1+|λ j /τ|2)2 1lΛ(λ), (38)

where τ> 0 is a tuning parameter, that takes small values.

Proposition 3 Let Λ=RM and let π be defined by (12). Assume that the mapping λ 7→ rλ is continuously
differentiable and, for some M ×M matrix M , satisfies:

rλ− rλ′ −∇r>
λ′ (λ−λ′) ≤ (λ−λ′)>M (λ−λ′), ∀λ,λ′ ∈Λ.

If either one of the conditions C1 and C2 (cf. Theorem 1) is fulfilled, then the aggregate f̂ EWA defined by
Equations (7) and (4) satisfies the inequality

E
(‖ f̂ EWA − f ‖2

n

)≤ inf
λ∈RM

{
E‖ f̂ λ− f ‖2

n + 4β

n

M∑
j=1

log
(
1+ |λ j |

τ

)}
+Tr(M )τ2

provided that β≥αmaxi=1,...,nσ
2
i , where α= 4 if C1 holds true and α= 8 if C2 holds true.

Proof: The proof is a simplified version of proofs given in Dalalyan and Tsybakov (2007, 2008), since Λ
is the whole space, Λ=RM instead of a bounded subset of RM .

We begin the proof as for the previous proposition, but pushing the development of the function
λ→ rλ up to second order. So, for any λ∗ ∈RM , we have

E(‖ f̂ EWA − f ‖2
n)

≤ inf
λ∗∈RM

(
rλ∗ +

∫
Λ

(∇r>
λ∗ (λ−λ∗)+ (λ−λ∗)>M (λ−λ∗)

)
pλ∗ (dλ)+ β

n
K (pλ∗ ,π)

)
By choosing pλ∗ (λ) = π(λ−λ∗) for any λ ∈ RM , the second term in the last display vanishes since the
distribution π is symmetric. The third term is computed thanks to the moment of order 2 of a scaled
Student t (3) distribution. Recall that if T is drawn from the scaled Student t (3) distribution, its distribu-
tion function is u → 2/[π(1+u2)2], and that ET 2 = 1. Thus, we have that

∫
Λλ

2
1π(λ)dλ= τ2. We can then

bound the risk of the EWA estimator by

E(‖ f̂ EWA − f ‖2
n) ≤ inf

λ∗∈RM

(
rλ∗ +Tr(M )τ2 + β

n
K (pλ∗ ,π)

)
(39)

So far, the particular choice of heavy tailed prior has not been used. This choice is important to control
the Kullback-Leibler divergence between two translated versions of the same distribution

K (pλ∗ ,π) =
∫
Λ

log

[
M∏

j=1

(τ2 +λ2
j )2

(τ2 + (λ j −λ∗
j )2)2

]
pλ∗ (dλ)

K (pλ∗ ,π) = 2
M∑

j=1

∫
Λ

log

[
τ2 +λ2

j

τ2 + (λ j −λ∗
j )2

]
pλ∗ (dλ) .

We bound the quotient in the above equality by

τ2 +λ2
j

τ2 + (λ j −λ∗
j )2 = 1+

2τ(λ j −λ∗
j )

τ2 + (λ j −λ∗
j )2

λ∗
j

τ
+

(λ∗
j )2

τ2 + (λ j −λ∗
j )2

τ2 +λ2
j

τ2 + (λ j −λ∗
j )2 ≤ 1+

∣∣∣∣∣λ
∗
j

τ

∣∣∣∣∣+
(
λ∗

j

τ

)2

≤
(

1+
∣∣∣∣∣λ

∗
j

τ

∣∣∣∣∣
)2

.

Since the last inequality is independent of λ, the integral disappears (pλ∗ is a probability measure) in
the previous bound on the Kullback-Leibler divergence, so we eventually get

K (pλ∗ ,π) ≤ 4
M∑

j=1
log

(
1+

∣∣∣∣∣λ
∗
j

τ

∣∣∣∣∣
)

,

and combine with Inequality (39), this ends the proof of the proposition.
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E Application to minimax estimation

Let us denote by θk ( f ) = 〈 f |ϕk〉n the coefficients of the (orthogonal) discrete sine transform of f and
the Sobolev ellipsoids F (α,R) = { f ∈ Rn :

∑n
k=1 k2αθk ( f )2 ≤ R}. Assume in this section that the noise is

homoscedastic (Σ = σ2In×n) and Aα,w = D>diag
(
(1−kα/w)+;k = 1, . . . ,n

)
D is the Pinsker filter in the

discrete sine basis.

Proposition 5 Let λ= (α, w) ∈Λ=R2+ and consider the prior

π(dλ) = 2n−α/(2α+1)
σ(

1+n−α/(2α+1)
σ w

)3 e−αdαd w,

where nσ = n/σ2. Then, in model (1) with homoscedastic errors, the aggregate f̂ EWA based on the tempera-
ture β= 8σ2 and the constituent estimators f̂ α,w = Aα,w Y (with Aα,w being the Pinsker filter) is adaptive
in the exact minimax sense on the family of classes {F (α,R) :α> 0,R > 0}.

Proof: We assume, without loss of generality, that the matrix n1/2 D coincides with the identity matrix.
First, let us fix α0 > 0 and R0 > 0, such that n−1/2 f ∈ F (α0,R0) and define λ0 = (α0, w0) ∈ Λ with w0

chosen such that the Pinsker estimator f̂ α0,w0
is minimax over the ellipsoid F (α0,R0).

In what follows, we set nσ = n/σ2 and denote by pπ the density of π w.r.t. the Lebesgue measure on
R2+: pπ(α, w) = e−αn−α/(2α+1)

σ pw (wn−α/(2α+1)
σ ), where pw is a probability density function supported by

(0,∞) such that
∫

upw (u)du = 1. One easily checks that∫
R2
αpπ(α, w)dαd w = 1,

∫
R2

w pπ(α, w)dαd w ≤ n1/2
σ . (40)

Let τ be a positive number such that τ≤ min(1,α0/(2log w0)) and choose pλ0,τ as a translation/dilatation
of π, concentrating on λ0 when τ→ 0:

pλ0,τ(dλ) = pπ
(λ−λ0

τ

)dλ

τ2 .

In view of Theorem 1,

E(‖ f̂ EWA − f ‖2
n) ≤ rλ0 +

∫
R2

∣∣rα,w − rα0,w0

∣∣pλ0,τ(dλ)+ β

n
K (pλ0,τ,π) . (41)

Let us decompose the term rα,w − rα0,w0 into two pieces: rα,w − rα0,w0 = {rα,w − rα,w0 }+ {rα,w0 − rα0,w0 }
and find upper bounds for the resulting terms. With our choice of estimator, the difference between the
risk functions at (α, w) and (α, w0) is:

n(rα,w − rα,w0 ) =
n∑

k=1

[(
(1−kα/w)+−1

)2 − (
(1−kα/w0)+−1

)2] f 2
k

+
n∑

k=1

[(
(1−kα/w)+

)2 − (
(1−kα/w0)+

)2]
σ2

Since the weights of the Pinsker estimators are in [0,1], we have

n|rα,w − rα,w0 | ≤2
n∑

k=1
( f 2

k +σ2)
∣∣(1−kα/w)+− (1−kα/w0)+

∣∣ . (42)

For any x, y ∈R, the inequality |x+− y+| ≤ |x− y | is obvious. Combined with α0 ≤α and w0 ≤ w , we have
that ∣∣∣(1− kα

w

)
+−

(
1− kα

w0

)
+

∣∣∣≤ ∣∣∣kα

w
− kα

w0

∣∣∣1l{kα≤w} ≤
w −w0

w0
. (43)

By virtue of Inequalities (42) and (43) we get

|rα,w − rα,w0 | ≤2n−1
n∑

k=1
( f 2

k +σ2)
(w −w0)

w0
≤ 2(R0 +σ2)

w −w0

w0
. (44)

Similar calculations lead to a bound for the other absolute difference between risk functions:

|rα,w0 − rα0,w0 | ≤ 2n−1
n∑

k=1
( f 2

k +σ2)
kα−kα0

w0
1l{kα0≤w0}

≤ 2(R0 +σ2)
(
w

α−α0
α0

0 −1
)
. (45)
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Recall that we aim to bound the second term in the RHS of (41). To this end, we need an accurate upper
bound on the integrals of the RHSs of (44) and (45) w.r.t. the probability measure pλ0,τ. For the first one,
we get ∫ ∣∣rα,w − rα,w0

∣∣pλ0,τ(dλ) ≤ 2(R0 +σ2)w−1
0

∫
R2

(w −w0)pλ0,τ(dλ)

≤ 4n1/2
σ w−1

0 τ(R0 +σ2). (46)

Similar arguments apply to bound the integral of the second difference between risk functions:∫
R2

|rα,w0 − rα0,w0 |pλ0,τ(dλ) ≤ 2(R0 +σ2)
∫
R2

(
w

α−α0
α0

0 −1
)
pλ0,τ(dλ)

= 2τ(R0 +σ2) log w0

α0 −τ log w0

≤ 4τ(R0 +σ2)α−1
0 log w0, (47)

where we used the inequality τ≤α0/(2log w0).
The last term to bound in inequality (41) requires the evaluation of the Kullback-Leibler divergence

between pλ0,τ and π. It can be done as follows:

K (pλ0,τ,π) =
∫
R2

log
(e−

α−α0
τ pw

( w−w0

nα/(2α+1)
σ τ

)
e−αpw

( w
nα/(2α+1)
σ

) 1

τ2

)
pλ0,τ(dλ)

=
∫
R2

{
α− α−α0

τ
+ log

pw
( w−w0

nα/(2α+1)
σ τ

)
pw

( w
nα/(2α+1)
σ

) }
pλ0,τ(dλ)−2log(τ)

≤ α0 + (τ−1)+
∫
R2+

log
(
1+ w

nα/(2α+1)
σ

)3
pλ0,τ(dλ)−2log(τ).

where the third equality is derived thanks to Eq. (40) and the obvious relation ‖pw‖∞ = 2. Now, making
the change of variable w = w0+τnα/(2α+1)

σ u and using the fact that w0+τnα/(2α+1)
σ u ≤ nα/(2α+1)

σ (w0+u),
we get ∫

R2+
log

(
1+ w

nα/(2α+1)
σ

)3
pλ0,τ(dλ) ≤ 3

∫
R+

log
(
1+w0 +u

)
pw (u)du

≤ 3log
(
1+w0 +

∫
R+

upw (u)du
)

= 3log(2+w0).

Eventually, we can reformulate our bound on the risk of the EWA given in (41), leading to

E(‖ f̂ EWA − f ‖2
n) ≤ rλ0+4τ(R0 +σ2)

(n1/2
σ

w0
+ log w0

α0

)
+ 8σ2(α0 +3log

( 2+w0
τ )

)
n

. (48)

To conclude the proof of the proposition, we set

τ= α0

n2
σ+α0 +2log w0

, w0 =
(R0(α0 +1)(2α0 +1)

α0

) α0
2α0+1

n
α0

2α0+1
σ .

According to Pinsker’s theorem (see, for instance, Tsybakov (2009), Theorem 3.2)

max
f ∈F (α0,R0)

rλ0 = (1+on(1))min
f̂

max
f ∈F (α0,R0)

E(‖ f̂ − f ‖2
n).

In view of this result, taking the max over f ∈F (α0,R0) in (48), we get

max
f ∈F (α0,R)

E(‖ f̂ EWA − f ‖2
n) ≤ (1+on(1))min

f̂
max

f ∈F (α0,R)
E(‖ f̂ − f ‖2

n)+O
( logn

n

)
.

This leads to the desired result in view of the relation

liminf
n→∞ min

f̂
max

f ∈F (α0,R)
n

2α0
2α0+1 E(‖ f̂ − f ‖2

n) > 0,

which follows from (Tsybakov, 2009, Theorem 3.1).
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