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Abstract

A large set of signals can sometimes be described sparsely using a dictionary, that is, every element
can be represented as a linear combination of few elements from the dictionary. Algorithms for
various signal processing applications, including classification, denoising and signal separation,
learn a dictionary from a given set of signals to be represented. Can we expect that the error
in representing by such a dictionary a previously unseen signal from the same source will be of
similar magnitude as those for the given examples? We assume signals are generated from a fixed
distribution, and study these questions from a statistical learning theory perspective.
We develop generalization bounds on the quality of the learned dictionary for two types of con-
straints on the coefficient selection, as measured by the expected L2 error in representation when
the dictionary is used. For the case of l1 regularized coefficient selection we provide a generaliza-
tion bound of the order of O

(√
np log(mλ)/m

)
, where n is the dimension, p is the number of

elements in the dictionary, λ is a bound on the l1 norm of the coefficient vector andm is the number
of samples, which complements existing results. For the case of representing a new signal as a com-
bination of at most k dictionary elements, we provide a bound of the order O(

√
np log(mk)/m)

under an assumption on the closeness to orthogonality of the dictionary (low Babel function). We
further show that this assumption holds for most dictionaries in high dimensions in a strong prob-
abilistic sense. Our results also include bounds that converge as 1/m, not previously known for
this problem. We provide similar results in a general setting using kernels with weak smoothness
requirements.

1 Introduction
A common technique in processing signals from X = Rn is to use sparse representations; that is, to approx-
imate each signal x by a “small” linear combination a of elements di from a dictionary D ∈ X p, so that
x ≈ Da =

∑p
i=1 aidi. This has various uses detailed in Section 1.1. The smallness of a is often measured

using either ‖a‖1, or the number of non zero elements in a, often denoted ‖a‖0. The approximation error is
measured here using a Euclidean norm appropriate to the vector space. We denote the approximation error of
x using dictionary D and coefficients from a set A by

hA,D(x) = min
a∈A
‖Da− x‖ , (1.1)

where A is one of the following sets determining the sparsity required of the representation:

Hk = {a : ‖a‖0 ≤ k}
induces a “hard” sparsity constraint, which we also call k sparse representation, while

Rλ = {a : ‖a‖1 ≤ λ}
induces a convex constraint that is considered a “relaxation” of the previous constraint.



The dictionary learning problem is to find a dictionary D minimizing

E(D) = Ex∼νhA,D(x), (1.2)

where ν is a distribution over signals that is known to us only through samples from it. The problem addressed
in this paper is the “generalization” (in the statistical learning sense) of dictionary learning: to what extent
does the performance of a dictionary chosen based on a finite set of samples indicate its expected error
in (1.2)? This clearly depends on the number of samples and other parameters of the problem such as the
dictionary size. In particular, an obvious algorithm is to represent each sample using itself, if the dictionary
is allowed to be as large as the sample, but the performance on unseen signals is likely to disappoint.

To state our goal more quantitatively, assume that an algorithm finds a dictionary D suited to k sparse
representation, in the sense that the average representation error Em(D) on the m examples given to the
algorithm is low. Our goal is to bound the generalization error ε, which is the additional expected error that
might be incurred:

E(D) ≤ (1 + η)Em(D) + ε, (1.3)

where η ≥ 0 is sometimes zero, and the bound ε depends on the number of samples and problem param-
eters. Since efficient algorithms that find the optimal dictionary for a given set of samples (also known as
empirical risk minimization, or ERM, algorithms) are not known for dictionary learning, we prove uniform
convergence bounds that apply simultaneously over all admissible dictionaries D, thus bounding from above
the sample complexity of the dictionary learning problem. In particular, such a result means that every proce-
dure for approximate minimization of empirical error (empirical dictionary learning) is also a procedure for
approximate dictionary learning (as defined above) in a similar sense.

Many analytic and algorithmic methods relying on the properties of finite dimensional Euclidean geome-
try can be applied in more general settings by applying kernel methods. These consist of treating objects that
are not naturally represented in Rn as having their similarity described by an inner product in an abstract fea-
ture space that is Euclidean. This allows the application of algorithms depending on the data only through a
computation of inner products to such diverse objects as graphs, DNA sequences and text documents (Shawe-
Taylor and Cristianini, 2004). Is it possible to extend the usefulness of dictionary learning techniques to this
setting? We address sample complexity aspects of this question as well.

1.1 Background and related work
Sparse representations are by now standard practice in diverse fields such as signal processing, natural lan-
guage processing, etc. Typically, the dictionary is assumed to be known. The motivation for sparse repre-
sentations is indicated by the following results, in which we assume the signals come from X = Rn are
normalized to have length 1, and the representation coefficients are constrained to A = Hk where k < n, p
and typically hA,D(x)� 1.

• Compression: If a signal x has an approximate sparse representation in some commonly known dictio-
nary D, it can be stored or transmitted more economically with reasonable precision. Finding a good
sparse representation can be computationally hard but if D fulfills certain geometric conditions, then its
sparse representation is unique and can be found efficiently (see, e.g., Bruckstein et al., 2009).

• Denoising: If a signal x has a sparse representation in some known dictionary D, and x̃ = x+ ν, where
the random noise ν is Gaussian, then the sparse representation found for x̃ will likely be very close to
x (for example Chen et al., 2001).

• Compressed sensing: Assuming that a signal x has a sparse representation in some known dictionary D
that fulfills certain geometric conditions, this representation can be approximately retrieved with high
probability from a small number of random linear measurements of x. The number of measurements
needed depends on the sparsity of x in D (Candes and Tao, 2006).

The implications of these results are significant when a dictionary D is known that sparsely represents
simultaneously many signals. In some applications the dictionary is chosen based on prior knowledge, but in
many applications the dictionary is learned based on a finite set of examples. To motivate dictionary learning,
consider an image representation used for compression or denoising. Different types of images may have
different properties (MRI images are not similar to scenery images), so that learning a dictionary specific

2



to each type of images may lead to improved performance. The benefits of dictionary learning have been
demonstrated in many applications (Protter and Elad, 2007, Peyré, 2009).

Two extensively used techniques related to dictionary learning are Principal Component Analysis (PCA)
and K-means clustering. The former finds a single subspace minimizing the sum of squared representation
errors which is very similar to dictionary learning with A = Hk and p = k. The latter finds a set of locations
minimizing the sum of squared distances between each signal and the location closest to it which is very
similar to dictionary learning with A = H1 where p is the number of locations. Thus we could see dictionary
learning as PCA with multiple subspaces, or as clustering where multiple locations are used to represent each
signal. The sample complexities of both algorithms are well studied (Bartlett et al., 1998, Biau et al., 2008,
Shawe-Taylor et al., 2005, Blanchard et al., 2007).

This paper does not address questions of computational cost, though they are very relevant. Finding
optimal coefficients for k sparse representation (that is, minimizing (1.1) with A = Hk) is NP-hard in gen-
eral (Davis et al., 1997). Dictionary learning as the optimization problem of minimizing (1.2) is less well
understood, even for empirical ν (consisting of a finite number of samples), despite over a decade of work
on related algorithms with good empirical results (Olshausen and Fieldt, 1997, Lewicki et al., 1998, Kreutz-
Delgado et al., 2003, Aharon et al., 2006, Lee et al., 2007, Mairal et al., 2010).

The only prior work we are aware of that addresses generalization in dictionary learning, by Maurer and
Pontil (2010), addresses the convex representation constraint A = Rλ; we discuss the relation of our work to
theirs in Section 2.

2 Results
Except where we state otherwise, we assume signals are generated in the unit sphere Sn−1. Our results are:

A new approach to dictionary learning generalization. Our first main contribution is an approach
to generalization bounds in dictionary learning that is complementary to the approach used by Maurer and
Pontil (2010). The previous result, given below in Theorem 6 has generalization error bounds of order

O

(√
pmin(p, n)

(
λ+

√
log(mλ)

)2

/m

)
on the squared representation error. A notable feature of this result is the weak dependence on the signal
dimension n. In Theorem 1 we quantify the complexity of the class of functions hA,D over all dictionaries
whose columns have unit length, where A ⊂ Rλ. Combined with standard methods of uniform convergence
this results in generalization error bounds ε of order O

(√
np log(mλ)/m

)
when η = 0. While our bound

does depend strongly on n, this is acceptable in the case n < p, also known in the literature as the “over-
complete” case (Olshausen and Fieldt, 1997, Lewicki et al., 1998). Note that our generalization bound applies
with different constants to the representation error itself and many variants including the squared representa-
tion error, and has a weak dependence on λ. The dependence on λ is significant, for example, when ‖a‖1 is
used as a weighted penalty term by solving mina ‖Da−X‖ + γ · ‖a‖1; in this case λ = O

(
γ−1

)
may be

quite large.
Fast rates. For the case η > 0 our methods allow bounds of order O(np log(λm)/m). The main

significance of this is in that the general statistical behavior they imply occurs in dictionary learning. For
example, generalization error has a “proportional” component which is reduced when the empirical error is
low. Whether fast rates results can be proved in the dimension free regime is an interesting question we leave
open. Note that due to lower bounds by Bartlett et al. (1998) of order

√
m−1 on the k-means clustering

problem, which corresponds to dictionary learning for 1-sparse representation, fast rates may be expected
only with η > 0, as presented here.

We now describe the relevant function class and the bounds on its complexity, which are proved in Section
3. The resulting generalization bounds are given explicitly at the end of this section.

Theorem 1 The function class Gλ =
{
hRλ,D : Sn−1 → R : D ∈ Rn×p, ‖di‖ ≤ 1

}
, taken as a metric space

with the metric induced by ‖·‖∞, has an ε cover of cardinality at most (4λ/ε)
np.

Extension to k sparse representation. Our second main contribution is to extend both our approach and
that of Maurer and Pontil (2010) to provide generalization bounds for dictionaries for k sparse representations,
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by using a bound λ on the l1 norm of the representation coefficients when the dictionaries are close to
orthogonal. Distance from orthogonality is measured by the Babel function (which, for example, upper
bounds the magnitude of the maximal inner product between distinct dictionary elements) defined below and
discussed in more detail in Section 4.

Definition 2 (Babel function, Tropp 2004) For any k ∈ N, the Babel function µk : Rn×m → R+ is defined
by:

µk (D) = max
i∈{1,...,p}

max
Λ⊂{1,...,p}\{i};|Λ|=k

∑
j∈Λ

|〈dj , di〉| .

The following proposition, which is proved in Section 3, bounds the 1-norm of the dictionary coefficients
for a k sparse representation and also follows from analysis previously done by Donoho and Elad (2003),
Tropp (2004).

Proposition 3 Let each column di of D fulfill ‖di‖ ∈ [1, γ] and µk−1 (D) ≤ δ < 1, then a coefficient vector
a ∈ Rp minimizing the k-sparse representation error hHk,D(x) exists which has ‖a‖1 ≤ γk/ (1− δ).

We now consider the class of all k sparse representation error functions. We prove in Section 3 the
following bound on the complexity of this class.

Corollary 4 The function class Fδ,k =
{
hHk,D : Sn−1 → R : µk−1(D) < δ, di ∈ Sn−1

}
, taken as a metric

space with the metric induced by ‖·‖∞, has an ε cover of cardinality at most (4k/ (ε (1− δ)))np.

The dependence of the last two results on µk−1(D) means that the resulting bounds will be meaning-
ful only for algorithms which explicitly or implicitly prefer near orthogonal dictionaries. Contrast this to
Theorem 1 which has no significant conditions on the dictionary.

Asymptotically almost all dictionaries are near orthogonal. A question that arises is what values of
µk−1 can be expected for parameters n, p, k? We shed some light on this question through the following
probabilistic result, which we discuss in Section 4 and prove in the full version.

Theorem 5 Suppose that D consist of p vectors chosen uniformly and independently from Sn−1. Then we
have

P

(
µk >

1

2

)
≤ 1(

e(n−2)/(10k log p)2 − 1
) .

Since low values of the Babel function have implications to representation finding algorithms, this result
is of interest also outside the context of dictionary learning. Essentially it means that random dictionaries of
size sub-exponential in (n− 2)/k2 have low Babel function.

New generalization bounds for l1 case. The covering number bound of Theorem 1 implies several
generalization bounds for the problem of dictionary learning for l1 regularized representation which we give
here. These differ from those by Maurer and Pontil (2010) in depending more strongly on the dimension of
the space, but less strongly on the particular regularization term. We first give the relevant specialization of
the result by Maurer and Pontil (2010) for comparison and for reference as we will later build on it. This
result is independent of the dimension n of the underlying space, thus the Euclidean unit ball B may be that
of a general Hilbert space, and the errors measured by hA,D are in the same norm.

Theorem 6 (Maurer and Pontil 2010) Let A ⊂ Rλ, and let ν be any distribution on the unit sphere B.
Then with probability at least 1− e−x over the m samples in Em drawn according to ν, for all dictionaries
D ⊂ B with cardinality p:

Eh2
A,D ≤ Emh2

A,D +

√√√√p2
(

14λ+ 1/2
√

ln (16mλ2)
)2

m
+

√
x

2m
.

Using the covering number bound of Theorem 1 and a bounded differences concentration inequality (see
Lemma 21), we obtain the following result. The details are given in Section 3.
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Theorem 7 Let λ > e/4, with ν a distribution on Sn−1. Then with probability at least 1 − e−x over the m
samples in Em drawn according to ν, for all D with unit length columns:

EhRλ,D ≤ EmhRλ,D +

√
np ln (4

√
mλ)

2m
+

√
x

2m
+

√
4

m
.

Using the same covering number bound and the general result Corollary 23 (given in Section 3), we
obtain the following fast rates result. A slightly more general result is easily derived by using Proposition 22
instead.

Theorem 8 Let λ > e/4, np ≥ 20 and m ≥ 5000 with ν a distribution on Sn−1. Then with probability at
least 1− e−x over the m samples in Em drawn according to ν, for all D with unit length columns:

EhRλ,D ≤ 1.1EmhRλ,D + 9
np ln (4λm) + x

m
.

Generalization bounds for k sparse representation. Proposition 3 and Corollary 4 imply certain gen-
eralization bounds for the problem of dictionary learning for k sparse representation, which we give here.

A straight forward combination of Theorem 2 of Maurer and Pontil (2010) (given here as Theorem 6) and
Proposition 3 results in the following theorem.

Theorem 9 Let δ < 1 with ν a distribution on Sn−1. Then with probability at least 1 − e−x over the m
samples in Em drawn according to ν, for all D s.t. µk−1(D) ≤ δ and with unit length columns:

Eh2
Hk,D

≤ Emh2
Hk,D

+
p√
m

 14k

1− δ
+

1

2

√√√√ln

(
16m

(
k

1− δ

)2
)+

√
x

2m
.

In the case of clustering we have k = 1 and δ = 0 and this result approaches the rates of Biau et al.
(2008).

The following theorems follow from the covering number bound of Corollary 4 and applying the general
results of Section 3 as for the l1 sparsity results.

Theorem 10 Let δ < 1 with ν a distribution on Sn−1. Then with probability at least 1 − e−x over the m
samples in Em drawn according to ν, for all D s.t. µk−1(D) ≤ δ and with unit length columns:

EhHk,D ≤ EmhHk,D +

√
np ln 4

√
mk

1−δ
2m

+

√
x

2m
+

√
4

m
.

Theorem 11 Let δ < 1, np ≥ 20 and m ≥ 5000 with ν a distribution on Sn−1. Then with probability at
least 1 − e−x over the m samples in Em drawn according to ν, for all D s.t. µk−1(D) ≤ δ and with unit
length columns:

EhHk,D ≤ 1.1EmhHk,D + 9
np ln

(
4
√
mk

1−δ

)
+ x

m
.

Generalization bounds for dictionary learning in feature spaces. We further consider applications of
dictionary learning to signals that are not represented as elements in a vector space, or that have a very high
(possibly infinite) dimension.

In addition to providing an approximate reconstruction of signals, sparse representation can also be con-
sidered as a form of analysis, if we treat the choice of non zero coefficients and their magnitude as features
of the signal. In the domain of images, this has been used to perform classification (in particular, face recog-
nition) by Wright et al. (2008). Such analysis does not require that the data itself be represented in Rn (or in
any vector space); it is enough that the similarity between data elements is induced from an inner product in
a feature space. This requirement is fulfilled by using an appropriate kernel function.
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Definition 12 LetR be a set of data representations, and let the kernel function κ : R2 → R and the feature
mapping φ : R → H be such that:

κ (x, y) = 〈φ (x) , φ (y)〉
whereH is some Hilbert space.

As a concrete example, choose a sequence of n words, and let φ map a document to the vector of counts
of appearances of each word in it (also called bag of words). Treating κ(a, b) = 〈φ(a), φ(b)〉 as the similarity
between documents a and b, is the well known “bag of words” approach, applicable to many document related
tasks (Shawe-Taylor and Cristianini, 2004). Then the statement φ(a) + φ(b) ≈ φ(c) does not imply that c
can be reconstructed from a and b, but we might consider it indicative of the content of c. The dictionary
of elements used for representation could be decided via dictionary learning, and it is natural to choose the
dictionary so that the bags of words of documents are approximated well by small linear combinations of
those in the dictionary.

As the example above suggests, the kernel dictionary learning problem is to find a dictionary D minimiz-
ing

Ex∼νhφ,A,D(x),

where we consider the representation error function

hφ,A,D(x) = min
a∈A
‖(ΦD) a− φ (x)‖H ,

in which Φ acts as φ on the elements of D, A ∈ {Rλ, Hk}, and the norm ‖·‖H is that induced by the kernel
on the feature spaceH.

Analogues of all the generalization bounds mentioned so far can be replicated in the kernel setting. The
dimension free results of Maurer and Pontil (2010) apply most naturally in this setting, and may be combined
with our results to cover also dictionaries for k sparse representation, under reasonable assumptions on the
kernel.

Proposition 13 Let ν be any distribution onR such that x ∼ ν implies that φ(x) is in the unit ball BH ofH
with probability 1. Then with probability at least 1− e−x over the m samples in Em drawn according to ν,
for all D ⊂ R with cardinality p such that ΦD ⊂ BH and µk−1(ΦD) ≤ δ < 1:

Eh2
φ,Hk,D

≤ Emh2
φ,Hk,D

+

√√√√√√p2

(
14k/(1− δ) + 1/2

√
ln

(
16m

(
k

1−δ

)2
))2

m
+

√
x

2m
.

Note that in µk−1(ΦD) the Babel function is defined in terms of inner products in H, and can therefore
be computed efficiently by applications of the kernel.

In Section 5 we prove the above result and also cover number bounds as in the linear case considered
before. In the current setting, these bounds depend on the Hölder smoothness order α of the feature mapping
φ. Formal definitions are given in Section 5 but as an example, the well known Gaussian kernel has α = 1.
We give now one of the generalization bounds using this method.

Theorem 14 Let R have ε covers of order (C/ε)
n. Let κ : R2 → R+ be a kernel function s.t. κ(x, y) =

〈φ(X), φ(Y )〉, for φ which is uniformly L-Hölder of order α > 0 over R, and let γ = maxx∈R ‖φ(x)‖H.
Let δ < 1, and ν any distribution on R, then with probability at least 1 − e−x over the m samples in Em
drawn according to ν, for all dictionaries D ⊂ R of cardinality p s.t. µk−1(ΦD) ≤ δ < 1 (where Φ acts
like φ on columns):

EhHk,D ≤ EmhHk,D + γ


√√√√np ln

(√
mCα kγ

2L
1−δ

)
2αm

+

√
x

2m

+

√
4

m
.

The covering number bounds needed to prove this theorem and analogs for the other generalization
bounds are proved in Section 5.
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3 Covering numbers of Gλ and Fδ,k
The main content of this section is the proof of Theorem 1 and Corollary 4. We also show that in the k sparse
representation setting a finite bound on λ does not occur generally thus an additional restriction, such as the
near-orthogonality on the set of dictionaries on which we rely in this setting, is necessary. Lastly, we recall
known results from statistical learning theory that link covering numbers to generalization bounds.

We recall the definition of the covering numbers we wish to bound. Anthony and Bartlett (1999) give a
textbook introduction to covering numbers and their application to generalization bounds.

Definition 15 (Covering number) Let (M,d) be a metric space and S ⊂ M . Then the ε covering number
of S defined as N (ε, S, d) = min

{
|A| |A ⊂M and S ⊂

(⋃
a∈ABd (a, ε)

)}
is the size of the minimal ε

cover of S using d.

To prove Theorem 1 and Corollary 4 we first note that the space of all possible dictionaries is a subset
of a unit ball in a Banach space of dimension np (with a norm specified below). Thus (see formalization in
Proposition 5 of Cucker and Smale, 2002) the space of dictionaries has an ε cover of size (4/ε)

np. We also
note that a uniformly L Lipschitz mapping between metric spaces converts ε/L covers into ε covers. Then it
is enough to show that Ψλ defined as D 7→ hRλ,D and Φk defined as D 7→ hHk,D are uniformly Lipschitz
(when Φk is restricted to the dictionaries with µk−1(D) ≤ c < 1). The proof of these Lipschitz properties is
our next goal, in the form of Lemmas 18 and 19.

The first step is to be clear about the metrics we consider over the spaces of dictionaries and of error
functions.

Definition 16 (Induced matrix norm) Let p, q ≥ 1, then a matrix A ∈ Rn×m can be considered as an
operator A :

(
Rm, ‖·‖p

)
→
(
Rn, ‖·‖q

)
. The p, q induced norm is ‖A‖p,q , supx∈Rm‖x‖p=1 ‖Ax‖q .

Lemma 17 For any matrix D, ‖D‖1,2 is equal to the maximal Euclidean norm of any column in D.

Proof: That the maximal norm of a column bounds ‖D‖1,2 can be seen geometrically; Da/ ‖a‖1 is a convex
combination of column vectors, then ‖Da‖2 ≤ maxdi ‖di‖2 ‖a‖1 because a norm is convex. Equality is
achieved for a = ei, where di is the column of maximal norm.

The images of Ψλ and Φk are sets of representation error functions–each dictionary induces a set of
precisely representable signals, and a representation error function is simply a map of distances from this set.
Representation error functions are clearly continuous, 1-Lipschitz, and into [0, 1]. In this setting, a natural
norm over the images is the supremum norm ‖·‖∞.

Lemma 18 The function Ψλ is λ-Lipschitz from
(
Rn×m, ‖·‖1,2

)
to C

(
Sn−1

)
.

Proof: Let D and D′ be two dictionaries whose corresponding elements are at most ε > 0 far from
one another. Let x be a unit signal and Da an optimal representation for it. Then ‖(D −D′) a‖2 ≤
‖D −D′‖1,2 ‖a‖1 ≤ ελ. If D′a is very close to Da in particular it is not a much worse representation of x,
and replacing it with the optimal representation underD′, we have hRλ,D′(x) ≤ hRλ,D(x)+ελ. By symme-
try we have |Ψλ(D)(x)−Ψλ(D′)(x)| ≤ λε. This holds for all unit signals, then ‖Ψλ(D)−Ψλ(D′)‖∞ ≤
λε.

We now provide a proof for Proposition 3 which is used in the corresponding treatment for covering
numbers under k sparsity.
Proof:(Of Proposition 3) Let Dk be a submatrix of D whose k columns from D achieve the minimum on
hHk,D(x) for x ∈ Sn−1. We now consider the Gram matrix G =

(
Dk
)>
Dk whose diagonal entries are the

norms of the elements of Dk, therefore at least 1. By the Gersgorin theorem (Horn and Johnson, 1990), each
eigenvalue of a square matrix is “close” to a diagonal entry of the matrix; the absolute difference between
an eigenvalue and its diagonal entry is upper bounded by the sum of the absolute values of the remaining
entries of the same row. Since a row in G corresponds to the inner products of an element from Dk with
every element from Dk, this sum is upper bounded by δ for all rows. Then we conclude the eigenvalues of

7



the Gram matrix are lower bounded by 1− δ > 0. Then in particular G has a symmetric inverse G−1 whose
eigenvalues are positive and bounded from above by 1/ (1− δ). The maximal magnitude of an eigenvalue of
a symmetric matrix coincides with its induced norm ‖·‖2,2, therefore

∥∥G−1
∥∥

2,2
≤ 1/(1− δ).

Linear dependence of elements of Dk would imply a non-trivial nullspace for the invertible G. Then the
elements ofDk are linearly independent, which implies that the unique optimal representation of x as a linear
combination of the columns of Dk is Dka with

a =
((
Dk
)>
Dk
)−1 (

Dk
)>
x.

Using the above and the definition of induced matrix norms, we have

‖a‖2 ≤
∥∥∥∥((Dk

)>
Dk
)−1

∥∥∥∥
2,2

∥∥∥(Dk
)>
x
∥∥∥

2
≤ 1/(1− δ)

∥∥∥(Dk
)>
x
∥∥∥

2
.

The vector
(
Dk
)>
x is in Rk and by the Cauchy Schwartz inequality 〈di, x〉 ≤ γ, then

∥∥∥(Dk
)>
x
∥∥∥

2
≤

√
k
∥∥∥(Dk

)>
x
∥∥∥
∞
≤
√
kγ. Since only k entries of a are non zero, ‖a‖1 ≤

√
k ‖a‖2 ≤ kγ/(1− δ).

Lemma 19 The function Φk is a k/(1 − δ)-Lipschitz mapping from the set of normalized dictionaries with
µk−1(D) < δ with the metric induced by ‖·‖1,2 to C

(
Sn−1

)
.

The proof of this lemma is the same as that of Lemma 18, except that a is taken to be an optimal repre-
sentation that fulfills ‖a‖1 ≤ λ = k/ (1− µk−1(D)), whose existence is guaranteed by Proposition 3.

This concludes the proof of Theorem 1 and Corollary 4.
The next theorem shows that unfortunately, Φ is not uniformly L-Lipschitz for any constant L, requiring

its restriction to an appropriate subset of the dictionaries.

Theorem 20 For any 1 < k < n, p, there exists c > 0 and q, such that for every ε > 0, there exist D,D′
such that ‖D −D′‖1,2 < ε but |(hHk,D(q)− hHk,D′(q))| > c.

Proof: First we show that for any dictionary D there exist c > 0 and x ∈ Sn−1 such that hHk,D(x) > c.
Let νSn−1 be the uniform probability measure on the sphere, and Ac the probability assigned by it to the set
within c of a k dimensional subspace. As c↘ 0,Ac also tends to zero, then there exists c > 0 s.t.

(
p
k

)
Ac < 1.

Then for that c and any dictionary D there exists a set of positive measure on which hHk,D > c, let q be a
point in this set. Since hHk,D(x) = hHk,D(−x), we may assume without loss of generality that 〈e1, q〉 ≥ 0.

We now fix the dictionaryD; its first k−1 elements are the standard basis {e1, . . . , ek−1}, its kth element
is Dk =

√
1− ε2/4e1 + εek/2, and the remaining elements are chosen arbitrarily. Now construct D′ to be

identical to D except its kth element is v =
√

1− ε2/4e1 + lq choosing l so that ‖v‖2 = 1. Then there exist
a, b ∈ R such that q = aD′1 + bD′k and we have hHk,D′(q) = 0, fulfilling the second part of the theorem.
On the other hand, since 〈e1, q〉 ≥ 0, we have l ≤ ε/2, and then we find ‖D −D′‖1,2 = ‖εek/2− lq‖2 ≤
‖εek/2‖+ ‖lq‖ = ε/2 + l ≤ ε.

To conclude the generalization bounds of Theorems 7, 8, 10, 11 and 14 from the covering number bounds
we have provided, we use the following results. The first result is a straight forward application of McDi-
armid’s inequality to the l∞ cover number bounds. The second result1 (along with its corollary) gives fast
rate bounds and uses the ‖·‖∞ cover number bounds to achieve better constants for this problem than the
more general results by Mendelson (2003) and Bartlett et al. (2005).

Lemma 21 Let F be a class of [0, B] functions with covering number bound (C/ε)
d
> e/B2 under the

supremum norm. Then for every x > 0, with probability of at least 1−e−x over them samples in Em chosen
according to ν, for all f ∈ F:

Ef ≤ Emf +B

(√
d log (C

√
m)

2m
+

√
x

2m

)
+

√
4

m
.

1We thank Andreas Maurer for suggesting this result and a proof elaborated in the full version.

8



Proposition 22 Let F be a class of [0, 1] functions that can be covered for any ε > 0 by at most (C/ε)
d balls

of radius ε in the L∞ metric where C ≥ e and β > 0. Then with probability at least 1− exp (−x), we have
for all f ∈ F:

Ef ≤ (1 + β)Emf +K (d,m, β)
d ln (Cm) + x

m
,

where K (d,m, β) =

√
2
(

9√
m

+ 2
) (

d+3
3d

)
+ 1 +

(
9√
m

+ 2
) (

d+3
3d

)
+ 1 + 1

2β .

The corollary we use to obtain Theorems 8 and 11 follows becauseK (d,m, β) is non-increasing in d,m.

Corollary 23 Let F , x be as above. For d ≥ 20, m ≥ 5000 and β = 0.1 we have with probability at least
1− exp (−x) for all f ∈ F:

Ef ≤ 1.1Emf + 9
d ln (Cm) + x

m
.

4 On the Babel function
The Babel function is one of several metrics defined in the sparse representations literature to quantify an
”almost orthogonality” property that dictionaries may enjoy. Such properties have been shown to imply
theoretical properties such as uniqueness of the optimal k sparse representation. In the algorithmic context,
Donoho and Elad (2003) and Tropp (2004) use the Babel function to show that particular efficient algorithms
for finding sparse representations fulfill certain quality guarantees when applied to such dictionaries. This
reinforces the practical importance of the learnability of this class of dictionary. We proceed to discuss some
elementary properties of the Babel function, and then state a bound on the proportion of dictionaries having
sufficiently good Babel function.

Measures of orthogonality are typically defined in terms of inner products between the elements of the
dictionary. Perhaps the simplest of these measures of orthogonality is the following special case of the Babel
function.

Definition 24 The coherence of a dictionary D is µ1(D) = maxi 6=j |〈di, dj〉|.

The Babel function considers sums of k inner products at a time rather than the maximum over all inner
products, and thus better quantifies the effects of non orthogonality on representing a signal with particular
level k+1 of sparsity. As a particular example of the finer grained control µk when compared to µ1, consider
the following example. Let D consist of k pairs of elements, so that the subspace spanned by each pair is
orthogonal to all other elements, and such that the inner product between the elements of any single pair is
half. In this case µk(D) = µ1(D) = 1/2. However note that to ensure µk < 1 only restricting µ1 requires
the constraint µ1(D) < 1/k, which is not fulfilled in our example.

To better understand µk (D), we consider first its extreme values. When µk (D) = 0, for any k > 1, this
means that D is an orthogonal set (therefore p ≤ n). The maximal value of µk (D) is k, and occurs only if
some dictionary element is repeated (up to sign) at least k + 1 times.

A well known generic class of dictionaries with more elements than a basis is that of frames (see Duffin
and Schaeer, 1952), which include many wavelet systems and filter banks. Some frames can be trivially seen
to fulfill our condition on the Babel function.

Proposition 25 Let D ∈ Rn×p be a frame of Rn, so that for every v ∈ Sn−1 we have that
∑n
i=1 |〈v, di〉|

2 ≤
B, with ‖di‖2 = 1 for all i, and B < 1 + 1/k. Then µk−1(D) < 1.

This may be easily verified using the relation between ‖·‖1 and ‖·‖2 in Rk.

4.1 Proportion of dictionaries with µk−1(D) < δ

We return to the question of the prevalence of dictionaries having µk−1 < δ. Are almost all dictionaries
such? If the answer is affirmative, it implies that Theorem 11 is quite strong, and representation finding
algorithms such as basis pursuit are almost always exact, which might help prove properties of dictionary
learning algorithms. If the opposite is true and few dictionaries have low Babel function, the results of this
paper are weak. While there might be better probability measures on the space of dictionaries, we consider
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one that seems natural: suppose that a dictionary D is constructed by choosing p unit vectors uniformly from
Sn−1; what is the probability that µk−1(D) < δ?

Theorem 5 gives us the following answer to this question. Under the assumption that the sparsity pa-
rameter k grows slowly, if at all, as n ↗ ∞ (specifically, that k log p = o(

√
n)), this theorem implies that

asymptotically almost all dictionaries under the Lebesgue measure are learnable.

5 Dictionary learning in feature spaces
We propose in Section 2 a scenario in which dictionary learning is performed in a feature space corresponding
to a kernel function. Here we show how to adapt the different generalization bounds discussed in this paper
for the particular case of Rn to more general feature spaces, and the dependence of the sample complexities
on the properties of the kernel function or the corresponding feature mapping. We begin with the relevant
specialization of the results of Maurer and Pontil (2010) which have the simplest dependence on the kernel,
and then discuss the extensions to k sparse representation and to the cover number techniques presented in
the current work.

Theorem 6 applies as is to the feature space, under the simple assumption that the dictionary elements and
signals are in its unit ball which is guaranteed by some kernels such as the Gaussian kernel. Then we take ν on
the unit ball ofH to be induced by some distribution ν′ on the domain of the kernel, and the theorem applies
to any such ν′ on R. Nothing more is required if the representation is chosen from Rλ. The corresponding
generalization bound for k sparse representations when the dictionary elements are near orthogonal in the
feature space is given in Proposition 13.
Proof:(Of Proposition 13) Proposition 3 applies with the Euclidean norm of H, and γ = 1. We apply
Theorem 6 with λ = k/ (1− δ).

The results so far show that generalization in dictionary learning can occur despite the potentially infinite
dimension of the feature space, without considering practical issues of representation and computation. We
now make the domain and applications of the kernel explicit in order to address a basic computational ques-
tion, and allow the use of cover number based generalization bounds to prove Theorem 14. We now consider
signals represented in a metric space (R, d), in which similarity is measured by the kernel κ corresponding
to the feature map φ : R → H. The elements of a dictionary D are now from R, and we denote ΦD their
mapping by φ toH. The representation error function used is hφ,A,D.

We now show that the approximation error in the feature space is a quadratic function of the coefficient
vector; the quadratic function for particular D and x may be found by applications of the kernel.

Proposition 26 Computing the representation error at a given x, a,D requires O
(
p2
)

kernel applications
in general, and only O

(
k2 + p

)
when a is k sparse.

The squared error expands to
p∑
i=1

ai

p∑
j=1

ajκ (di, dj) + κ (x, x)− 2

p∑
i=1

aiκ (x, di) .

We note that the k sparsity constraint on a poses algorithmic difficulties beyond those addressed here.
Some of the common approaches to these, such as orthogonal matching pursuit (Chen et al., 1989), also
depend on the data only through their inner products, and may therefore be adapted to the kernel setting.

The cover number bounds depend strongly on the dimension of the space of dictionary elements. Taking
H as the space of dictionary elements is the simplest approach, but may lead to vacuous or weak bounds, for
example in the case of the Gaussian kernel whose feature space is infinite dimensional. Instead we propose to
use the space of data representationsR, whose dimensions are generally bounded by practical considerations.
In addition, we will assume that the kernel is not “too wild” in the following sense.

Definition 27 Let L,α > 0, and let (A, d′) and (B, d) be metric spaces. We say a mapping f : A → B is
uniformly L Hölder of order α on a set S ⊂ A if ∀x, y ∈ S, the following bound holds:

d (f(x), f(y)) ≤ L · d′(x, y)α.

The relevance of this smoothness condition is as follows.
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Lemma 28 A Hölder function maps an ε cover of S to an Lεα cover of its image f(S). Thus, to obtain an ε
cover of the image of S, it is enough to begin with an (ε/L)

1/α cover of S.

A Hölder feature map φ allows us to bound the cover numbers of the dictionary elements in H using
their cover number bounds in R. Note that not every kernel corresponds to a Hölder feature map (the Dirac
δ kernel is a counter example: any two distinct elements are mapped to elements at a mutual distance of 1),
and sometimes analyzing the feature map is harder than analyzing the kernel. The following lemma bounds
the geometry of the feature map using that of the kernel.

Lemma 29 Let κ(x, y) = 〈φ(x), φ(y)〉, and assume further that κ fulfills a Hölder condition of order α
uniformly in each parameter, that is, |κ(x, y)− κ(x+ h, y)| ≤ L ‖h‖α. Then φ uniformly fulfills a Hölder
condition of order α/2 with constant

√
2L.

This result is not sharp. For example, for the Gaussian case, both kernel and the feature map are Hölder
order 1.
Proof: Using the Hölder condition, we have that ‖φ(x)− φ(y)‖2H = κ (x, x)−κ (x, y)+κ (y, y)−κ (x, y) ≤
2L ‖x− y‖α. All that remains is to take the square root of both sides.

For a given feature mapping φ, set of representationsR, we define two families of function classes so:

Wφ,λ = {hφ,Rλ,D : D ∈ Dp} and
Qφ,k,δ = {hφ,Hk,D : D ∈ Dp ∧ µk−1 (ΦD) ≤ δ} .

The next proposition completes this section by giving the cover number bounds for the representation
error function classes induced by appropriate kernels, from which various generalization bounds easily follow,
such as Theorem 14.

Proposition 30 Let R be a set of representations with a cover number bound of (C/ε)
n, and let either

φ be uniformly L Hölder condition of order α on R, or κ be uniformly L Hölder of order 2α on R
in each parameter, and let γ = supd∈R ‖φ(d)‖H. Then the function classes Wφ,λ and Qφ,k,δ taken as

metric spaces with the supremum norm, have ε covers of cardinalities at most
(
C (λγL/ε)

1/α
)np

and(
C
(
kγ2L/ (ε (1− δ))

)1/α)np
, respectively.

Proof: We first consider the case of l1 constrained coefficients. If ‖a‖1 ≤ λ and also maxd∈D ‖φ(d)‖H ≤ γ
then by considerations applied in Section 3, to obtain an ε cover of the set {mina ‖(ΦD) a− φ (x)‖H : D ∈ D},
it is enough to obtain an ε/ (λγ) cover of {ΦD : D ∈ D}. If also φ is uniformly L Hölder of order α over
R then an (λγL/ε)

−1/α cover of the set of dictionaries is sufficient, which as we have seen requires at most(
C (λγL/ε)

1/α
)np

elements.

In the case of l0 constrained representation, the bound on λ due to Proposition 3 is γk (1− δ), and the
result follows from the above by substitution.

6 Conclusions
Our work has several implications on the design of dictionary learning algorithms as used in signal, image,
and natural language processing. First, the fact that generalization is only logarithmically dependent on the
l1 norm of the coefficient vector widens the set of applicable approaches to penalization. Second, in the
particular case of k sparse representation, we have shown that the Babel function is a key property for the
generalization of dictionaries. It might thus be useful to modify dictionary learning algorithms so that they
obtain dictionaries with low Babel functions, possibly through regularization or through certain convex relax-
ations. Third, mistake bounds (e.g., Mairal et al. 2010) on the quality of the solution to the coefficient finding
optimization problem may lead to generalization bounds for practical algorithms, by tying such algorithms
to k sparse representation.
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The upper bounds presented here invite complementary lower bounds. The existing lower bounds for
k = 1 (vector quantization) and for k = p (representation using PCA directions) are applicable, but do
not capture the geometry of general k sparse representation, and in particular do not clarify the effective
dimension of the unrestricted class of dictionaries for it. We have not excluded the possibility that the class of
unrestricted dictionaries has the same dimension as that of those with a small Babel function. The best upper
bound we know for the larger class, being the trivial one of order O

((
p
k

)
n2
/
m), leaves a significant gap for

future exploration.
We view the dependence on µk−1 from an “algorithmic luckiness” perspective (Herbrich and Williamson,

2003): if the data is described by a dictionary with low Babel function the generalization bounds are encour-
aging.
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