
Beyond the regret minimization barrier: an optimal
algorithm for stochastic strongly-convex optimization

Elad Hazan
Technion - Israel Institute of Technology

ehazan@ie.technion.ac.il

Satyen Kale
Yahoo! Research

skale@yahoo-inc.com

Abstract

We give a novel algorithm for stochastic strongly-convex optimization in the gradient oracle
model which returns an O(1

T)-approximate solution after T gradient updates. This rate of
convergence is optimal in the gradient oracle model. This improves upon the previously

known best rate of O(log(T)
T), which was obtained by applying an online strongly-convex

optimization algorithm with regret O(log(T)) to the batch setting.

We complement this result by proving that any algorithm has expected regret of Ω(log(T))
in the online stochastic strongly-convex optimization setting. This lower bound holds
even in the full-information setting which reveals more information to the algorithm than
just gradients. This shows that any online-to-batch conversion is inherently suboptimal
for stochastic strongly-convex optimization. This is the first formal evidence that online
convex optimization is strictly more difficult than batch stochastic convex optimization.

1 Introduction

Stochastic convex optimization has an inherently different flavor than standard convex optimization.
In the stochastic case, a crucial resource is the number of data samples from the function to be
optimized. This resource limits the precision of the output: given few samples there is simply not
enough information to compute the optimum up to a certain precision. The error arising from this
lack of information is called the estimation error.

The estimation error is independent of the choice of optimization algorithm, and it is reason-
able to choose an optimization method whose precision is of the same order of magnitude as the
sampling error: lesser precision is suboptimal, whereas much better precision is pointless (this issue
was extensively discussed in Bottou and Bousquet (2007) and Shalev-Shwartz and Srebro (2008)).
This makes first-order methods ideal for stochastic convex optimization: their error decreases as a
polynomial in the number of iterations, usually one iteration per data point, and each iteration is
extremely efficient.

In this paper we consider first-order methods for stochastic convex optimization. Formally, the
problem of stochastic convex optimization is the minimization of a convex function on a convex,
compact domain K:

min
x∈K

F (x).

The stochasticity is in the access model: the only access to F is via a stochastic gradient oracle,
which given any point x ∈ K, produces a random vector ĝ whose expectation is a subgradient of F
at the point x, i.e. E[ĝ] ∈ ∂F (x), where ∂F (x) denotes the subdifferential set of F at x.

An important special case is when F (x) = EZ [f(x, Z)] (the expectation being taken over a
random variable Z), where for every fixed z, f(x, z) is a convex function of x. The goal is to
minimize F while given a sample z1, z2, . . . drawn independently from the unknown distribution of
Z. A prominent example of this formulation is the problem of support vector machine training (see
Shalev-Shwartz et al. (2009)).

An algorithm for stochastic convex optimization is allowed a budget of T calls to the gradient
oracle. It sequentially queries the gradient oracle at consecutive points x1,x2, . . . ,xT , and produces
an approximate solution x̄. The rate of convergence of the algorithm is the expected excess cost of
the point x̄ over the optimum, i.e. E[F (x̄)]−minx∈K F (x), where the expectation is taken over the

randomness in the gradient oracle and the internal random seed of the algorithm. The paramount
parameter for measuring this rate is in terms of T , the number of gradient oracle calls.

Our first and main contribution is the first algorithm to attain the optimal rate of convergence in
the case where F is λ-strongly convex, and the gradient oracle is G-bounded (see precise definitions
in Section 2.1). After T gradient updates, the algorithm returns a solution which is O(1

T)-close in
cost to the optimum. Formally, we prove

Theorem 1 Assume that F is λ-strongly convex and the gradient oracle is G-bounded. Then there
exists an algorithm that after at most T gradient updates returns a vector x̄ such that for any x? ∈ K
we have

E[F (x̄)]− F (x?) ≤ O
(
G2

λT

)
.

This matches the lower bound of Agarwal et al. (2010) up to constant factors.

The previously best known rate was O(log(T)
T), and follows by converting a more general online

convex optimization algorithm of Hazan et al. (2007) to the batch setting. This standard online-
to-batch reduction works as follows. In the online convex optimization setting, in each round t =
1, 2, . . . , T , a decision maker (represented by an algorithm A) chooses a point xt in convex domain
K, and incurs a cost ft(xt) for an adversarially chosen convex cost function ft. In this model
performance is measured by the regret, defined as

Regret(A) :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (1)

A regret minimizing algorithm is one that guarantees that the regret grows like o(T). Given such an
algorithm, one can perform batch stochastic convex optimization by setting ft to be the function1

f(·, zt). A simple analysis then shows that the cost of the average point, x̄ = 1
T

∑T
t=1 xt, converges

to the optimum cost at the rate of the average regret, which converges to zero.
The best previously known convergence rates for stochastic convex optimization were obtained

using this online-to-batch reduction, and thus these rates were equal to the average regret of the
corresponding online convex optimization algorithm. While it is known that for general convex
optimization, this online-to-batch reduction gives the optimal rate of convergence, such a result
was not known for stochastic strongly-convex functions. In this paper we show that for stochastic
strongly-convex functions, minimizing regret is strictly more difficult than batch stochastic strongly-
convex optimization.

More specifically, the best known regret bound for λ-strongly-convex cost functions with gra-

dients bounded in norm by G is O(G
2 log(T)
λ) Hazan et al. (2007). This regret bound holds even

for adversarial, not just stochastic, strongly-convex cost functions. A matching lower bound was
obtained in Takimoto and Warmuth (2000) for the adversarial setting.

Our second contribution in this paper is a matching lower bound for strongly-convex cost func-
tions that holds even in the stochastic setting, i.e. if the cost functions are sampled i.i.d from an
unknown distribution. Formally:

Theorem 2 For any online decision-making algorithm A, there is a distribution over λ-strongly-
convex cost functions with norms of gradients bounded by G such that

E[Regret(A)] = Ω

(
G2 log(T)

λ

)
.

Hence, our new rate of convergence of O(G
2

λT) is the first to separate the complexity of stochastic
and online strongly-convex optimization. The following table summarizes our contribution with
respect to the previously known bounds. The setting is assumed to be stochastic λ-strongly-convex
functions with gradient norms bounded by G.

We also sharpen our results: Theorem 1 bounds the expected excess cost of the solution over
the optimum by O(1

T). We can also show high probability bounds. In situations where it is possible
to evaluate F at any given point efficiently, simply repeating the algorithm a number of times and

taking the best point found bounds the excess cost by O(
G2 log(1

δ)

λT) with probability at least 1 − δ.
In more realistic situations where it is not possible to evaluate F efficiently, we can still modify
the algorithm so that with high probability, the actual excess cost of the solution is bounded by

O(log log(T)
T):

1Note that we are assuming that we have full access to the function f(·, zt) here, rather than just gradient
information.

2

Previous bound New bound here

Convergence rate O
(
G2 log(T)

λT

)
[Hazan et al. (2007)] O

(
G2

λT

)
Regret Ω(1) [trivial bound] Ω

(
G2 log(T)

λ

)

Theorem 3 Assume that F is λ-strongly convex, and the gradient oracle is G-bounded. Then for
any δ > 0, there exists an algorithm that after at most T gradient updates returns a vector x̄ such
that with probability at least 1− δ, for any x? ∈ K we have

F (x̄)− F (x?) ≤ O
(
G2(log(1

δ) + log log(T))

λT

)
.

1.1 Related work

For an in depth discussion of first-order methods, the reader is referred to Bertsekas (1999).
The study of lower bounds for stochastic convex optimization was undertaken in Nemirovski and

Yudin (1983), and recently extended and refined in Agarwal et al. (2010).
Online convex optimization was introduced in Zinkevich (2003). Optimal lower bounds for the

convex case, even in the stochastic setting, of Ω(
√
T) are simple and given in Cesa-Bianchi and

Lugosi (2006). For exp-concave cost functions, Ordentlich and Cover (1998) gave a Ω(log T) lower
bound on the regret, even when the cost functions are sampled according to a known distribution.
For strongly convex functions, no non-trivial stochastic lower bound was known. Takimoto and
Warmuth (2000) gave a Ω(log T) lower bound in the regret for adaptive adversaries. Abernethy
et al. (2009) put this lower bound in a general framework for min-max regret minimization.

It has been brought to our attention that Juditsky and Nesterov (2010) have recently published
a technical report that has a very similar algorithm to ours, and also obtain an O(1

T) convergence
rate. This work however was done independently and a preliminary version was published on arXiv
(Hazan and Kale (2010)) before the technical report of Juditsky and Nesterov was available.

2 Setup and Background

2.1 Stochastic convex optimization

Consider the setting of stochastic convex optimization of a convex function F over a convex, compact
set K ⊆ Rn. Let x? be a point in K where F is minimized. We make the following assumptions:

1. We assume that F is λ-strongly convex: i.e., for any two points x,y ∈ K and any α ∈ [0, 1],
we have

F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y)− λ

2
α(1− α)‖x− y‖2.

F is λ-strongly-convex, for example, if F (x) = EZ [f(x, Z)] and f(·, z) is λ-strongly-convex for
every z in the support of Z.

This implies F satisfies the following inequality (to see this, set y = x?, divide by α, and take
the limit as α→ 0+):

F (x)− F (x?) ≥ λ

2
‖x− x?‖2 (2)

This inequality holds even if x? is on the boundary of K. In fact, (2) is the only requirement
on the convexity of F for the analysis to work, we will simply assume that (2) holds.

2. Assume we have oracle access to compute an unbiased estimator of a subgradient of F at any
point x, denoted ĝ ∈ ∂F (x), whose `2 norm bounded by some known value ‖ĝ‖ ≤ G. Such a
gradient oracle is called G-bounded.

3. Assume that the domain K is endowed with an efficiently computable projection operator∏
K(y) = arg minx∈K ‖x− y‖.

Assumptions 1 and 2 above imply the following lemma:

Lemma 4 For all x ∈ K, we have F (x)− F (x?) ≤ 2G2

λ .

3

Proof: For any x ∈ K, let ĝ ∈ ∂F (x) be a subgradient of F at x such that ‖ĝ‖ ≤ G (using
assumption 2). Then by the convexity of F , we have F (x) − F (x?) ≤ ĝ · (x − x?), so that F (x) −
F (x?) ≤ G‖x − x?‖. But assumption 1 implies that F (x) − F (x?) ≥ λ

2 ‖x − x?‖2. Putting these

together, we get that ‖x− x?‖ ≤ 2G
λ . Finally, we get F (x)− F (x?) ≤ G‖x− x?‖ ≤ 2G2

λ . Since x?

is the minimizer of F on K, the lemma follows.

2.2 Online Convex Optimization and Regret

Recall the setting of online convex optimization given in the introduction. In each round t =
1, 2, . . . , T , a decision-maker needs to choose a point xt ∈ K, a convex set. Then nature provides a
convex cost function ft : K → R, and the decision-maker incurs the cost ft(xt). The (adversarial)
regret of the decision-maker is defined to be

AdversarialRegret :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x). (3)

When the cost functions ft are drawn i.i.d. from some unknown distribution D, (stochastic) regret
is traditionally defined measured with respect to the expected cost function, F (x) = ED[f1(x)]:

StochasticRegret := E
D

[
T∑
t=1

F (xt)

]
− T min

x∈K
F (x). (4)

In either case, if the decision-making algorithm is randomized, then we measure the performance by
the expectation of the regret taken over the random seed of the algorithm.

When cost functions are drawn i.i.d. from an unknown distribution D, it is easy to check that

E
D

[
min
x∈K

T∑
t=1

ft(x)

]
≤ min

x∈K
E
D

[
T∑
t=1

ft(x)

]
,

by considering the point x? = arg minx∈K ED
[∑T

t=1 ft(x)
]
. So

E
D

[AdversarialRegret] ≥ StochasticRegret.

Thus, for the purpose of proving lower bounds on the regret (expected regret in the case of random-
ized algorithms), it suffices to prove such bounds for StochasticRegret. We prove such lower bounds
in Section 5. For notational convenience, henceforth the term “regret” refers to StochasticRegret.

3 The optimal algorithm and its analysis

Our algorithm is an extension of stochastic gradient descent. The new feature is the introduction of
“epochs” inside of which standard stochastic gradient descent is used, but in each consecutive epoch
the learning rate decreases exponentially.

Our main result is the following theorem, which immediately implies Theorem 1.

Theorem 5 Set the parameters T1 = 2 and η1 = 1
λ in the Epoch-GD algorithm. The final point

xk1 returned by the algorithm has the property that E[F (xk1)] − F (x?) ≤ 8G2

λT . The total number of
gradient updates is at most T .

The intra-epoch use of standard gradient decent is analyzed using the following Lemma from
Zinkevich (2003), which we prove here for completeness:

Lemma 6 (Zinkevich (2003)) Let ‖ĝt‖ ≤ G. Apply T iterations of the update xt+1 =
∏
K(xt −

ηĝt). Then

1

T

T∑
t=1

ĝt · (xt − x?) ≤ ηG2

2
+
‖x1 − x?‖2

2ηT
.

Proof: We use ‖xt − x?‖2 as a potential function. Let x′t+1 = xt − ηĝt. We have

‖x′t+1 − x?‖2 = η2‖ĝt‖2 + ‖xt − x?‖2 − 2ηĝt · (xt − x?) ≤ η2G2 + ‖xt − x?‖2 − 2ηĝt · (xt − x?).

4

Algorithm 1 Epoch-GD

1: Input: parameters η1, T1 and total time T .
2: Initialize x1

1 ∈ K arbitrarily, and set k = 1.

3: while
∑k
i=1 Ti ≤ T do

4: // Start epoch k
5: for t = 1 to Tk do
6: Query the gradient oracle at xkt to obtain ĝt
7: Update

xkt+1 =
∏
K

(xkt − ηkĝt)

8: end for
9: Set xk+1

1 = 1
Tk

∑Tk
t=1 x

k
t

10: Set Tk+1 ← 2Tk and ηk+1 ← ηk/2.
11: Set k ← k + 1
12: end while
13: return xk1 .

Since xt+1 =
∏
K(x′t+1) and x? ∈ K, the fact that projections of an external point on a convex

set reduces the distance to any point inside it (see Zinkevich (2003)) implies that ‖xt+1 − x?‖2 ≤
‖x′t+1 − x?‖2. Putting these together, and rearranging, we get

ĝt · (xt − x?) ≤ ηG2

2
+
‖xt − x?‖2 − ‖xt+1 − x?‖2

2η
.

Summing up over all t = 1, 2, . . . , T , we get the stated bound.

Lemma 7 Apply T iterations of the update xt+1 =
∏
K(xt−ηĝt), where ĝt is an unbiased estimator

for a subgradient gt of F at xt satisfying ‖ĝt‖ ≤ G. Then

1

T
E

[
T∑
t=1

F (xt)

]
− F (x?) ≤ ηG2

2
+
‖x1 − x?‖2

2ηT
.

By convexity of F , we have the same bound for E[F (x̄)]− F (x?), where x̄ = 1
T

∑T
t=1 xt.

Proof: For a random variable X measurable w.r.t. the randomness until round t, let Et−1[X] denote
its expectation conditioned on the randomness until round t− 1. By the convexity of F , we get

F (xt)− F (x?) ≤ gt · (xt − x?) = E
t−1

[ĝt · (xt − x?)],

since Et−1[ĝt] = gt and Et−1[xt] = xt. Taking expectations of the inequality, we get that

E[F (xt)]− F (x?) ≤ E[ĝt · (xt − x?)].

Summing up over all t = 1, 2, . . . , T and applying Lemma 6, we get the required bound.

Define Vk = G2

2k−2λ
, and notice that the algorithm sets Tk = 4G2

λVk
and ηk = Vk

2G2 . Define ∆k =

F (xk1)− F (x?). Using Lemma 7 we prove the following key lemma:

Lemma 8 For any k, we have E[∆k] ≤ Vk.

Proof: We prove this by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2

λ by Lemma 4.
Assume that E[∆k] ≤ Vk for some k ≥ 1 and now we prove it for k + 1. For a random variable
X measurable w.r.t. the randomness defined up to epoch k + 1, let Ek[X] denote its expectation
conditioned on all the randomness up to epoch k. By Lemma 7 we have

E
k
[F (xk+1

1)]− F (x?) ≤ ηkG
2

2
+
‖xk1 − x?‖2

2ηkTk

≤ ηkG
2

2
+

∆k

ηkTkλ
,

5

since ∆k = F (xk1)− F (x?) ≥ λ
2 ‖x

k
1 − x?‖2 by λ-strong convexity of F . Hence, we get

E[∆k+1] ≤ ηkG
2

2
+

E[∆k]

ηkTkλ
≤ ηkG

2

2
+

Vk
ηkTkλ

=
Vk
2

= Vk+1,

as required. The second inequality uses the induction hypothesis, and the last two equalities use the

definition of Vk and the values ηk = Vk
2G2 and Tk = 4G2

λVk
.

We can now prove our main theorem:
Proof:[Theorem 5.] The number of epochs made are given by the largest value of k satisfying∑k
i=1 Ti ≤ T , i.e.

k∑
i=1

2i = 2(2k − 1) ≤ T.

This value is k† = blog2(T2 + 1)c. The final point output by the algorithm is xk
†+1

1 . Applying

Lemma 8 to k† + 1 we get

E[F (xk
†+1

1)]− F (x?) = E[∆k†+1] ≤ Vk†+1 =
G2

2k†−1λ
≤ 8G2

λT
,

as claimed. The while loop in the algorithm ensures that the total number of gradient updates is
naturally bounded by T .

4 High probability bounds

While Epoch-GD algorithm has a O(1
T) rate of convergence, this bound is only on the expected

excess cost of the final solution. In applications we usually need the rate of convergence to hold with
high probability. Markov’s inequality immediately implies that with probability 1 − δ, the actual
excess cost is at most a factor of 1

δ times the stated bound. While this guarantee might be acceptable
for not too small values of δ, it becomes useless when δ gets really small.

There are two ways of remedying this. The easy way applies if it is possible to evaluate F
efficiently at any given point. Then we can divide the budget of T gradient updates into ` = log2(1/δ)
consecutive intervals of T

` rounds each, and run independent copies of Epoch-GD in each. Finally,
we take the ` solutions obtained, and output the best one (i.e. the one with the minimum F value).
Applying Markov’s inequality to every run of Epoch-GD, with probability at least 1/2, we obtain a

point with excess cost at most 64G2`
λT = 64G2 log2(1/δ)

λT , and so with probability at least 1−2−` = 1−δ,
the best point has excess cost at most 64G2 log2(1/δ)

λT . This finishes the description of the easy way to
obtain high probability bounds.

The easy way fails if it is not possible to evaluate F efficiently at any given point. For this situ-
ation, we now describe how using essentially the same algorithm with slightly different parameters,
we can get a high probability guarantee on the quality of the solution. The only difference in the
new algorithm, dubbed Epoch-GD-Proj, is that the update in line 7 requires a projection onto a
smaller set, and becomes

Update xkt+1 =
∏

K∩B(xk1 ,
√

2Vk/λ)

(xkt − ηkĝt) (5)

Here B(x, r) denotes the `2 ball of radius r around the point x, and Vk = G2

2k−2λ
as defined earlier.

Since the intersection of two convex sets is also a convex set, the above projection can be computed
via a convex program.

We prove the following high probability result, which in turn directly implies Theorem 3.

Theorem 9 Given δ > 0 for success probability 1− δ, set δ̃ = δ
k†

for k† = blog2(T
300 + 1)c. Set the

parameters T1 = 300 log(1/δ̃) and η1 = 1
3λ in the Epoch-GD-Proj algorithm. The final point xk1

returned by the algorithm has the property that with probability at least 1− δ, we have

F (xk1)− F (x?) ≤ 1200G2 log(1/δ̃)

λT
.

The total number of gradient updates is at most T .

6

The following lemma is analogous to Lemma 7, but provides a high probability guarantee.

Lemma 10 Let D be an upper bound on ‖x1 − x?‖. Apply T iterations of the update xt+1 =∏
K∩B(x1,D)(xt − ηĝt), where ĝt is an unbiased estimator for the subgradient of F at xt satisfying

‖ĝt‖ ≤ G. Then for any δ ∈ (0, 1), with probability at least 1− δ we have

1

T

T∑
t=1

F (xt)− F (x?) ≤ ηG2

2
+
‖x1 − x?‖2

2ηT
+

4GD
√

2 log(1/δ)√
T

.

By the convexity of F , the same bound also holds for F (x̄)− F (x?), where x̄ = 1
T

∑T
t=1 xt.

Proof: Using the same notation as in the proof of Lemma 7, let Et−1[ĝt] = gt, a subgradient of
F at xt. Since as before, Et−1[ĝt · (xt − x?)] = gt · (xt − x?), the following defines as a martingale
difference sequence:

Xt = gt · (xt − x?)− ĝt · (xt − x?).

Note that ‖gt‖ = ‖Et−1[ĝt]‖ ≤ Et−1[‖ĝt‖] ≤ G, and so we can bound |Xt| as follows:

|Xt| ≤ ‖gt‖‖xt − x?‖+ ‖ĝt‖‖xt − x?‖ ≤ 4GD,

where the last inequality uses the fact that x?,xt ∈ B(x1, D), and hence by the triangle inequality
‖xt − x?‖ ≤ ‖xt − x1‖+ ‖x1 − x?‖ ≤ 2D.

By Azuma’s inequality (see Lemma 12), with probability at least 1− δ, the following holds:

1

T

T∑
t=1

gt · (xt − x?)− 1

T

T∑
t=1

ĝt · (xt − x?) ≤
4GD

√
2 log(1/δ)√
T

. (6)

By the convexity of F , we have F (xt) − F (x?) ≤ gt · (xt − x?). Then, by using Lemma 6 and
inequality (6), we get the claimed bound.

We now prove the analogue of Lemma 8. In this case, the result holds with high probability. As

before, define Vk = G2

2k−2λ
, and notice that the algorithm sets Tk = 600G2 log(1/δ̃)

λVk
and ηk = Vk

6G2 .

Lemma 11 For any k, with probability (1− δ̃)k−1 we have ∆k ≤ Vk.

Proof: We prove this by induction on k. The claim is true for k = 1 since ∆k ≤ 2G2

λ by Lemma 4.

Assume that ∆k ≤ Vk for some k ≥ 1 with probability at least (1 − δ̃)k−1 and now we prove it for
k + 1. We condition on the event that ∆k ≤ Vk. Since ∆k ≥ λ

2 ‖x
k
1 − x?‖2 by λ-strong convexity,

this conditioning implies that ‖xk1 − x?‖ ≤
√

2Vk/λ, which explains the specification (see (5) for
the radius of the ball for the projection in line 7 of Epoch-GD-Proj). So Lemma 10 applies with

D =
√

2Vk/λ and hence we have with probability at least 1− δ̃,

∆k+1 = F (xk+1
1)− F (x?)

≤ ηkG
2

2
+
‖xk1 − x?‖2

2ηkTk
+

8G
√
Vk

√
log(1/δ̃)

√
λTk

(by Lemma 10)

≤ ηkG
2

2
+

Vk
ηkTkλ

+
8G
√
Vk

√
log(1/δ̃)

√
λTk

,

since Vk ≥ ∆k ≥ λ
2 ‖x

k
1 − x?‖2 as above. For Tk = 600G2 log(1/δ̃)

λVk
and ηk = Vk

6G2 we get

F (xk+1
1)− F (x?) ≤ Vk

12
+

Vk

100 log(1/δ̃)
+
Vk
3
≤ Vk

2
= Vk+1.

Factoring in the conditioned event, which happens with probability at least (1− δ̃)k−1, overall, we

get that ∆k+1 ≤ Vk+1 with probability at least (1− δ̃)k.

We can now prove our high probability theorem:
Proof:[Theorem 9] As in the proof of Theorem 1, we get that final epoch is k† = blog2(T

300 + 1)c.
The final point output is xk

†+1
1 .

7

By Lemma 11, we have with probability at least (1− δ̃)k† that

F (xk
†+1

1)− F (x?) = ∆k†+1 ≤ Vk†+1 =
G2

2k†−1λ
≤ 1200G2 log(1/δ̃)

λT
,

as claimed. Since δ̃ = δ
k†

, and hence (1 − δ̃)k† ≥ 1 − δ as needed. The while loop in the algorithm
ensures that the total number of gradient updates is bounded by T .

For completeness we state Azuma’s inequality for martingales used in the proof above:

Lemma 12 (Azuma’s inequality) Let X1, . . . , XT be a martingale difference sequence. Suppose
that |Xt| ≤ b. Then, for δ > 0, we have

Pr

[
T∑
t=1

Xt ≥ b
√

2T ln(1/δ)

]
≤ δ.

5 Lower bounds on stochastic strongly convex optimization

In this section we prove Theorem 2 and show that any algorithm (deterministic or randomized) for
online stochastic strongly-convex optimization must have Ω(log(T)) regret on some distribution. We
start by proving a Ω(log T) lower bound for the case when the cost functions are 1-strongly convex
and the gradient oracle is 1-bounded, and fine tune these parameters in the next subsection via an
easy reduction.

In our analysis, we need the following standard lemma, which we reprove here for completeness.
Here, for two distributions P, P ′ defined on the same probability space, dTV (P, P ′) is the total
variation distance, i.e.

dTV (P, P ′) = sup
A
|P (A)− P ′(A)|

where the supremum ranges over all events A in the probability space.
Let Bp be the Bernoulli distribution on {0, 1} with probability of obtaining 1 equal to p. Let Bnp

denote the product measure on {0, 1}n induced by taking n independent Bernoulli trials according
to Bp (thus, B1

p = Bp).

Lemma 13 Let p, p′ ∈ [14 ,
3
4] such that |p′ − p| ≤ 1/8. Then

dTV (Bnp , B
n
p′) ≤

1

2

√
(p′ − p)2n.

Proof: Pinsker’s inequality says that dTV (Bnp , B
n
p′) ≤

√
1
2RE(Bnp ‖Bnp′), where RE(Bnp ‖Bnp′) =

EX∼Bnp [ln
Bnp (X)

Bn
p′ (X)] is the relative entropy between Bnp and Bnp′ . To bound RE(Bnp ‖Bnp′), note that

the additivity of the relative entropy for product measures implies that

RE(Bnp ‖Bnp′) = nRE(Bp‖Bp′) = n

[
p log

(
p

p′

)
+ (1− p) log

(
1− p
1− p′

)]
, (7)

Without loss of generality, assume that p′ ≥ p, and let p′ = p + ε, where 0 ≤ ε ≤ 1/8. Using the
Taylor series expansion of log(1 + x), we get the following bound

p log

(
p

p′

)
+ (1− p) log

(
1− p
1− p′

)
=

∞∑
i=1

[
(−1)i

pi−1
+

1

(1− p)i−1

]
εi ≤

∞∑
i=2

4i−1εi ≤ ε2

2
,

for ε ≤ 1/8. Plugging this (7) and using Pinsker’s inequality, we get the stated bound.

We now turn to showing our lower bound on expected regret. We consider the following online
stochastic strongly-convex optimization setting: the domain is K = [0, 1]. For every p ∈ [14 ,

3
4], define

a distribution over strongly-convex cost functions parameterized by p as follows: choose X ∈ {0, 1}
from Bp, and return the cost function

f(x) = (x−X)2

With some abuse of notation, we use Bp to denote this distribution over cost functions.
Under distribution Bp, the expected cost function F is

F (x) := E[f(x)] = p(x− 1)2 + (1− p)x2 = x2 + 2px+ p = (x− p)2 + cp,

8

where cp = p − p2. The optimal point is therefore x? = p, with expected cost cp. The regret for
playing a point x (i.e. excess cost over the minimal expected cost) is

F (x)− F (x?) = (x− p)2 + cp − cp = (x− p)2.
Now let A be a deterministic2 algorithm for online stochastic strongly-convex optimization. Since

the cost functions until time t are specified by a bit string X ∈ {0, 1}t−1 (i.e. the cost function at
time t is (x − Xt)

2), we can interpret the algorithm as a function that takes a variable length bit
string, and produces a point in [0, 1], i.e. with some abuse of notation,

A : {0, 1}≤T −→ [0, 1],

where {0, 1}≤T is the set of all bit strings of length up to T .
Now suppose the cost functions are drawn from Bp. Fix a round t. Let X be the t− 1 bit string

specifying the cost functions so far. Note that X has distribution Bt−1p . For notational convenience,
denote by Prp[·] and Ep[·] the probability of an event and the expectation of a random variable when
the cost functions are drawn from Bp, and since these are defined by the bit string X, they are
computed over the product measure Bt−1p .

Let the point played by A at time t be xt = A(X). The regret (conditioned on the choice of X)
in round t is then

regrett := (A(X)− p)2,
and thus the expected (over the choice of X) regret of A in round t is Ep[regrett] = Ep[(A(X)−p)2].

We now show that for any round t, for two distributions over cost functions Bp and Bp′ that are
close (in terms of |p− p′|), but not too close, the regret of A on at least one of the two distributions
must be large.

Lemma 14 Fix a round t. Let ε ≤ 1
8
√
t

be a parameter. Let p, p′ ∈ [14 ,
3
4] such that 2ε ≤ |p−p′| ≤ 4ε.

Then we have

E
p
[regrett] + E

p′
[regrett] ≥

1

4
ε2.

Proof: Assume without loss of generality that p′ ≥ p + 2ε. Let X and X ′ be (t − 1)-bit vectors
parameterizing the cost functions drawn from Bt−1p and Bt−1p′ respectively. Then

E
p
[regrett] + E

p′
[regrett] = E

p
[(A(X)− p)2] + E

p′
[(A(X ′)− p′)2].

Now suppose the stated bound does not hold. Then by Markov’s inequality, we have

Pr
p

[(A(X)− p)2] < ε2] ≥ 3/4,

or in other words,
Pr
p

[A(X) < p+ ε] ≥ 3/4. (8)

Similarly, we can show that
Pr
p′

[A(X ′) > p+ ε] ≥ 3/4, (9)

since p′ ≥ p+ 2ε. Now define the event

A := {Y ∈ {0, 1}t−1 : A(Y) > p+ ε}.
Now (8) implies that Prp(A) < 1/4 and (9) implies that Prp′(A) ≥ 3/4. But then by Lemma 13 we
have

1

2
< |Pr

p
(A)− Pr

p′
(A)| ≤ dTV (Bt−1p , Bt−1p′) ≤ 1

2

√
(p′ − p)2(t− 1) ≤ 1

2

√
16ε2(t− 1) ≤ 1

4
,

a contradiction.

We now show how to remove the deterministic requirement on A:

Corollary 15 The bound of Lemma 14 holds even if A is randomized:

E
p,R

[regrett] + E
p′,R

[regrett] ≥
1

4
ε2,

where Ep,R[·] denotes the expectation computed over the random seed R of the algorithm as well as
the randomness in the cost functions.

2We will remove the deterministic requirement shortly and allow randomized algorithms.

9

Proof: Fixing the random seed R of A, we get a deterministic algorithm, and then Lemma 14 gives
the following bound on the sum of the conditional expected regrets:

E
p
[regrett|R] + E

p′
[regrett|R] ≥ 1

4
ε2.

Now taking expectations over the random seed R, we get the desired bound.

Thus, from now on we allow A to be randomized. We now show the desired lower bound on the
expected regret:

Theorem 16 The expected regret for algorithm A is at least Ω(log(T)).

Proof: We prove this by showing that there is one value of p ∈ [14 ,
3
4] such that regret of A when

cost functions are drawn from Bp is at least Ω(log(T)).
We assume that T is of the form 16 + 162 + · · · 16k = 1

15 (16k+1 − 16) for some integer k: if it

isn’t, we ignore all rounds t > T ′, where T ′ = 1
15 (16k

?+1 − 16) for k? = blog16(15T + 16)− 1c, and
show that in the first T ′ rounds the algorithm can be made to have Ω(log(T)) regret. We now divide
the time periods t = 1, 2, . . . , T ′ into consecutive epochs of length 16, 162, . . . , 16k

?

. Thus, epoch k,
denoted Ek, has length 16k, and consists of the time periods t = 1

15 (16k−16)+1, . . . , 1
15 (16k+1−16).

We show the following claim now:

Claim 17 There exists a collection of nested intervals, [14 ,
3
4] ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · · , such that

interval Ik corresponds to epoch k, with the property that Ik has length 4−(k+3), and for every
p ∈ Ik, for at least half the rounds t in epoch k, algorithm A has Ep,R[regrett] ≥ 1

8 · 16−(k+3).

As a consequence of this claim, we get that there is a value of p ∈
⋂
k Ik such that in every epoch

k, the total regret is ∑
t∈Ek

1

8
· 16−(k+3) ≥ 1

2
16k · 1

8
· 16−(k+3) =

1

164
.

Thus, the regret in every epoch is Ω(1). Since there are k? = Θ(log(T)) epochs total, the regret of
the algorithm is at least Ω(log(T)). So now we prove the claim.

Proof: We build the nested collection of intervals iteratively as follows. For notational convenience,
define I0 to be some arbitrary interval of length 4−3 inside [14 ,

3
4]. Suppose for some k ≥ 0 we have

found the interval Ik = [a, a + 4−(k+3)]. We want to find the interval Ik+1 now. For this, divide
up Ik into 4 equal quarters of length ε = 4−(k+4), and consider the first and fourth quarters, viz.
L = [a, a + 4−(k+4)] and R = [a + 3 · 4−(k+4), a + 4−(k+3)]. We now show that one of L or R is a
valid choice for Ik+1, and so the construction can proceed.

Suppose L is not a valid choice for Ik+1, because there is some point p ∈ L such that for more
than half the rounds t in Ek+1, we have Ep,R[regrett] < 16−(k+1). Then we show that R is a valid

choice for Ik+1 as follows. Let H = {t ∈ Ek+1 : Ep,R[regrett] <
1
8 · 16−(k+4)}. Now, we claim that

for all p′ ∈ R, and all t ∈ H, we must have Ep′,R[regrett] >
1
8 · 16−(k+4), which would imply that R

is a valid choice for Ik+1, since by assumption, |H| ≥ 1
2 |Ek+1|.

To show this we apply Lemma 14. Fix any p′ ∈ R and t ∈ F . First, note that ε = 4−(k+4) ≤ 1
8
√
t
,

since t ≤ 16k+2. Next, we have p′ − p ≥ 2ε (since we excluded the middle two quarters of Ik), and
|p− p′| ≤ 4ε (since Ik has length 4−(k+3)). Then Lemma 14 implies that

E
p,R

[regrett] + E
p′,R

[regrett] ≥
1

4
· 16−(k+4),

which implies that Ep′,R[regrett] ≥ 1
8 · 16−(k+4) since Ep,R[regrett] <

1
8 · 16−(k+4), as required.

5.1 Dependence on the gradient bound and on strong convexity

A simple corollary of the previous proof gives us tight lower bounds in terms of the natural param-
eters of the problem: the strong-convexity parameter λ and the upper bound on the norm of the
subgradients G. The following Corollary implies Theorem 2.

Corollary 18 For any algorithm A, there is distribution over λ-strongly convex cost functions with

gradients bounded in norm by G such that the expected regret of A is Ω
(
G2 log(T)

λ

)
.

10

Proof: The online convex optimization setting we design is very similar: let λ,G ≥ 0 be given
parameters. The domain is K = [0, Gλ]. In round t, we choose Xt ∈ {0, 1} from Bp, and return

ft(x) =
λ

2

(
x− G

λ
Xt

)2

as the cost function. Notice that the cost functions are always λ-strongly convex, and in addition,
for any x ∈ K, the gradient of the cost function at x is bounded in norm by G.

Denote x′ = λx
G to be the scaled decision x, mapping it from K to [0, 1]. The expectation of the

cost when playing x ∈ K is given by

E[ft(x)] = E
X∼Bp

[
λ

2

(
x− G

λ
Xt

)2
]

=
G2

2λ
E[(x′ −Xt)

2] (10)

Given an algorithm A for this online convex optimization instance, we derive another algorithm, A′,
which plays points x′ ∈ K′ = [0, 1] and receives the cost function (x′−Xt)

2 in round t (i.e. the setting

considered in Section 5). When A plays xt in round t and obtains cost function λ
2

(
x− G

λXt

)2
, the

algorithm A′ plays the point x′t = λ
Gxt and receives the cost function (x′ −Xt)

2.

The optimum point for the setting of A is G
λ p, with expected cost G2

2λ times the expected cost

for the optimum point p for the setting of A′. By equation (10), the cost of A is G2

2λ times that of

A′. Hence, the regret of A is G2

2λ times that of A′.
By Theorem 16, there is a value of p such that the expected regret of A′ is Ω(log T), and hence

the expected regret of A is Ω
(
G2 log(T)

λ

)
, as required.

6 Conclusions

We have given an algorithm for stochastic strongly-convex optimization with an optimal rate of
convergence O(1

T). The algorithm itself has an appealing feature of returning the average of the
most recent points (rather than all points visited by the algorithm as in previous approaches). This
is an intuitive feature which hopefully works well in practice for important applications such as
support vector machine training.

Our analysis deviates from the common template of designing a regret minimization algorithm
and then using online-to-batch conversion. In fact, we show that the latter approach is inherently
suboptimal by our new lower bound on the regret of online algorithms for stochastic cost functions.
This combination of results formally shows that the batch stochastic setting is strictly easier than
its online counterpart, giving us tighter bounds.

A few questions remain open. The high-probability bound algorithm Epoch-GD-Proj has an
extra factor of O(log log(T)) in its convergence rate. Is it possible to devise an algorithm that has
O(1

T) convergence rate with high probability? We believe the answer is yes; the O(log log(T)) is
just an artefact of the analysis. In fact, as we mention in Section 4, if it is possible to evaluate F
efficiently at any given point, then this dependence can be removed. Also, our lower bound proof is
somewhat involved. Are there easier information theoretic arguments to give similar lower bounds?

Acknowledgements

We thank an anonymous referee for several useful suggestions.

References

Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and Alexander Rakhlin. A stochastic view of
optimal regret through minimax duality. In COLT, 2009.

Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright. Information-
theoretic lower bounds on the oracle complexity of convex optimization. In arXiv:1009.0571v1,
2010.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, September 1999.
ISBN 1886529000.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In NIPS, 2007.

11

Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Elad Hazan and Satyen Kale. An optimal algorithm for stochastic strongly-convex optimization.
June 2010. URL http://arxiv.org/abs/1006.2425.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Anatoli Juditsky and Yuri Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. August 2010. URL http://hal.archives-ouvertes.fr/docs/00/50/89/33/
PDF/Strong-hal.pdf.

Arkadi S. Nemirovski and David B. Yudin. Problem complexity and method efficiency in optimiza-
tion. John Wiley UK/USA, 1983.

Erik Ordentlich and Thomas M. Cover. The cost of achieving the best portfolio in hindsight. Math.
Oper. Res., 23:960–982, November 1998.

Shai Shalev-Shwartz and Nathan Srebro. SVM optimization: inverse dependence on training set
size. In ICML, pages 928–935, 2008.

Shai Shalev-Shwartz, Ohad Shamir, Karthik Sridharan, and Nati Srebro. Stochastic convex opti-
mization. In COLT, 2009.

Eiji Takimoto and Manfred K. Warmuth. The minimax strategy for gaussian density estimation. In
COLT, pages 100–106, 2000.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, pages 928–936, 2003.

12

http://arxiv.org/abs/1006.2425
http://hal.archives-ouvertes.fr/docs/00/50/89/33/PDF/Strong-hal.pdf
http://hal.archives-ouvertes.fr/docs/00/50/89/33/PDF/Strong-hal.pdf

	Introduction
	Related work

	Setup and Background
	Stochastic convex optimization
	Online Convex Optimization and Regret

	The optimal algorithm and its analysis
	High probability bounds
	Lower bounds on stochastic strongly convex optimization
	Dependence on the gradient bound and on strong convexity

	Conclusions

