
Minimax Regret of Finite Partial-Monitoring Games in Stochastic
Environments∗

Gábor Bartók, Dávid Pál, Csaba Szepesvári
Department of Computing Science

University of Alberta
Edmonton, T6G 2E8, AB, Canada

{bartok,dpal,szepesva}@cs.ualberta.ca

Abstract

In a partial monitoring game, the learner repeatedly chooses an action, the environment responds
with an outcome, and then the learner suffers a loss and receives a feedback signal, both of which
are fixed functions of the action and the outcome. The goal of the learner is to minimize his regret,
which is the difference between his total cumulative loss and the total loss of the best fixed action
in hindsight. Assuming that the outcomes are generated in an i.i.d. fashion from an arbitrary and
unknown probability distribution, we characterize the minimax regret of any partial monitoring
game with finitely many actions and outcomes. It turns out that the minimax regret of any such
game is either zero, Θ̃(

√
T), Θ(T 2/3), or Θ(T). We provide a computationally efficient learning

algorithm that achieves the minimax regret within logarithmic factor for any game.

1 Introduction
Partial monitoring provides a mathematical framework for sequential decision making problems with im-
perfect feedback. Various problems of interest can be modeled as partial monitoring instances, such as
learning with expert advice (Littlestone and Warmuth, 1994), the multi-armed bandit problem (Auer et al.,
2002), dynamic pricing (Kleinberg and Leighton, 2003), the dark pool problem (Agarwal et al., 2010), la-
bel efficient prediction (Cesa-Bianchi et al., 2005), and linear and convex optimization with full or bandit
feedback (Zinkevich, 2003, Abernethy et al., 2008, Flaxman et al., 2005).

In this paper we restrict ourselves to finite games, i.e., games where both the set of actions available to the
learner and the set of possible outcomes generated by the environment are finite. A finite partial monitoring
game G is described by a pair of N ×M matrices: the loss matrix L and the feedback matrix H. The entries
`i,j of L are real numbers lying in, say, the interval [0, 1]. The entries hi,j of H belong to an alphabet Σ on
which we do not impose any structure and we only assume that learner is able to distinguish distinct elements
of the alphabet.

The game proceeds in T rounds according to the following protocol. First, G = (L,H) is announced
for both players. In each round t = 1, 2, . . . , T , the learner chooses an action It ∈ {1, 2, . . . , N} and
simultaneously, the environment chooses an outcome Jt ∈ {1, 2, . . . ,M}. Then, the learner receives as a
feedback the entry hIt,Jt . The learner incurs instantaneous loss `It,Jt , which is not revealed to him. The
feedback can be thought of as a masked information about the outcome Jt. In some cases hIt,Jt might
uniquely determine the outcome, in other cases the feedback might give only partial or no information about
the outcome. In this paper, we shall assume that Jt is chosen randomly from a fixed multinomial distribution.

The learner is scored according to the loss matrix L. In round t the learner incurs an instantaneous
loss of `It,Jt . The goal of the learner is to keep low his total loss

∑T
t=1 `It,Jt . Equivalently, the learner’s

performance can also be measured in terms of his regret, i.e., the total loss of the learner is compared with
the loss of best fixed action in hindsight. The regret is defined as the difference of these two losses.

In general, the regret grows with the number of rounds T . If the regret is sublinear in T , the learner is
said to be Hannan consistent, and this means that the learner’s average per-round loss approaches the average
per-round loss of the best action in hindsight.

Piccolboni and Schindelhauer (2001) were one of the first to study the regret of these games. In fact,
they have studied the problem without making any probabilistic assumptions about the outcome sequence Jt.

∗This work was supported in part by AICML, AITF (formerly iCore and AIF), NSERC and the PASCAL2 Network
of Excellence under EC grant no. 216886.

They proved that for any finite game (L,H), either for any algorithm the regret can be Ω(T) in the worst
case, or there exists an algorithm which has regret Õ(T 3/4) on any outcome sequence1. This result was
later improved by Cesa-Bianchi et al. (2006) who showed that the algorithm of Piccolboni and Schindelhauer
has regret O(T 2/3). Furthermore, they provided an example of a finite game, a variant of label-efficient
prediction, for which any algorithm has regret Θ(T 2/3) in the worst case.

However, for many games O(T 2/3) is not optimal. For example, games with full feedback (i.e., when
the feedback uniquely determines the outcome) can be viewed as a special instance of the problem of learn-
ing with expert advice and in this case it is known that the “EWA forecaster” has regret O(

√
T); see e.g.,

Lugosi and Cesa-Bianchi (2006, Chapter 3). Similarly, for games with “bandit feedback” (i.e., when the
feedback determines the instantaneous loss) the INF algorithm (Audibert and Bubeck, 2009) and the Exp3
algorithm (Auer et al., 2002) achieve O(

√
T) regret as well.2

This leaves open the problem of determining the minimax regret (i.e., optimal worst-case regret) of any
given game (L,H). A partial progress was made in this direction by Bartók et al. (2010) who character-
ized (almost) all finite games with M = 2 outcomes. They showed that the minimax regret of any “non-
degenerate” finite game with two outcomes falls into one of four categories: zero, Θ̃(

√
T), Θ(T 2/3) or

Θ(T). They gave a combinatoric-geometric condition on the matrices L,H which determines the category
a game belongs to. Additionally, they constructed an efficient algorithm which, for any game, achieves the
minimax regret rate associated to the game within poly-logarithmic factor.

In this paper, we consider the same problem, with two exceptions. In pursuing a general result, we will
consider all finite games. However, at the same time, we will only deal with stochastic environments, i.e.,
when the outcome sequences are generated from a fixed probability distribution in an i.i.d. manner.

The regret against stochastic environments is defined as the difference between the cumulative loss suf-
fered by the algorithm and that of the action with the lowest expected loss. That is, given an algorithmA and
a time horizon T , if the outcomes are generated from a probability distribution p, the regret is

RT (A, p) =

T∑
t=1

`It,Jt − min
1≤i≤N

Ep

[
T∑
t=1

`i,Jt

]
.

In this paper we analyze the minimax expected regret (in what follows, minimax regret) of games, defined
as

RT (G) = inf
A

sup
p∈∆M

Ep [RT (A, p)] .

We show that the minimax regret of any finite game falls into four categories: zero, Θ̃(
√
T), Θ(T 2/3), or

Θ(T). Accordingly, we call the games trivial, easy, hard, and hopeless. We give a simple and efficiently
computable characterization of these classes using a geometric condition on (L,H). We provide lower-
bounds and algorithms that achieve them within poly-logarithmic factor. Our result is an extension of the
result of Bartók et al. (2010) for stochastic environments.

It is clear that any lower bound which holds for stochastic environments must hold for adversarial environ-
ments too. On the other hand, algorithms and regret upper bounds for stochastic environments, of course, do
not transfer to algorithms and regret upper bounds for the adversarial case. Our characterization is a stepping
stone towards understanding the minimax regret of partial monitoring games. In particular, we conjecture
that our characterization holds without any change for unrestricted environments.

2 Preliminaries
In this section, we introduce our conventions, along with some definitions. By default, all vectors are column
vectors. We denote by ‖v‖ =

√
v>v the Euclidean norm of a vector v. For a vector v, the notation v ≥ 0

means that all entries of v are non-negative, and the notation v > 0 means that all entries are positive. For
a matrix A, ImA denotes its image space, i.e., the vector space generated by its columns, and the notation
KerA denotes its kernel, i.e., the set {x : Ax = 0}.

Consider a game G = (L,H) with N actions and M outcomes. That is, L ∈ RN×M and H ∈ ΣN×M .
For the sake of simplicity and, without loss of generality, we assume that no symbol σ ∈ Σ can be present in
two different rows of H. The signal matrix of an action is defined as follows:

Definition 1 (Signal matrix) Let {σ1, . . . , σsi} be the set of symbols listed in the ith row of H. (Thus, si
denotes the number of different symbols in row i of H). The signal matrix Si of action i is defined as an

1The notations Õ(·) and Θ̃(·) hide polylogarithmic factors.
2We ignore the dependence of regret on the number of actions or any other parameters.

2

si ×M matrix with entries ak,j = I(hi,j = σk) for 1 ≤ k ≤ si and 1 ≤ j ≤ M . The signal matrix for a
set of actions is defined as the signal matrices of the actions in the set, stacked on top of one another, in the
ordering of the actions.

For an example of a signal matrix, see Section 3.1. We identify the strategy of a stochastic opponent with an
element of the probability simplex ∆M = {p ∈ RM : p ≥ 0,

∑M
j=1 pj = 1}. Note that for any opponent

strategy p, if the learner chooses action i then the vector Sip ∈ Rsi is the probability distribution of the
observed feedback: (Sip)k is the probability of observing the kth symbol.

We denote by `>i the ith row of the loss matrix L and we call `i the loss vector of action i. We say that
action i is optimal under opponent strategy p ∈ ∆M if for any 1 ≤ j ≤ N , `>i p ≤ `>j p. Action i is said to be
Pareto-optimal if there exists an opponent strategy p such that action i is optimal under p. We now define the
cell decomposition of ∆M induced by L (for an example, see Figure 2):

Definition 2 (Cell decomposition) For an action i, the cell Ci associated with i is defined as Ci = {p ∈
∆M : action i is optimal under p}. The cell decomposition of ∆M is defined as the multiset C = {Ci : 1 ≤
i ≤ N, Ci has positive (M − 1)-dimensional volume}.

Actions whose cell is of positive (M − 1)-dimensional volume are called strongly Pareto-optimal. Actions
that are Pareto-optimal but not strongly Pareto-optimal are called degenerate. Note that the cells of the actions
are defined with linear inequalities and thus they are convex polytopes. It follows that strongly Pareto-optimal
actions are the actions whose cells are (M − 1)-dimensional polytopes. It is also important to note that the
cell decomposition is a multiset, since some actions can share the same cell. Nevertheless, if two actions have
the same cell of dimension (M − 1), their loss vectors will necessarily be identical.3

We call two cells of C neighbors if their intersection is an (M − 2)-dimensional polytope. The actions
corresponding to these cells will also be called neighbors. Neighborship is not defined for cells outside of
C. For two neighboring cells Ci, Cj ∈ C, we define the neighborhood action set Ai,j = {1 ≤ k ≤ N :
Ci ∩ Cj ⊆ Ck}. It follows from the definition that actions i and j are in Ai,j and thus Ai,j is nonempty.
However, one can have more than two actions in the neighborhood action set.

When discussing lower bounds we will need the definition of algorithms. For us, an algorithm A is a
mapping A : Σ∗ → {1, 2, . . . , N} which maps past feedback sequences to actions. That the algorithms
are deterministic is assumed for convenience. In particular, the lower bounds we prove can be extended
to randomized algorithms by conditioning on the internal randomization of the algorithm. Note that the
algorithms we design are themselves deterministic.

3 Classification of finite partial-monitoring games
In this section we present our main result: we state the theorem that classifies all finite stochastic partial-
monitoring games based on how their minimax regret scales with the time horizon. Thanks to the previous
section, we are now equipped to define a notion which will play a key role in the classification theorem:

Definition 3 (Observability) Let S be the signal matrix for the set of all actions in the game. For actions
i and j, we say that `i − `j is globally observable if `i − `j ∈ ImS>. Furthermore, if i and j are two
neighboring actions, then `i − `j is called locally observable if `i − `j ∈ ImS>(i,j), where S(i,j) is the signal
matrix for the neighborhood action set Ai,j .

As we will see, global observability implies that we can estimate the difference of the expected losses after
choosing each action once. Local observability means we only need actions from the neighborhood action
set to estimate the difference.

The classification theorem, which is our main result, is the following:

Theorem 4 (Classification) Let G = (L,H) be a partial-monitoring game with N actions and M out-
comes. Let C = {C1, . . . , Ck} be its cell decomposition, with corresponding loss vectors `1, . . . , `k. The
game G falls into one of the following four categories:

(a) RT (G) = 0 if there exists an action i with Ci = ∆M . This case is called trivial.
(b) RT (G) = Θ(T) if there exist two strongly Pareto-optimal actions i and j such that `i−`j is not globally

observable. This case is called hopeless.

(c) RT (G) = Θ̃(
√
T) if it is not trivial and for all pairs of (strongly Pareto-optimal) neighboring actions i

and j, `i − `j is locally observable. These games are called easy.

3One could think that actions with identical loss vectors are redundant and that all but one of such actions could be
removed without loss of generality. However, since different actions can lead to different observations and thus yield
different information, removing the duplicates can be harmful.

3

hopelesstrivial
easy hard

dynamic pricing l.e.p.bandits

full-info

Figure 1: Partial monitoring games and their minimax regret as it was known previously. The big rectangle
denotes the set of all games. Inside the big rectangle, the games are ordered from left to right based on their
minimax regret. In the “hard” area, l.e.p. denotes label-efficient prediction. The grey area contains games
whose minimax regret is between Ω(

√
T) and O(T 2/3) but their exact regret rate was unknown. This area is

now eliminated, and the dynamic pricing problem is proven to be hard.

(d) RT (G) = Θ(T 2/3) if G is not hopeless and there exists a pair of neighboring actions i and j such that
`i − `j is not locally observable. These games are called hard.

Note that the conditions listed under (a)–(d) are mutually exclusive and cover all finite partial-monitoring
games. The only non-obvious implication is that if a game is easy then it cannot be hopeless. The reason this
holds is because for any pair of cells Ci, Cj in C, the vector `i − `j can be expressed as a telescoping sum of
the differences of loss vectors of neighboring cells.

The remainder of the paper is dedicated to proving Theorem 4. We start with the simple cases. If there
exists an action whose cell covers the whole probability simplex then choosing that action in every round will
yield zero regret, proving case (a). The condition in Case (b) is due to Piccolboni and Schindelhauer (2001),
who showed that under the condition mentioned there, there is no algorithm that achieves sublinear regret4.
The upper bound for case (d) is achieved by the FeedExp3 algorithm due to Piccolboni and Schindelhauer
(2001), for which a regret bound of O(T 2/3) was shown by Cesa-Bianchi et al. (2006). The lower bound for
case (c) was proved by Antos et al. (2011). For a visualization of previous results, see Figure 1.

The above assertions help characterize trivial and hopeless games, and show that if a game is not trivial
and not hopeless then its minimax regret falls between Ω(

√
T) and O(T 2/3). Our contribution in this paper

is that we give exact minimax rates (up to logarithmic factors) for these games. To prove the upper bound for
case (c), we introduce a new algorithm, which we call BALATON, for “Bandit Algorithm for Loss Annihila-
tion”5. This algorithm is presented in Section 4, while its analysis is given in Section 5. The lower bound for
case (d) is presented in Section 6.

3.1 Example

In this section, as a corollary of Theorem 4 we show that the discretized dynamic pricing game (see, e.g.,
Cesa-Bianchi et al. (2006)) is hard. Dynamic pricing is a game between a vendor (learner) and a customer
(environment). In each round, the vendor sets a price he wants to sell his product at (action), and the costumer
sets a maximum price he is willing to buy the product (outcome). If the product is not sold, the vendor suffers
some constant loss, otherwise his loss is the difference between the customer’s maximum and his price. The
customer never reveals the maximum price and thus the vendor’s only feedback is whether he sold the product
or not.

The discretized version of the game with N actions (and outcomes) is defined by the matrices

L =

0 1 2 · · · N − 1
c 0 1 · · · N − 2
...

. . .
...

c · · · c 0 1
c · · · · · · c 0

 H =

1 · · · · · · 1

0
. . .

...
...

.
...

0 · · · 0 1

 ,

where c is a positive constant (see Figure 2 for the cell-decomposition for N = 3). It is easy to see that all
the actions are strongly Pareto-optimal. Also, after some linear algebra it turns out that the cells underlying
the actions have a single common vertex in the interior of the probability simplex. It follows that any two
actions are neighbors. On the other hand, if we take two non-consecutive actions i and i′, `i − `i′ is not

4Although Piccolboni and Schindelhauer state their theorem for adversarial environments, their proof applies to
stochastic environments without any change (which is important for the lower bound part).

5Balaton is a lake in Hungary. We thank Gergely Neu for suggesting the name.

4

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

p∗

1

2

3

Figure 2: The cell decomposition of the discretized dynamic pricing game with 3 actions. If the opponent
strategy is p∗, then action 2 is the optimal action.

locally observable. For example, the signal matrix for action 1 and action N is

S(1,N) =

(
1 . . . 1 1
1 . . . 1 0
0 . . . 0 1

)
,

whereas `N − `1 = (c, c − 1, . . . , c −N + 2,−N + 1)>. It is obvious that `N − `1 is not in the row space
of S(1,N).

4 BALATON: An algorithm for easy games

In this section we present our algorithm that achieves Õ(
√
T) expected regret for easy games (case (c) of

Theorem 4). The input of the algorithm is the loss matrix L, the feedback matrix H, the time horizon T and
an error probability δ, to be chosen later. Before describing the algorithm, we introduce some notation. We
define a graph G associated with game G the following way. Let the vertex set be the set of cells of the cell
decomposition C of the probability simplex such that cells Ci, Cj ∈ C share the same vertex when Ci = Cj .
The graph has an edge between vertices whose corresponding cells are neighbors. This graph is connected,
since the probability simplex is convex and the cell decomposition covers the simplex.

Recall that for neighboring cells Ci, Cj , the signal matrix S(i,j) is defined as the signal matrix for the
neighborhood action set Ai,j of cells i, j. Assuming that the game satisfies the condition of case (c) of
Theorem 4, we have that for all neighboring cells Ci and Cj , `i− `j ∈ ImS>(i,j). This means that there exists
a coefficient vector v(i,j) such that `i − `j = S>(i,j)v(i,j). We define the kth segment of v(i,j), denoted by
v(i,j),k, as the vector of components of v(i,j) that correspond to the kth action in the neighborhood action set.
That is, if S>(i,j) =

(
S>1 · · · S>r

)
, then `i − `j = S>(i,j)v(i,j) =

∑r
s=1 S

>
s v(i,j),s, where S1, . . . , Sr are

the signal matrices of the individual actions in Ai,j .
Let Jt ∈ {1, . . . ,M} denote the outcome at time step t. For 1 ≤ k ≤ M , let ek ∈ RM be the kth unit

vector. For an action i, let Oi(t) = SieJt be the observation vector of action i at time step t. If the rows
of the signal matrix Si correspond to symbols σ1, . . . , σsi and action i is chosen at time step t then the unit
vectorOi(t) indicates which symbol was observed in that time step. Thus, OIt(t) holds the same information
as the feedback at time t (recall that It is the action chosen by the learner at time step t). From now on, for
simplicity, we will assume that the feedback at time step t is the observation vector OIt(t) itself.

The main idea of the algorithm is to successively eliminate actions in an efficient, yet safe manner. When
all remaining strongly Pareto optimal actions share the same cell, the elimination phase finishes and from this
point, one of the remaining actions is played. During the elimination phase, the algorithm works in rounds. In
each round each ‘alive’ Pareto optimal action is played once. The resulting observations are used to estimate
the loss-difference between the alive actions. If some estimate becomes sufficiently precise, the action of the
pair deemed to be suboptimal is eliminated (possibly together with other actions). To determine if an estimate
is sufficiently precise, we will use an appropriate stopping rule. A small regret will be achieved by tuning the
error probability of the stopping rule appropriately.

The details of the algorithm are as follows: In the preprocessing phase, the algorithm constructs the
neigbourhood graph, the signal matrices S(i,j) assigned to the edges of the graph, the coefficient vectors
v(i,j) and their segment vectors v(i,j),k. In addition, it constructs a path in the graph connecting any pairs of
nodes, and initializes some variables used by the stopping rule.

In the elimination phase, the algorithm runs a loop. In each round of the loop, the algorithm chooses
each of the alive actions once and, based on the observations, the estimates µ̂(i,j) of the loss-differences
(`i− `j)>p∗ are updated, where p∗ is the actual opponent strategy. The algorithm maintains the set C of cells
of alive actions and their neighborship graph G.

5

Algorithm 1 BALATON

Input: L,H, T, δ
Initialization:
[G, C, {v(i,j),k}, {path(i,j)}, {(LB(i,j), UB(i,j), σ(i,j), R(i,j))}]← INITIALIZE(L,H)
t← 0, n← 0
aliveActions← {1 ≤ i ≤ N : Ci ∩ interior(∆M) 6= ∅}
main loop
while |VG | > 1 and t < T do

n← n+ 1
for each i ∈ aliveActions do

Oi ← EXECUTEACTION(i)
t← t+ 1

end for
for each edge (i, j) in G: µ(i,j) ←

∑
k∈Ai,j

O>k v(i,j),k end for
for each non-adjacent vertex pair (i, j) in G: µ(i,j) ←

∑
(k,l)∈path(i,j)

µ(k,l) end for
haveEliminated← false
for each vertex pair (i, j) in G do

µ̂(i,j) ←
(
1− 1

n

)
µ̂(i,j) + 1

nµ(i,j)

if BSTOPSTEP(µ̂(i,j), LB(i,j), UB(i,j), σ(i,j), R(i,j), n, 1/2, δ) then
[aliveActions, C,G]← ELIMINATE(i, j, sgn(µ̂(i,j)))
haveEliminated← true

end if
end for
if haveEliminated then
{path(i,j)} ← REGENERATEPATHS(G)

end if
end while
Let i be a strongly Pareto-optimal action in aliveActions
while t < T do

EXECUTEACTION(i)
t← t+ 1

end while

The estimates are calculated as follows. First we calculate estimates for neighboring actions (i, j). In
round6 n, for every action k inAi,j letOk be the observation vector for action k. Let µ(i,j) =

∑
k∈Ai,j

O>k v(i,j),k.
From the local observability condition and the construction of v(i,j),k, with simple algebram it follows that
µ(i,j) are unbiased estimates of (`i − `j)

>p∗ (see Lemma 5). For non-neighboring action pairs, we use
telescoping sums: since the graph G (induced by the alive actions) stays connected, we can take a path
i = i0, i1, . . . , ir = j in the graph, and the estimate µ(i,j)(n) will be the sum of the estimates along the
path:

∑r
l=1 µ(il−1,il). The estimate of the difference of the expected losses after round n will be the average

µ̂(i,j) = (1/n)
∑n
l=1 µ(i,j)(s), where µ(i,j)(s) denotes the estimate for pair (i, j) computed in round s.

After updating the estimates, the algorithm decides which actions to eliminate. For each pair of vertices
i, j of the graph, the expected difference of their loss is tested for its sign by the BSTOPSTEP subroutine,
based on the estimate µ̂(i,j) and its relative error. This subroutine uses a stopping rule based on Bernstein’s
inequality.

The subroutine’s pseudocode is shown as Algorithm 2 and is essentially based on the work by Mnih et al.
(2008). The algorithm maintains two values, LB, UB, computed from the supplied sequence of sample means
(µ̂) and the deviation bounds

c(σ,R, n, δ) = σ

√
2L(δ, n)

n
+
RL(δ, n)

3n
, where L(δ, n) = log

(
3

p

p− 1

np

δ

)
. (1)

Here p > 1 is an arbitrarily chosen parameter of the algorithm, σ is a (deterministic) upper bound on the
(conditional) variance of the random variables whose common mean µ we wish to estimate, while R is a
(deterministic) upper bound on their range. This is a general stopping rule method, which stops when it

6Note that a round of the algorithm is not the same as the time step t. In a round, the algorithm chooses each of the
alive actions once.

6

Algorithm 2 Algorithm BSTOPSTEP. Note that, somewhat unusually at least in pseudocodes, the arguments
LB, UB are passed by reference, i.e., the algorithm rewrites the values of these arguments (which are thus
returned back to the caller).

Input: µ̂,LB,UB, σ, R, n, ε, δ
LB← max(LB, |µ̂| − c(δ, σ,R, n))
UB← min(UB, |µ̂|+ c(δ, σ,R, n))
return (1 + ε)LB < (1− ε)UB

produced an ε-relative accurate estimate of the unknown mean. The algorithm is guaranteed to be correct
outside of a failure event whose probability is bounded by δ.

Algorithm BALATON calls this method with ε = 1/2. As a result, when BSTOPSTEP returns true,
outside of the failure event the sign of the estimate µ̂ supplied to BALATON will match the sign of the mean
to be estimated. The conditions under which the algorithm indeed produces ε-accurate estimates (with high
probability) are given in Lemma 11 (see Appendix), which also states that also with high probability, the time
when the algorithm stops is bounded by

C ·max

(
σ2

ε2µ2
,
R

ε|µ|

)(
log

1

δ
+ log

R

ε|µ|

)
,

where µ 6= 0 is the true mean. Note that the choice of p in (1) influences only C.
If BSTOPSTEP returns true for an estimate µ(i,j), function ELIMINATE is called. If, say, µ(i,j) > 0, this

function takes the closed half space {q ∈ ∆M : (`i − `j)
>q ≤ 0} and eliminates all actions whose cell

lies completely in the half space. The function also drops the vertices from the graph that correspond to
eliminated cells. The elimination necessarily concerns all actions with corresponding cell Ci, and possibly
other actions as well. The remaining cells are redefined by taking their intersection with the complement half
space {q ∈ ∆M : (`i − `j)>q ≥ 0}.

By construction, after the elimination phase, the remaining graph is still connected, but some paths used
in the round may have lost vertices or edges. For this reason, in the last phase of the round, new paths are
constructed for vertex pairs with broken paths.

The main loop of the algorithm continues until either one vertex remains in the graph or the time horizon
T is reached. In the former case, one of the actions corresponding to that vertex is chosen until the time
horizon is reached.

5 Analysis of the algorithm

In this section we prove that the algorithm described in the previous section achieves Õ(
√
T) expected regret.

Let us assume that the outcomes are generated following the probability vector p∗ ∈ ∆M . Let j∗ denote
an optimal action, that is, for every 1 ≤ i ≤ N , `>j∗p

∗ ≤ `>i p
∗. For every pair of actions i, j, let αi,j =

(`i − `j)>p∗ be the expected difference of their instantaneous loss. The expected regret of the algorithm can
be rewritten as

E

[
T∑
t=1

`It,Jt − min
1≤i≤N

E

[
T∑
t=1

`i,Jt

]]
=

N∑
i=1

E [τi]αi,j∗ , (2)

where τi is the number of times action i is chosen by the algorithm.
Throughout the proof, the value that BALATON assigns to a variable x in round nwill be denoted by x(n).

Further, for 1 ≤ k ≤ N , we introduce the i.i.d. random sequence (Jk(n))n≥1, taking values on {1, . . . ,M},
with common multinomial distribution satisfying, P [Jk(n) = j] = p∗j . Clearly, a statistically equivalent
model to the one where (Jt) is an i.i.d. sequence with multinomial p∗ is when (Jt) is defined through

Jt = JIt

(∑t
s=1 I(Is = It)

)
. (3)

Note that this claim holds, independently of the algorithm generating the actions, It. Therefore, in what
follows, we assume that the outcome sequence is generated through (3). As we will see, this construction
significantly simplifies subsequent steps of the proof. In particular, the construction will be very convenient
since if action k is selected by our algorithm in the nth elimination round then the outcome obtained in
response is going to be Ok(n) = Skuk(n), where uk(n) = eJk(n). (This holds because in the elimination
rounds all alive actions are tried exactly once by BALATON.)

Let (Fn)n be the filtration defined as Fn = σ(uk(m); 1 ≤ k ≤ N, 1 ≤ m ≤ n). We also introduce the
notations En[·] = E[·|Fn] and Varn(·) = Var(·|Fn), the conditional expectation and conditional variance

7

operators corresponding to Fn. Note that Fn contains the information known to BALATON (and more) at the
end of the elimination round n. Our first (trivial) observation is that µ(i,j)(n), the estimate of αi,j obtained in
round n is Fn-measurable. The next lemma establishes that, furthermore, µ(i,j)(n) is an unbiased estimate
of αi,j :

Lemma 5 For any n ≥ 1 and i, j such that Ci, Cj ∈ C, En−1[µ(i,j)(n)] = αi,j .

Proof: Consider first the case when actions i and j are neighbors. In this case,

µ(i,j)(n) =
∑
k∈Ai,j

Ok(n)>v(i,j),k =
∑
k∈Ai,j

(Skuk(n))>v(i,j),k =
∑
k∈Ai,j

uk(n)>S>k v(i,j),k ,

and thus

En−1

[
µ(i,j)(n)

]
=
∑
k∈Ai,j

En−1

[
uk(n)>

]
S>k v(i,j),k = p∗>

∑
k∈Ai,j

S>k v(i,j),k = p∗>S>(i,j)v(i,j)

= p∗>(`i − `j) = αi,j .

For non-adjacent i and j, we have a telescoping sum:

En−1

[
µ(i,j)(n)

]
=

r∑
k=1

En−1[µ(ik−1,ik)(n)] = p∗>
(
`i0 − `i1 + `i1 − `i2 + · · ·+ `ir−1

− `ir
)

= αi,j ,

where i = i0, i1, . . . , ir = j is the path the algorithm uses in round n, known at the end of round n− 1.

Lemma 6 The conditional variance of µ(i,j)(n), Varn−1(µ(i,j)(n)), is upper bounded by
V = 2

∑
{i,j neighbors} ‖v(i,j)‖22.

Proof: For neighboring cells i, j, we write

µ(i,j)(n) =
∑
k∈Ai,j

Ok(n)>v(i,j),k and thus

Varn−1(µ(i,j)(n)) = Varn−1

 ∑
k∈Ai,j

Ok(n)>v(i,j),k

=
∑
k∈Ai,j

En−1

[
v>(i,j),k(Ok(n)− En−1[Ok(n)])(Ok(n)− En−1[Ok(n)])>v(i,j),k

]
≤
∑
k∈Ai,j

‖v(i,j),k‖22 En−1

[
‖Ok(n)− En−1[Ok(n)]‖22

]
≤
∑
k∈Ai,j

‖v(i,j),k‖22 = ‖v(i,j)‖22 , (4)

where in (4) we used that Ok(n) is a unit vector and En−1[Ok(n)] is a probability vector.
For i, j non-neighboring cells, let i = i0, i1, . . . , ir = j the path used for the estimate in round n. Then

µ(i,j)(n) can be written as

µ(i,j)(n) =

r∑
s=1

µ(is−1,is)(n) =

r∑
s=1

∑
k∈Ais−1,is

Ok(n)>v(is−1,is),k .

It is not hard to see that an action can only be in at most two neighborhood action sets in the path and so the
double sum can be rearranged as∑

k∈⋃Ais−1,is

Ok(n)>(v(isk−1,isk),k + v(isk isk+1),k) ,

and thus Varn−1

(
µ(i,j)(n)

)
≤ 2

∑r
s=1 ‖v(is−1,is)‖22 ≤ 2

∑
{i,j neighbors} ‖v(i,j)‖22.

Lemma 7 The range of the estimates µ(i,j)(n) is upper bounded by R =
∑
{i,j neighbors} ‖v(i,j)‖1.

8

Proof: The bound trivially follows from the definition of the estimates.

Let δ be the confidence parameter used in BSTOPSTEP. Since, according to Lemmas 5, 6 and 7, (µ(i,j))
is a “shifted” martingale difference sequence with conditional mean αi,j , bounded conditional variance and
range, we can apply Lemma 11 stated in the Appendix. By the union bound, the probability that any of
the confidence bounds fails during the game is at most N2δ. Thus, with probability at least 1 − N2δ, if
BSTOPSTEP returns true for a pair (i, j) then sgn(αi,j) = sgn(µ(i,j)) and the algorithm eliminates all the
actions whose cell is contained in the closed half space defined by H = {p : sgn(αi,j)p

>(`i − `j) ≤ 0}.
By definition αi,j = (`i− `j)>p∗. Thus p∗ /∈ H and none of the eliminated actions can be optimal under p∗.

From Lemma 11 we also see that, with probability at least 1−N2δ, the number of times τ∗i the algorithm
experiments with a suboptimal action i during the elimination phase is bounded by

τ∗i ≤
c(G)

α2
i,j∗

log
R

δαi,j∗
= Ti , (5)

where c(G) = C(V +R) is a problem dependent constant.
The following lemma, the proof of which can be found in the Appendix, shows that degenerate actions

will be eliminated in time.

Lemma 8 Let action i be a degenerate action. Let Ai = {j : Cj ∈ C, Ci ⊂ Cj}. The following two
statements hold:

1. If any of the actions in Ai is eliminated, then action i is eliminated as well.
2. There exists an action ki ∈ Ai such that αki,j∗ ≥ αi,j∗ .

An immediate implication of the first claim of the lemma is that if action ki gets eliminated then action i gets
eliminated as well, that is, the number of times action i is chosen cannot be greater then that of action ki.
Hence, τ∗i ≤ τ∗ki .

Let E be the complement of the failure event underlying the stopping rules. As discussed earlier, P(Ec) ≤
N2δ. Note that on E , i.e., when the stopping rules do not fail, no suboptimal action can remain for the final
phase. Hence, τiI(E) ≤ τ∗i I(E), where τi is the number of times action i is chosen by the algorithm. To
upper bound the expected regret we continue from (2) as

N∑
i=1

E [τi]αi,j∗ =

N∑
i=1

E [I(E)τi]αi,j∗ + P(Ec)T (because
∑N
i=1 τi = T and 0 ≤ αi,j∗ ≤ 1)

≤
N∑
i=1

E [I(E)τ∗i]αi,j∗ +N2δT

≤
∑

i: Ci∈C
E [I(E)τ∗i]αi,j∗ +

∑
i: Ci 6∈C

E [I(E)τ∗i]αi,j∗ +N2δT

≤
∑

i: Ci∈C
E [I(E)τ∗i]αi,j∗ +

∑
i: Ci 6∈C

E
[
I(E)τ∗ki

]
αki,j∗ +N2δT (by Lemma 8)

≤
∑

i: Ci∈C
Tiαi,j∗ +

∑
i: Ci 6∈C

Tkiαki,j∗ +N2δT

≤
∑

i: Ci∈C
αi,j∗≥α0

Tiαi,j∗ +
∑

i: Ci 6∈C
αki,j

∗≥α0

Tkiαki,j∗ +
(
α0 +N2δ

)
T

≤ c(G)

 ∑
i: Ci∈C
αi,j∗≥α0

log R
δαi,j∗

αi,j∗
+

∑
i: Ci 6∈C

αki,j
∗≥α0

log R
δαki,j

∗

αki,j∗

+
(
α0 +N2δ

)
T

≤ c(G)N
log R

δα0

α0
+
(
α0 +N2δ

)
T ,

The above calculation holds for any value of α0 > 0. Setting

α0 =

√
c(G)N

T
and δ =

√
c(G)

TN3
, we get

9

E [RT] ≤
√
c(G)NT log

(
RTN2

c(G)

)
.

In conclusion, if we run BALATON with parameter δ =
√

c(G)
TN3 , the algorithm suffers regret of Õ(

√
T),

finishing the proof.

6 A lower bound for hard games

In this section we prove that for any game that satisfies the condition of Case (d) of Theorem 4, the minimax
regret is of Ω(T 2/3).

Theorem 9 Let G = (L,H) be an N by M partial-monitoring game. Assume that there exist two neighbor-
ing actions i and j such that `i − `j 6∈ ImS>(i,j). Then there exists a problem dependent constant c(G) such
that for any algorithmA and time horizon T there exists an opponent strategy p such that the expected regret
satisfies

E[RT (A, p)] ≥ c(G)T 2/3 .

Proof: Without loss of generality we can assume that the two neighbor cells in the condition are C1 and C2.
Let C3 = C1 ∩ C2. For i = 1, 2, 3, let Ai be the set of actions associated with cell Ci. Note that A3 may
be the empty set. Let A4 = A \ (A1 ∪ A2 ∪ A3). By our convention for naming loss vectors, `1 and `2 are
the loss vectors for C1 and C2, respectively. Let L3 collect the loss vectors of actions which lie on the open
segment connecting `1 and `2. It is easy to see that L3 is the set of loss vectors that correspond to the cell C3.
We define L4 as the set of all the other loss vectors. For i = 1, 2, 3, 4, let ki = |Ai|.

Let S = Si,j the signal matrix of the neighborhood action set of C1 and C2. It follows from the assump-
tion of the theorem that `2 − `1 6∈ Im(S>). Thus, {ρ(`2 − `1) : ρ ∈ R} 6⊂ Im(S>), or equivalently,
(`2 − `1)

⊥ 6⊃ KerS, where we used that (ImM)⊥ = Ker(M>). Thus, there exists a vector v such that
v ∈ KerS and (`2− `1)>v 6= 0. By scaling we can assume that (`2− `1)>v = 1. Note that since v ∈ KerS
and the rowspace of S contains the vector (1, 1, . . . , 1), the coordinates of v sum up to zero.

Let p0 be an arbitrary probability vector in the relative interior of C3. It is easy to see that for any ε > 0
small enough, p1 = p0 + εv ∈ C1 \ C2 and p2 = p0 − εv ∈ C2 \ C1.

Let us fix a deterministic algorithm A and a time horizon T . For i = 1, 2, let R(i)
T denote the expected

regret of the algorithm under opponent strategy pi. For i = 1, 2 and j = 1, . . . , 4, let N i
j denote the expected

number of times the algorithm chooses an action from Aj , assuming the opponent plays strategy pi.
From the definition of L3 we know that for any ` ∈ L3, `−`1 = η`(`2−`1) and `−`2 = (1−η`)(`1−`2)

for some 0 < η` < 1. Let λ1 = min`∈L3 η` and λ2 = min`∈L3(1− η`) and λ = min(λ1, λ2) if L3 6= ∅ and
let λ = 1/2, otherwise. Finally, let βi = min`∈L4(`− `i)>pi and β = min(β1, β2). Note that λ, β > 0.

As the first step of the proof, we lower bound the expected regret R(1)
T and R(2)

T in terms of the values
N i
j , ε, λ and β:

R
(1)
T ≥ N

1
2

ε︷ ︸︸ ︷
(`2 − `1)>p1 +N1

3λ(`2 − `1)>p1 +N1
4β ≥ λ(N1

2 +N1
3)ε+N1

4β ,

R
(2)
T ≥ N

2
1 (`1 − `2)>p2︸ ︷︷ ︸

ε

+N2
3λ(`1 − `2)>p2 +N2

4β ≥ λ(N2
1 +N2

3)ε+N2
4β .

(6)

For the next step, we need the following lemma.

Lemma 10 There exists a (problem dependent) constant c such that the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Proof: (Lemma 10) For any 1 ≤ t ≤ T , let f t = (f1, . . . , ft) ∈ Σt be a feedback sequence up to time
step t. For i = 1, 2, let p∗i be the probability mass function of feedback sequences of length T − 1 under
opponent strategy pi and algorithm A. We start by upper bounding the difference between values under the

10

two opponent strategies. For i 6= j ∈ {1, 2} and k ∈ {1, 2, 3},

N i
k −N

j
k =

∑
fT−1

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑
t=0

I(A(f t) ∈ Ak)

≤
∑
fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑
t=0

I(A(f t) ∈ Ak)

≤ T
∑
fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

p∗i (f
T−1)− p∗j (fT−1) =

T

2
‖p∗1 − p∗2‖1

≤ T
√

KL(p∗1||p∗2)/2 , (7)

where KL(·||·) denotes the Kullback-Leibler divergence and ‖·‖1 is the L1-norm. The last inequality follows
from Pinsker’s inequality (Cover and Thomas, 2006). To upper bound KL(p∗1||p∗2) we use the chain rule for
KL-divergence. By overloading p∗i so that p∗i (f

t−1) denotes the probability of feedback sequence f t−1

under opponent strategy pi and algorithmA, and p∗i (ft|f t−1) denotes the conditional probability of feedback
ft ∈ Σ given that the past feedback sequence was f t−1, again under pi and A. With this notation we have

KL(p∗1||p∗2) =

T−1∑
t=1

∑
ft−1

p∗1(f t−1)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

=

T−1∑
t=1

∑
ft−1

p∗1(f t−1)

4∑
i=1

I(A(f t−1) ∈ Ai)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)
(8)

Let a>ft be the row of S that corresponds to the feedback symbol ft.7 Assume k = A(f t−1). If the feedback
set of action k does not contain ft then trivially p∗i (ft|f t−1) = 0 for i = 1, 2. Otherwise p∗i (ft|f t−1) = a>ftpi.
Since p1 − p2 = 2εv and v ∈ KerS, we have a>ftv = 0 and thus, if the choice of the algorithm is in either
A1, A2 orA3, then p∗1(ft|f t−1) = p∗2(ft|f t−1). It follows that the inequality chain can be continued from (8)
by writing

KL(p∗1||p∗2) ≤
T−1∑
t=1

∑
ft−1

p∗1(f t−1)I(A(f t−1) ∈ A4)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

≤ c1ε2
T−1∑
t=1

∑
ft−1

p∗1(f t−1)I(A(f t−1) ∈ A4) (9)

≤ c1ε2N1
4 .

In (9) we used Lemma 12 (see Appendix) to upper bound the KL-divergence of p1 and p2. Flipping p∗1 and
p∗2 in (7) we get the same result with N2

4 . Reading together with the bound in (7) we get all the desired
inequalities.

Now we can continue lower bounding the expected regret. Let r = argmini∈{1,2}N
i
4. It is easy to see

that for i = 1, 2 and j = 1, 2, 3,

N i
j ≥ Nr

j − c2Tε
√
Nr

4 .

If i 6= r then this inequality is one of the inequalities from Lemma 10. If i = r then it is a trivial lower
bounding by subtracting a positive value. From (6) we have

R
(i)
T ≥ λ(N i

3−i +N i
3)ε+N i

4β

≥ λ(Nr
3−i − c2Tε

√
Nr

4 +Nr
3 − c2Tε

√
Nr

4)ε+Nr
4β

= λ(Nr
3−i +Nr

3 − 2c2Tε
√
Nr

4)ε+Nr
4β .

7Recall that we assumed that different actions have difference feedback symbols, and thus a row of S corresponding
to a symbol is unique.

11

Now assume that, at the beginning of the game, the opponent randomly chooses between strategies p1 and p2

with equal probability. The the expected regret of the algorithm is lower bounded by

RT =
1

2

(
R

(1)
T +R

(2)
T

)
≥ 1

2
λ(Nr

1 +Nr
2 + 2Nr

3 − 4c2Tε
√
Nr

4)ε+Nr
4β

≥ 1

2
λ(Nr

1 +Nr
2 +Nr

3 − 4c2Tε
√
Nr

4)ε+Nr
4β

=
1

2
λ(T −Nr

4 − 4c2Tε
√
Nr

4)ε+Nr
4β .

Choosing ε = c3T
−1/3 we get

RT ≥
1

2
λc3T

2/3 − 1

2
λNr

4 c3T
−1/3 − 2λc2c

2
3T

1/3
√
Nr

4 +Nr
4β

≥ T 2/3

((
β − 1

2
λc3

)
Nr

4

T 2/3
− 2λc2c

2
3

√
Nr

4

T 2/3
+

1

2
λc3

)

= T 2/3

((
β − 1

2
λc3

)
x2 − 2λc2c

2
3x+

1

2
λc3

)
,

where x =
√
Nr

4 /T
2/3. Now we see that c3 > 0 can be chosen to be small enough, independently of T

so that, for any choice of x, the quadratic expression in the parenthesis is bounded away from zero, and
simultaneously, ε is small enough so that the threshold condition in Lemma 12 is satisfied, completing the
proof of Theorem 9.

7 Discussion
In this we paper we classified all finite partial-monitoring games under stochastic environments, based on
their minimax regret. We conjecture that our results extend to non-stochastic environments. This is the major
open question that remains to be answered.

One question which we did not discuss so far is the computational efficiency of our algorithm. The issue
is twofold. The first computational question is how to efficiently decide which of the four classes a given
game (L,H) belongs to. The second question is the computational efficiency of BALATON for a fixed easy
game. Fortunately, in both cases an efficient implementation is possible, i.e., in polynomial time by using a
linear program solver (e.g., the ellipsoid method (Papadimitriou and Steiglitz, 1998)).

Another interesting open question is to investigate the dependence of regret on quantities other than T
such as the number of actions, the number of outcomes, and more generally the structure of the loss and
feedback matrices.

Finally, let us note that our results can be extended to a more general framework, similar to that of
Pallavi et al. (2011), in which a game with N actions and M -dimensional outcome space is defined as a
tuple G = (L, S1, . . . , SN). The loss matrix is L ∈ RN×M as before, but the outcome and the feedback
are defined differently. The outcome y is an arbitrary vector from a bounded subset of RM and the feedback
received by the learner upon choosing action i is Oi = Siy.

References
Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for

bandit linear optimization. In Proceedings of the 21st Annual Conference on Learning Theory (COLT
2008), pages 263–273. Citeseer, 2008.

Alekh Agarwal, Peter Bartlett, and Max Dama. Optimal allocation strategies for the dark pool problem. In
13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), May 12-15, 2010,
Chia Laguna Resort, Sardinia, Italy, 2010.

András Antos, Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a classification of finite partial-
monitoring games, 2011. http://arxiv.org/abs/1102.2041.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In
Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

12

http://arxiv.org/abs/1102.2041

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a Classification of Finite Partial-Monitoring Games.
In Proceedings of the 21st international conference on Algorithmic Learning Theory (ALT 2010), pages
224–238. Springer, 2010.

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient prediction.
IEEE Transactions on Information Theory, 51(6):2152–2162, June 2005.

Nicoló Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under partial monitoring. Math-
ematics of Operations Research, 31(3):562–580, 2006.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York, second edition,
2006.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of the 16th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2005), page 394. Society for Industrial and Applied Mathematics,
2005.

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret for online
posted-price auctions. In Proceedings of 44th Annual IEEE Symposium on Foundations of Computer
Science 2003 (FOCS 2003), pages 594–605. IEEE, 2003.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and Computation,
108:212–261, 1994.

Gábor Lugosi and Nicolò Cesa-Bianchi. Prediction, Learning, and Games. Cambridge University Press,
2006.

V. Mnih. Efficient stopping rules. Master’s thesis, Department of Computing Science, University of Alberta,
2008.

V. Mnih, Cs. Szepesvári, and J.-Y. Audibert. Empirical Bernstein stopping. In W. W. Cohen, A. McCallum,
and S. T. Roweis, editors, ICML 2008, pages 672–679. ACM, 2008.

A. Pallavi, R. Zheng, and Cs. Szepesvári. Sequential learning for optimal monitoring of multi-channel wire-
less networks. In INFOCOMM, 2011.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity.
Courier Dover Publications, New York, 1998.

Antonio Piccolboni and Christian Schindelhauer. Discrete prediction games with arbitrary feedback and loss.
In Proceedings of the 14th Annual Conference on Computational Learning Theory (COLT 2001), pages
208–223. Springer-Verlag, 2001.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of Twentieth International Conference on Machine Learning (ICML 2003), 2003.

13

Appendix
Proof: (Lemma 8)

1. In an elimination set, we eliminate every action whose cell is contained in a closed half space. Let us
assume that j ∈ Ai is being eliminated. According to the definition of Ai, Ci ⊂ Cj and thus Ci is also
contained in the half space.

2. First let us assume that p∗ is not in the affine subspace spanned by Ci. Let p be an arbitrary point in the
relative interior of Ci. We define the point p′ = p+ ε(p−p∗). For a small enough ε > 0, p′ ∈ Ck ∈ Ai,
and at the same time, p′ 6∈ Ci. Thus we have

`>k (p+ ε (p− p∗)) ≤ `>i (p+ ε (p− p∗))
(1 + ε)`>k p− ε`>k p∗ ≤ (1 + ε)`>i p− ε`>i p∗

−ε`>k p∗ ≤ −ε`>i p∗

`>k p
∗ ≥ `>i p∗

αk,j∗ ≥ αi,j∗ ,

where we used that `>k p = `>i p.

For the case when p∗ lies in the affine subspace spanned by Ci, We take a hyperplane that contains the
affine subspace. Then we take an infinite sequence (pn)n such that every element of the sequence is in
the same side of the hyperplane, pn 6= p∗ and the sequence converges to p∗. Then the statement is true
for every element pn and, since the value αr,s is continuous in p, the limit has the desired property as
well.

The following lemma concerns the problem of producing an estimate of an unknown mean of some
stochastic process with a given relative error bound and with high probability in a sample-efficient manner.
The procedure is a simple variation of the one proposed by Mnih et al. (2008). The main differences are
that here we deal with martingale difference sequences shifted by an unknown constant, which becomes the
common mean, whereas Mnih et al. (2008) considered an i.i.d. sequence. On the other hand, we consider the
case when we have a known upper bound on the predictable variance of the process, whereas one of the main
contributions of Mnih et al. (2008) was the lifting of this assumption. The proof of the lemma is omitted, as
it follows the same lines as the proof of results of Mnih et al. (2008) (the details of these proofs are found in
the thesis of (Mnih, 2008)), the only difference being, that here we would need to use Bernstein’s inequality
for martingales, in place of the empirical Bernstein inequality, which was used by Mnih et al. (2008).

Lemma 11 Let (Ft) be a filtration on some probability space, and let (Xt) be an Ft-adapted sequence of
random variables. Assume that (Xt) is such that, almost surely, the range of each random variable Xt is
bounded by R > 0, E[Xt|Ft−1] = µ, and Var[Xt|Ft−1] ≤ σ2 a.s., where R, µ 6= 0 and σ2 are non-random
constants. Let p > 1, ε > 0, 0 < δ < 1 and let

Ln = (1 + ε) max
1≤t≤n

{
|Xt| − ct

}
, and Un = (1− ε) min

1≤t≤n

{
|Xt|+ ct

}
,

where ct = c(σ,R, t, δ), and c(·) is defined in (1). Define the estimate µ̂n of µ as follows:

µ̂n = sgn(Xn)
(1 + ε)Ln + (1− ε)Un

2
.

Denote the stopping time τ = min{n : Ln ≥ Un}. Then, with probability at least 1− δ,

|µ̂τ − µ| ≤ ε |µ| and τ ≤ C ·max

(
σ2

ε2µ2
,
R

ε|µ|

)(
log

1

δ
+ log

R

ε|µ|

)
,

where C > 0 is a universal constant.

Lemma 12 Fix a probability vector p ∈ ∆M , and let ε ∈ RM such that p− ε, p+ ε ∈ ∆M also holds. Then

KL(p− ε||p+ ε) = O(‖ε‖22) as ε→ 0.

The constant and the threshold in the O(·) notation depends on p.

14

Proof: Since p, p + ε, and p − ε are all probability vectors, notice that |ε(i)| ≤ p(i) for 1 ≤ i ≤ M . So if a
coordinate of p is zero then the corresponding coordinate of ε has to be zero as well. As zero coordinates do
not modify the KL divergence, we can assume without loss of generality that all coordinates of p are positive.
Since we are interested only in the case when ε → 0, we can also assume without loss of generality that
|ε(i)| ≤ p(i)/2. Also note that the coordinates of ε = (p+ ε)− ε have to sum up to zero. By definition,

KL(p− ε||p+ ε) =

M∑
i=1

(p(i)− ε(i)) log
p(i)− ε(i)
p(i) + ε(i)

.

We write the term with the logarithm

log
p(i)− ε(i)
p(i) + ε(i)

= log

(
1− ε(i)

p(i)

)
− log

(
1 +

ε(i)

p(i)

)
,

so that we can use that, by second order Taylor expansion around 0, log(1− x)− log(1 + x) = −2x+ r(x),
where |r(x)| ≤ c|x|3 for |x| ≤ 1/2 and some c > 0. Combining these equations, we get

KL(p− ε||p+ ε) =

M∑
i=1

(p(i)− ε(i))
[
−2

ε(i)

p(i)
+ r

(
ε(i)

p(i)

)]

=

M∑
i=1

−2ε(i) +

M∑
i=1

2
ε2(i)

p(i)
+

M∑
i=1

(p(i)− ε(i))r
(
ε(i)

p(i)

)
.

Here the first term is 0, letting p = mini∈{1,...,M} p(i) the second term is bounded by 2
∑M
i=1 ε

2(i)/p =

(2/p)‖ε‖22, and the third term is bounded by

M∑
i=1

(p(i)− ε(i))
∣∣∣∣r(ε(i)p(i)

)∣∣∣∣ ≤ c M∑
i=1

p(i)− ε(i)
p3(i)

|ε(i)|3

≤ c
M∑
i=1

|ε(i)|
p2(i)

ε2(i)

≤ c

2

M∑
i=1

1

p
ε2(i) =

c

2p
‖ε‖22.

Hence, KL(p− ε||p+ ε) ≤ 4+c
2p ‖ε‖

2
2 = O(‖ε‖22).

15

	Introduction
	Preliminaries
	Classification of finite partial-monitoring games
	Example

	Balaton: An algorithm for easy games
	Analysis of the algorithm
	A lower bound for hard games
	Discussion

