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Abstract

In a multi-armed bandit (MAB) problem, an online algorithm makes a sequence of choices. In each
round it chooses from a time-invariant set of alternatives and receives the payoff associated with
this alternative. While the case of small strategy sets is by now well-understood, a lot of recent
work has focused on MAB problems with exponentially or infinitely large strategy sets, where
one needs to assume extra structure in order to make the problem tractable. In particular, recent
literature considered information on similarity between arms.

We consider similarity information in the setting of contextual bandits, a natural extension of the
basic MAB problem where before each round an algorithm is given the context – a hint about
the payoffs in this round. Contextual bandits are directly motivated by placing advertisements on
webpages, one of the crucial problems in sponsored search. A particularly simple way to repre-
sent similarity information in the contextual bandit setting is via a similarity distance between the
context-arm pairs which bounds from above the difference between the respective expected payoffs.

Prior work on contextual bandits with similarity uses “uniform” partitions of the similarity space,
so that each context-arm pair is approximated by the closest pair in the partition. Algorithms based
on “uniform” partitions disregard the structure of the payoffs and the context arrivals, which is po-
tentially wasteful. We present algorithms that are based on adaptive partitions, and take advantage
of ”benign” payoffs and context arrivals without sacrificing the worst-case performance. The cen-
tral idea is to maintain a finer partition in high-payoff regions of the similarity space and in popular
regions of the context space. Our results apply to several other settings, e.g. MAB with constrained
temporal change (Slivkins and Upfal, 2008) and sleeping bandits (Kleinberg et al., 2008a).

1 Introduction
In a multi-armed bandit problem (henceforth, “multi-armed bandit” will be abbreviated as MAB), an algo-
rithm is presented with a sequence of trials. In each round, the algorithm chooses one alternative from a
set of alternatives (arms) based on the past history, and receives the payoff associated with this alternative.
The goal is to maximize the total payoff of the chosen arms. The MAB setting has been introduced in 1952
in Robbins (1952) and studied intensively since then in Operations Research, Economics and Computer Sci-
ence. This setting is a clean model for the exploration-exploitation trade-off, a crucial issue in sequential
decision-making under uncertainty.

One standard way to evaluate the performance of a bandit algorithm is regret, defined as the difference
between the expected payoff of an optimal arm and that of the algorithm. By now the MAB problem with
a small finite set of arms is quite well understood, e.g. see Lai and Robbins (1985), Auer et al. (2002b,a).
However, if the arms set is exponentially or infinitely large, the problem becomes intractable unless we make
further assumptions about the problem instance. Essentially, a bandit algorithm needs to find a needle in a
haystack; for each algorithm there are inputs on which it performs as badly as random guessing.

Bandit problems with large sets of arms have been an active area of investigation in the past decade (see
Section 2 for a discussion of related literature). A common theme in these works is to assume a certain
structure on payoff functions. Assumptions of this type are natural in many applications, and often lead
to efficient learning algorithms (Kleinberg, 2005). In particular, a line of work started in Agrawal (1995)
assumes that some information on similarity between arms is available.

∗The full version of this paper is available from arxiv.org. A preliminary version (which does not include the
results in Section 6) has been posted to arxiv.org in July 2009. The results in Section 7 have been obtained while the
author was a postdoc at Brown University, and a write-up has been circulated in 2007.



In this paper we consider similarity information in the setting of contextual bandits (Woodroofe, 1979,
Auer, 2002, Wang et al., 2005, Pandey et al., 2007, Langford and Zhang, 2007), a natural extension of the
basic MAB problem where before each round an algorithm is given the context – a hint about the payoffs in
this round. Contextual bandits are directly motivated by the problem of placing advertisements on webpages,
one of the crucial problems in sponsored search. One can cast it as a bandit problem so that arms correspond
to the possible ads, and payoffs correspond to the user clicks. Then the context consists of information about
the page, and perhaps the user this page is served to. Furthermore, we assume that similarity information is
available on both the context and the arms. Following the work in Agrawal (1995), Kleinberg (2004), Auer
et al. (2007), Kleinberg et al. (2008b) on the (non-contextual) bandits, a particularly simple way to represent
similarity information in the contextual bandit setting is via a similarity distance between the context-arm
pairs, which gives an upper bound on the difference between the corresponding payoffs.

Our model: contextual bandits with similarity information. The contextual bandits framework is de-
fined as follows. Let X be the context set and Y be the arms set, and let P ⊂ X × Y be the set of feasible
context-arms pairs. In each round t, the following events happen in succession:

1. a context xt ∈ X is revealed to the algorithm,
2. the algorithm chooses an arm yt ∈ Y such that (xt, yt) ∈ P ,
3. payoff (reward) πt ∈ [0, 1] is revealed.

The sequence of context arrivals (xt)t∈N is fixed before the first round, and does not depend on the subsequent
choices of the algorithm. With stochastic payoffs, for each pair (x, y) ∈ P there is a distribution Π(x, y) with
expectation µ(x, y), so that πt is an independent sample from Π(xt, yt). With adversarial payoffs, this
distribution can change from round to round. For simplicity, we present the subsequent definitions for the
stochastic setting only, whereas the adversarial setting is fleshed out later in the paper (Section 7).

In general, the goal of a bandit algorithm is to maximize the total payoff
∑T
t=1 πt, where T is the time

horizon. In the contextual MAB setting, we benchmark the algorithm’s performance in terms of the context-
specific “best arm”. Specifically, the goal is to minimize the contextual regret:

R(T ) ,
∑T
t=1 µ(xt, yt)− µ∗(xt), where µ∗(x) , supy∈Y : (x,y)∈P µ(x, y).

The context-specific best arm is a more demanding benchmark than the best arm used in the “standard”
(context-free) definition of regret.

The similarity information is given to an algorithm as a metric space (P,D) which we call the similarity
space, such that the following Lipschitz condition1 holds:

|µ(x, y)− µ(x′, y′)| ≤ D((x, y), (x′, y′)). (1)

Without loss of generality, D ≤ 1. The absence of similarity information is modeled as D = 1.
An instructive special case is the product similarity space (P,D) = (X × Y,DX +DY), where (X,DX)

is a metric space on contexts (context space), and (Y,DY) is a metric space on arms (arms space), and

D((x, y), (x′, y′)) = min(1, DX(x, x′) +DY(y, y′)). (2)

Prior work: uniform partitions. Hazan and Megiddo (2007) consider contextual MAB with similarity
information on contexts. They suggest an algorithm that chooses a “uniform” partition SX of the context
space and approximates xt by the closest point in SX, call it x′t. Specifically, the algorithm creates an instance
A(x) of some bandit algorithmA for each point x ∈ SX, and invokesA(x′t) in each round t. The granularity
of the partition is adjusted to the time horizon, the context space, and the black-box regret guarantee for A.
Furthermore, Kleinberg (2004) provides a bandit algorithm A for the adversarial MAB problem on a metric
space that has a similar flavor: pick a “uniform” partition SY of the arms space, and run a k-arm bandit
algorithm such as EXP3 Auer et al. (2002b) on the points in SY. Again, the granularity of the partition is
adjusted to the time horizon, the arms space, and the black-box regret guarantee for EXP3.

Applying these two ideas to our setting (with the product similarity space) gives a simple algorithm which
we call the uniform algorithm. Its contextual regret, even for adversarial payoffs, is

R(T ) ≤ O(T 1−1/(2+dX+dY))(log T ), (3)

where dX is the covering dimension of the context space and dY is that of the arms space.

1In other words, µ is a Lipschitz-continuous function on (X,P), with Lipschitz constant KLip = 1. Assuming
KLip = 1 is without loss of generality (as long as KLip is known to the algorithm), since we can re-define D ← KLip D.
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Our contributions. Using “uniform” partitions disregards the potentially benign structure of expected pay-
offs and context arrivals. The central topic in this paper is adaptive partitions of the similarity space which are
adjusted to frequently occurring contexts and high-paying arms, so that the algorithms can take advantage of
the problem instances in which the expected payoffs or the context arrivals are “benign” (“low-dimensional”),
in a sense that we make precise later.

We present two main results, one for stochastic payoffs and one for adversarial payoffs. For stochastic
payoffs, we provide an algorithm called contextual zooming which “zooms in” on the regions of the context
space that correspond to frequently occurring contexts, and the regions of the arms space that correspond to
high-paying arms. Unlike the algorithms in prior work, this algorithm considers the context space and the
arms space jointly – it maintains a partition of the similarity space, rather than one partition for contexts and
another for arms. We develop provable guarantees that capture the “benign-ness” of the context arrivals and
the expected payoffs. In the worst case, we match the guarantee (3) for the uniform algorithm. We obtain
nearly matching lower bounds using the KL-divergence techniques from (Auer et al., 2002b, Kleinberg, 2004,
Kleinberg et al., 2008b). The lower bound is very general as it holds for every given (product) similarity space
and for every fixed value of the upper bound.

Our stochastic contextual MAB setting, and specifically the contextual zooming algorithm, can be fruit-
fully applied beyond the ad placement scenario described above and beyond MAB with similarity information
per se. First, writing xt = t one can incorporate “temporal constraints” (across time, for each arm), and com-
bine them with “spatial constraints” (across arms, for each time). The analysis of contextual zooming yields
concrete, meaningful bounds this scenario. In particular, we recover one of the main results in Slivkins and
Upfal (2008). Second, our setting subsumes the stochastic sleeping bandits problem Kleinberg et al. (2008a),
where in each round some arms are “asleep”, i.e. not available in this round. Here contexts correspond to
subsets of arms that are “awake”. Contextual zooming recovers and generalizes the corresponding result
in Kleinberg et al. (2008a). Third, following the publication of a preliminary version of this paper, contextual
zooming has been applied to bandit learning-to-rank in Slivkins et al. (2010).

For the adversarial setting, we provide an algorithm which maintains an adaptive partition of the context
space and thus takes advantage of “benign” context arrivals. We develop provable guarantees that capture
this “benign-ness”. In the worst case, the contextual regret is bounded in terms of the covering dimension
of the context space, matching (3). Our algorithm is in fact a meta-algorithm: given an adversarial bandit
algorithm Bandit, we present a contextual bandit algorithm which calls Bandit as a subroutine. Our setup
is flexible: depending on what additional constraints are known about the adversarial payoffs, one can plug
in a bandit algorithm from the prior work on the corresponding version of adversarial MAB, so that the regret
bound for Bandit plugs into the overall regret bound.

Discussion. Adaptive partitions (of the arms space) for context-free MAB with similarity information have
been introduced in (Kleinberg et al., 2008b, Bubeck et al., 2008). This paper further explores the potential of
the zooming technique in (Kleinberg et al., 2008b). Specifically, contextual zooming extends this technique
to adaptive partitions of the entire similarity space, which necessitates a technically different algorithm and a
more delicate analysis (see Discussion 4.1). We obtain a clean algorithm for contextual MAB with improved
(and nearly optimal) bounds. Moreover, this algorithm applies to several other, seemingly unrelated problems
and unifies some results from prior work.

One alternative approach is to maintain a partition of the context space, and run a separate instance of the
zooming algorithm from Kleinberg et al. (2008b) on each set in this partition. Fleshing out this idea leads
to the meta-algorithm that we present for adversarial payoffs (with Bandit being the zooming algorithm).
This meta-algorithm is parameterized (and constrained) by a specific a priori regret bound for Bandit.
Unfortunately, any a priori regret bound for zooming algorithm would be a pessimistic one, which negates its
main strength – the ability to adapt to “benign” expected payoffs.

Map of the paper. Section 2 is related work, and Section 3 is Preliminaries. Contextual zooming is pre-
sented in Section 4. Lower bounds are in Section 5. Some applications of contextual zooming are discussed
in Section 6. The adversarial setting is treated in Section 7. All omitted proofs appear in the full version.

2 Related work
A proper discussion of the literature on bandit problems is beyond the scope of this paper. A reader is
encouraged to refer to Cesa-Bianchi and Lugosi (2006) for background.

Most relevant to this paper is the work on bandits with large sets of arms, specifically bandits with similar-
ity information (Agrawal, 1995, Kleinberg, 2004, Auer et al., 2007, Pandey et al., 2007, Kocsis and Szepes-
vari, 2006, Munos and Coquelin, 2007, Kleinberg et al., 2008b, Bubeck et al., 2008, Kleinberg and Slivkins,
2010, Maillard and Munos, 2010). Another commonly assumed structure is linear or convex payoffs, e.g.
(Awerbuch and Kleinberg, 2008, Flaxman et al., 2005, Dani et al., 2007, Abernethy et al., 2008, Hazan
and Kale, 2009). Linear/convex payoffs is a much stronger assumption than similarity, essentially because
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it allows to make strong inferences about far-away arms. Other assumptions have been considered, e.g.
(Wang et al., 2008, Bubeck and Munos, 2010). The distinction between stochastic and adversarial payoffs is
orthogonal to the structural assumption (such as Lipschitz-continuity or linearity). Papers on MAB with lin-
ear/convex payoffs typically allow adversarial payoffs, whereas papers on MAB with similarity information
focus on stochastic payoffs, with notable exceptions of Kleinberg (2004) and Maillard and Munos (2010).2

The notion of structured adversarial payoffs in this paper is less restrictive than the one in Maillard
and Munos (2010) (which in turn specializes the notion from linear/convex payoffs), in the sense that the
Lipschitz condition is assumed on the expected payoffs rather than on realized payoffs. This is a non-trivial
distinction, essentially because our notion generalizes stochastic payoffs whereas the other one does not. In
particular, Maillard and Munos (2010) achieve regret Õ(

√
dT ) for d-dimensional real space, whereas (even)

for stochastic payoffs there is a lower bound Ω(T 1−1/(d+2)) (Kleinberg, 2004, Bubeck et al., 2008).

Contextual MAB. In (Auer, 2002) and (Chu et al., 2011)2 payoffs are linear in context, which is a feature
vector. (Woodroofe, 1979, Wang et al., 2005) and (Rigollet and Zeevi, 2010)2 study contextual MAB with
stochastic payoffs, under the name bandits with covariates: the context is a random variable correlated with
the payoffs; they consider the case of two arms, and make some additional assumptions. Lazaric and Munos
(2009)2 consider an online labeling problem with stochastic inputs and adversarially chosen labels; inputs
and hypotheses (mappings from inputs to labels) can be thought of as “contexts” and “arms” respectively. All
these papers are not directly applicable to the present setting.

Experimental work on contextual MAB includes (Pandey et al., 2007) and (Li et al., 2010, 2011).2
Lu et al. (2010)2 consider the setting in this paper for a product similarity space and, essentially, recover

the uniform algorithm and a lower bound that matches (3). The same guarantee (3) can also be obtained as
follows. The “uniform partition” described above can be used to define “experts” for a bandit-with-expert-
advice algorithm such as EXP4 (Auer et al., 2002b): for each set of the partition there is an expert whose
advise is simply an arbitrary arm in this set. Then the regret bound for EXP4 yields (3). Instead of EXP4 one
could use an algorithm in McMahan and Streeter (2009)2 which improves over EXP4 if the experts are not
“too distinct”; however, it is not clear if it translates into concrete improvements over (3).

If the context xt is time-invariant, our setting reduces to the Lipschitz MAB problem as defined in (Klein-
berg et al., 2008b), which in turn reduces to continuum-armed bandits (Agrawal, 1995, Kleinberg, 2004, Auer
et al., 2007) if the metric space is a real line, and to MAB with stochastic payoffs (Auer et al., 2002a) if the
similarity information is absent.

3 Preliminaries
We will use the notation from Introduction. In particular, xt will denote the t-th context arrival, i.e. the
context that arrives in round t, and yt will denote the arm chosen by the algorithm in that round. We will use
x(1..T ) to denote the sequence of the first T context arrivals (x1 , . . . , xT ). The badness of a point (x, y) ∈ P
is defined as ∆(x, y) , µ∗(x)− µ(x, y). The context-specific best arm is

y∗(x) ∈ argmaxy∈Y : (x,y)∈P µ(x, y), (4)

where ties are broken in an arbitrary but fixed way. To ensure that the max in (4) is attained by some y ∈ Y ,
we will assume that the similarity space (P,D) is compact.

Metric spaces. Covering dimension and related notions are crucial throughout this paper. Let P be a set
of points in a metric space, and fix r > 0. An r-covering of P is a collection of subsets of P , each of diameter
strictly less than r, that cover P . The minimal number of subsets in an r-covering is called the r-covering
number of P and denoted Nr(P). 3 The covering dimension of P (with multiplier c) is the smallest d such
that Nr(P) ≤ c r−d for each r > 0. In particular, if S is a subset of Euclidean space then its covering
dimension is at most the linear dimension of S, but can be (much) smaller.

Covering is closely related to packing. A subset S ⊂ P is an r-packing of P if the distance between any
two points in S is at least r. The maximal number of points in an r-packing is called the r-packing number
and denoted Npack

r (P). It is well-known that r-packing numbers are essentially the same as r-covering
numbers, namely N2r(P) ≤ Npack

r (P) ≤ Nr(P).
The doubling constant cDBL(P) of P is the smallest k such that any ball can be covered by k balls of half

the radius. The doubling constant has been a standard notion in theoretical computer science since Gupta
et al. (2003). It is known that that cDBL(P) ≥ c 2d if d is the covering dimension of P with multiplier c, and
that cDBL(P) ≤ 2d if P is a subset of d-dimensional Euclidean space. A useful observation is that if distance
between any two points in S is > r, then any ball of radius r contains at most c2DBL points of S.

2This paper is concurrent and independent work w.r.t. the preliminary publication of this paper on arxiv.org.
3The covering number can be defined via radius-r balls rather than diameter-r sets. This alternative definition lacks

the appealing “robustness” property: Nr(P ′) ≤ Nr(P) for any P ′ ⊂ P , but (other than that) is equivalent for this paper.
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A ball with center x and radius r is denoted B(x, r). Formally, we will treat a ball as a (center, radius)
pair rather than a set of points. A function f : P → R if a Lipschitz function on a metric space (P,D), with
Lipschitz constant KLip, if the Lipschitz condition holds: |f(x)− f(x′)| ≤ KLipD(x, x′) for each x, x′ ∈ P .

Accessing the similarity space. We assume full and computationally unrestricted access to the similarity
information. While the issues of efficient representation thereof are important in practice, we believe that a
proper treatment of these issues would be specific to the particular application and the particular similarity
metric used, and would obscure the present paper. One clean formal way to address this issue is to assume
oracle access: an algorithm accesses the similarity space via a few specific types of queries, and invokes an
“oracle” that answers such queries.

Time horizon. We assume that the time horizon is fixed and known in advance. This assumption is
without loss of generality in our setting. This is due to the well-known doubling trick which converts a bandit
algorithm with a fixed time horizon into one that runs indefinitely and achieves essentially the same regret
bound. Suppose for any fixed time horizon T there is an algorithm ALGT whose regret is at most R(T ). The
new algorithm proceeds in phases i = 1, 2, 3, . . . of duration 2i rounds each, so that in each phase i a fresh
instance of ALG2i is run. This algorithm has regret O(log T )R(T ) for each round T , and O(R(T )) in the
typical case when R(T ) ≥ T γ for some constant γ > 0.

4 The contextual zooming algorithm
In this section we consider the contextual MAB problem with stochastic payoffs. We present an algorithm for
this problem, called contextual zooming, which takes advantage of both the “benign” context arrivals and the
“benign” expected payoffs. The algorithm adaptively maintains a partition of the similarity space, “zooming
in” on both the “popular” regions on the context space and the high-payoff regions of the arms space.

Discussion 4.1. Contextual zooming extends the (context-free) zooming technique in (Kleinberg et al.,
2008b), which necessitates a somewhat more complicated algorithm. In particular, selection and activation
rules are defined differently, there is a new notion of “domains” and the distinction between “pre-index” and
“index”. The analysis is more delicate, both the high-probability argument in Claim 4.4 and the subsequent
argument that bounds the number of samples from suboptimal arms. Also, the key step of setting up the
regret bounds is very different, esp. in Section 4.4.

4.1 Provable guarantees
Let us define the notions that express the performance of contextual zooming. These notions rely on the
packing number Nr(·) in the similarity space (P,D), and the more refined versions thereof that take into
account “benign” expected payoffs and “benign” context arrivals.

Our guarantees have the following form, for some integer numbers {Nr}r∈(0,1):

R(T ) ≤ C0 infr0∈(0,1)

(
r0T +

∑
r=2−i: i∈N, r0≤r≤1

1
r Nr log T

)
. (5)

Here and thereafter, C0 = O(1) unless specified otherwise. In the pessimistic version, Nr = Nr(P) is the
r-packing number of P . 4 The main contribution is refined bounds in which Nr is smaller.

For every guarantee of the form (5), call it Nr-type guarantee, prior work (e.g., Kleinberg (2004), Klein-
berg et al. (2008b), Bubeck et al. (2008)) suggests a more tractable dimension-type guarantee. This guarantee
is in terms of the covering-type dimension induced by Nr, defined as follows:5

dc , inf{d > 0 : Nr ≤ c r−d ∀r ∈ (0, 1)}. (6)

Using (5) with r0 = T−1/(dc+2), we obtain

R(T ) ≤ O(C0) (c T 1−1/(2+dc) log T ) (∀c > 0). (7)

For the pessimistic version (Nr = Nr(P)), the corresponding covering-type dimension dc is the covering
dimension of the similarity space. The resulting guarantee (7) subsumes the bound (3) from prior work
(because the covering dimension of a product similarity space is dX + dY), and extends this bound from
product similarity spaces (2) to arbitrary similarity spaces.

To account for “benign” expected payoffs, instead of r-packing number of the entire set P we consider
the r-packing number of a subset of P which only includes points with near-optimal expected payoffs:

Pµ,r , {(x, y) ∈ P : µ∗(x)− µ(x, y) ≤ 12 r}. (8)

4Then (5) can be simplified to R(T ) ≤ infr∈(0,1)O
(
rT + 1

r
Nr(P) log T

)
since Nr(P) is non-increasing in r.

5One standard definition of the covering dimension is (6) for Nr = Nr(P) and c = 1. Following Kleinberg et al.
(2008b), we include an explicit dependence on c in (6) to obtain a more efficient regret bound (which holds for any c).
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We define the r-zooming number as Nr(Pµ,r), the r-packing number of Pµ,r. The corresponding covering-
type dimension (6) is called the contextual zooming dimension.

The r-zooming number can be seen as an optimistic version ofNr(P): while equal toNr(P) in the worst
case, it can be much smaller if the set of near-optimal context-arm pairs is “small” in terms of the packing
number. Likewise, the contextual zooming dimension is an optimistic version of the covering dimension.

Theorem 4.2. Consider the contextual MAB problem with stochastic payoffs. The contextual regret R(T )
of the contextual zooming algorithm satisfies (5), where Nr = Nr(Pµ,r) is the r-zooming number. Conse-
quently, R(T ) satisfies the dimension-type guarantee (7), where dc is the contextual zooming dimension.

In Theorem 4.2, the same algorithm enjoys the bound (7) for each c > 0. This is a useful trade-off
since different values of c may result in drastically different values of the dimension dc. On the contrary, the
“uniform algorithm” from prior work essentially needs to take the c as input.

Further refinements to take into account “benign” context arrivals are deferred to Section 4.4.

4.2 Description of the algorithm
The algorithm is parameterized by the time horizon T . In each round t, it maintains a finite collection At
of balls in (P,D) (called active balls) which collectively cover the similarity space. Adding active balls is
called activating; balls stay active once they are activated. Initially there is only one active ball which has
radius 1 and therefore contains the entire similarity space.

On a high level, each round t proceeds as follows. Context xt arrives. Then the algorithm selects an
active ball B and an arm yt such that (xt, yt) ∈ B, according to the “selection rule”. Arm yt is played. Then
one ball may be activated, according to the “activation rule”.

Let us define the two rules. First we need several definitions. Fix an active ball B and round t. Let r(B)
be the radius of B. The confidence radius of B at time t is

radt(B) , rad(nt(B)) , 4
√

log T
1+nt(B) , (9)

where nt(B) is the number of times B has been selected by the algorithm before round t. The domain of ball
B in round t, denoted dom (B,At), is a subset of B that excludes all balls B′ ∈ At of strictly smaller radius:

dom (B,At) , B \
(⋃

B′∈At: r(B′)<r(B) B
′
)
. (10)

B is called relevant in round t if (xt, y) ∈ dom (B,At) for some arm y. In each round, the algorithm chooses
among relevant ballsB according to a numerical score It(B) called index. (The definition of index is deferred
to the end of this subsection.) Now we are ready to state the two rules:

• selection rule. In round t, select a relevant ball B with the maximal index (break ties arbitrarily). Select
an arbitrary arm y such that (xt, y) ∈ dom (B,At).

• activation rule. If in round t the selection rule selects (B, y) such that rad(nt(B) + 1) ≤ r(B), then a
ball with center (xt, y) and radius 1

2 r(B) is activated. (B is then called the parent of this ball.)

It remains to define the index It(B). Let rewt(B) be the total payoff from all rounds up to t− 1 in which
ball B has been selected by the algorithm. Then the average payoff from B is νt(B) , rewt(B)

max(1, nt(B)) . The
pre-index of B is defined as the average νt(B) plus an “uncertainty term”:

Ipre
t (B) , νt(B) + 2 r(B) + radt(B). (11)

The “uncertainty term” in (11) reflects both uncertainty due to a location in the metric space and uncertainty
due to an insufficient number of samples. The index of B is obtained by taking a minimum over all active
balls B′ of radius at least r(B) (letting D(B,B′) is the distance between the centers of the two balls).

It(B) , min
B′∈At: r(B′)≥r(B)

Ipre
t (B′) +D(B,B′). (12)

4.3 Analysis of the algorithm: proof of Theorem 4.2
We start by observing that the activation rule ensures several important invariants.

Claim 4.3. The following invariants are maintained:
• (centering) ifB is activated in round twith parentBpar, then the center ofB is (xt, yt) ∈ dom (Bpar,A).
• (confidence) radt(B) > r(B) for all active balls B and all rounds t.
• (covering) in each round t, the domains of active balls cover the similarity space.
• (separation) for any two active balls of radius r, their centers are at distance at least r.
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Proof. The first two invariants are immediate. For the covering invariant, note that ∪B∈A dom (B,A) =
∪B∈AB for any finite collection A of balls in the similarity space. (For each v ∈ ∪B∈AB, consider a
smallest radius ball in A that contains B. Then v ∈ dom (B,A).) The covering invariant then follows since
At contains a ball that covers the entire similarity space.

To show the separation invariant, let B and B′ be two balls of radius r such that B is activated at time t,
with parent Bpar, and B′ is activated before time t. The center of B is some point (xt, yt) ∈ dom (Bpar,At).
Since r(Bpar) > r(B′), it follows that (xt, yt) 6∈ B′.

Throughout the analysis we will use the following notation. For a ball B with center (x, y) ∈ P , define
the expected payoff of B as µ(B) , µ(x, y). Let Bsel

t be the active ball selected by the algorithm in round
t. Recall that the badness of (x, y) ∈ P is defined as ∆(x, y) , µ∗(x)− µ(x, y).

Claim 4.4. If ball B is active in round t, then with probability at least 1− T−2 we have that

|νt(B)− µ(B)| ≤ r(B) + radt(B). (13)

Proof. Fix ball V with center (x, y). Let S be the set of rounds s ≤ t when ball B was selected by the
algorithm, and let n = |S| be the number of such rounds. Then νt(B) = 1

n

∑
s∈S πs(xs, ys).

Define Zk =
∑

(πs(xs, ys)− µ(xs, ys)), where the sum is taken over the k smallest elements s ∈ S.
Then {Zk∧n}k∈N is a martingale with bounded increments. (Note that n here is a random variable.) So by
the Azuma-Hoeffding inequality with probability at least 1−T−3 it holds that 1

k |Zk∧n| ≤ radt(B), for each
k ≤ T . Taking the Union Bound, it follows that 1

n |Zn| ≤ radt(B). Note that |µ(xs, ys) − µ(B)| ≤ r(B)

for each s ∈ S, so |νt(B)− µ(B)| ≤ r(B) + 1
n |Zn|, which completes the proof.

Call a run of the algorithm clean if (13) holds for each round. From now on we will focus on a clean run,
and argue deterministically using (13). The heart of the analysis is the following lemma.

Lemma 4.5. Consider a clean run of the algorithm. Then ∆(xt, yt) ≤ 15 r(Bsel
t ) in each round t.

Proof. Fix round t. By the covering invariant, (xt, y
∗(xt)) ∈ B for some active ball B. Recall from (12)

that It(B) = Ipre(B′) +D(B,B′) for some active ball B′ of radius r(B′) ≥ r(B). Therefore

It(B
sel
t ) ≥ It(B) = Ipre(B′) +D(B,B′) (selection rule, defn of index (12))

= νt(B
′) + 2 r(B′) + radt(B

′) +D(B,B′) (defn of preindex (11))

≥ µ(B′) + r(B) +D(B,B′) (Claim 4.4 and r(B′) ≥ r(B))
≥ µ(B) + r(B) ≥ µ(xt, y

∗(xt)) = µ∗(xt). (Lipschitz property (1), twice) (14)

On the other hand, letting Bpar be the parent of Bsel
t and noting that by the selection rule

radt(B
par) ≤ r(Bpar) = 2 r(Bsel

t ), (15)

we can upper-bound It(Bsel
t ) as follows:

It(B
sel
t ) ≤ Ipre(Bpar) + r(Bpar) (defn of index (12))

= νt(B
par) + 3 r(Bpar) + radt(B

par) (defn of preindex (11))
≤ µ(Bpar) + 4 r(Bpar) + 2 radt(B

par) (Claim 4.4)

≤ µ(Bpar) + 12 r(Bsel
t ) (”parenthood” (15))

≤ µ(xt, yt) + 15 r(Bsel
t ) (Lipschitz property (1)). (16)

In the last inequality we used the fact that (xt, yt) is within distance 3 r(Bsel
t ) from the center ofBpar. Putting

the pieces together, µ∗(xt) ≤ It(Bsel
t ) ≤ µ(xt, yt) + 15 r(Bsel

t ).

Corollary 4.6. In a clean run, if ball B is activated in round t then ∆(xt, yt) ≤ 12 r(B).

Proof. By the activation rule, Bsel
t is the parent ofB. Thus by Lemma 4.5 we immediately have ∆(xt, yt) ≤

15 r(Bsel
t ) = 30 r(B). To obtain the constant of 12 that is claimed here, it suffices to prove a more efficient

special case of Lemma 4.5: if radt(Bsel
t ) ≤ r(Bsel

t ) then ∆(xt, yt) ≤ 6 r(Bsel
t ). To prove this, we simply

replace (16) in the proof of Lemma 4.5 by similar inequality in terms of Ipre(Bsel
t ) rather than Ipre(Bpar):

It(B
sel
t ) ≤ Ipre(Bsel

t ) = νt(B
sel
t ) + 2 r(Bsel

t ) + radt(B
sel
t ) (defns (11-12))

≤ µ(Bsel
t ) + 3 r(Bsel

t ) + 2 radt(B
sel
t ) (Claim 4.4)

≤ µ(xt, yt) + 6 r(Bsel
t )
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Now we are ready for the final regret computation. For a given r = 2−i, i ∈ N, let Fr be the collection
of all balls of radius r that have been activated throughout the execution of the algorithm. A ball B ∈ Fr is
called full in round t if radt(B) ≤ r. Note that in each round, if a full ball is selected then some other ball
is activated. Thus, we will partition the rounds among active balls as follows: for each ball B ∈ Fr, let SB
be the set of rounds which consists of the round when B was activated and all rounds t when B was selected
and not full. It is easy to see that |SB | ≤ O(r−2 log T ). Moreover, by Lemma 4.5 and Corollary 4.6 we have
∆(xt, yt) ≤ 15 r in each round t ∈ SB .

If ball B ∈ Fr is activated in round t, then by the activation rule its center is (xt, yt), and Corollary 4.6
asserts that (xt, yt) ∈ Pµ,r, as defined in (8). By the separation invariant, the centers of balls in Fr are within
distance at least r from one another. It follows that |Fr| ≤ Nr, where Nr is the r-zooming number.

Fixing some r0 ∈ (0, 1), note that in each rounds t when a ball of radius < r0 was selected, regret is
∆(xt, yt) ≤ O(r0), so the total regret from all such rounds is at most O(r0 T ). Therefore, contextual regret
can be written as follows:

R(T ) =
∑T
t=1 ∆(xt, yt)

= O(r0 T ) +
∑
r=2−i: r0≤r≤1

∑
B∈Fr

∑
t∈SB

∆(xt, yt)

≤ O(r0 T ) +
∑
r=2−i: r0≤r≤1

∑
B∈Fr

|SB |O(r)

≤ O
(
r0T +

∑
r=2−i: r0≤r≤1

1
r Nr log(T )

)
.

The Nr-type regret guarantee in Theorem 4.2 follows by taking inf on all r0 ∈ (0, 1).

4.4 Improved regret bounds
Let us provide regret bounds that take into account “benign” context arrivals. The main difficulty here is to
develop the corresponding definitions; the analysis then carries over without much modification. The added
value is two-fold: first, we establish the intuition that benign context arrivals matter, and then the specific
regret bound is used in Section 6.2 to match the result in Slivkins and Upfal (2008).

A crucial step in the proof of Theorem 4.2 is to bound the number of active radius-r balls by Nr(Pµ,r),
which is accomplished by observing that their centers form an r-packing S of Pµ,r. We make this step more
efficient, as follows. An active radius-r ball is called full if radt(B) ≤ r for some round t. Note that each
active ball is either full or a child of some other ball that is full. The number of children of a given ball is
bounded by the doubling constant of the similarity space. Thus, it suffices to consider the number of active
radius-r balls that are full, which is at most Nr(Pµ,r), and potentially much smaller.

Consider active radius-r active balls that are full. Their centers form an r-packing S of Pµ,r with an
additional property: each context arrival xt can be assigned to exactly one point p ∈ S so that (xt, y) ∈
B(p, r) for some arm y, and each point in S is assigned at least 1/r2 arrivals. A set S ⊂ P with this property
is called r-consistent (with context arrivals). The adjusted r-packing number of a set P ′ ⊂ P , denoted
N adj
r (P ′), is the maximal size of an r-consistent r-packing of P ′. It can be much smaller than the r-packing

number of P ′ if most context arrivals fall into a small region of the similarity space.
We make one further optimization. A point (x, y) ∈ P is called an r-winner if for each (x′, y′) ∈

B((x, y), 2r) it holds that µ(x′, y′) = µ∗(x′). LetWµ,r be the set of all r-winners. It is easy to see that if B
is a radius-r ball centered at an r-winner, and B or its child is selected in a given round, then this round does
not contribute to contextual regret. Therefore, it suffices to consider (r-consistent) r-packings of Pµ,r \Wµ,r.
This can be a significant saving if for most context arrivals xt expected payoff µ(xt, y) is either optimal or
very suboptimal (see Section 6.2 for an example).

Our final guarantee is in terms of N adj(Pµ,r \Wµ,r), which we term the adjusted r-zooming number.

Theorem 4.7. Consider the contextual MAB problem with stochastic payoffs. The contextual regret R(T )
of the contextual zooming algorithm satisfies (5), where Nr is the adjusted r-zooming number and C0 =
O(cDBL). Here cDBL is the doubling constant of the similarity space. Consequently, R(T ) satisfies the
dimension-type guarantee (7), where dc is the corresponding covering-type dimension.

5 Lower bounds
We match the upper bound in Theorem 4.2 up toO(log T ) factors. Our lower bound is very general: it applies
to an arbitrary product similarity space, and moreover for a given similarity space it matches, up to O(log T )
factors, any fixed value of the upper bound (as explained below).

We construct a distribution over problem instances on a given metric space, so that the lower bound is for
a problem instance drawn from this distribution. A single problem instance would not suffice to establish a
lower bound because a trivial algorithm that picks arm y∗(x) for each context x will achieve regret 0.
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To formulate our result, let RUB
µ (T ) denote the upper bound in Theorem 4.2, i.e. is the right-hand side

of (5) where Nr = Nr(Pµ,r) is the r-zooming number. Let RUB(T ) denote the pessimistic version of this
bound, namely right-hand side of (5) where Nr = Nr(P) is the packing number of P .

Theorem 5.1. Consider the contextual MAB problem with stochastic payoffs, Let (P,D) be a product sim-
ilarity space. Fix an arbitrary time horizon T and a positive number R ≤ RUB(T ). Then there exists a
distribution I over problem instances on (P,D) with the following two properties:

(a) RUB
µ (T ) ≤ O(R) for each problem instance in support(I).

(b) for any contextual bandit algorithm it holds that EI [R(T )] ≥ Ω(R/ log T ),

To prove this theorem, we build on the lower-bounding technique from Auer et al. (2002b), and its exten-
sion to (context-free) bandits in metric spaces in Kleinberg (2004). In particular, we use the basic needle-in-
the-haystack example from Auer et al. (2002b), where the “haystack” consists of several arms with expected
payoff 1

2 , and the “needle” is an arm whose expected payoff is slightly higher. Roughly, for suitably chosen
parameter r ∈ (0, 1) such that N = T r2 ≤ Nr(P) we pick an r-net SX in the context space and an r-net SY
in the arms space so that |SX| × |SY| = N . For each x ∈ SX we construct a needle-in-the-haystack example
on the set SY: we pick some y∗(x) ∈ SY to be the “needle” (independently and uniformly at random), and
define µ(x, y∗(x)) = 1

2 + r
2 , and µ(x, y) = 1

2 + r
4 for other y ∈ SY. We smoothen the expected payoffs

so that far from SX × SY expected payoffs are 1
2 and the Lipschitz condition holds. The sequence x(1..T ) of

context arrivals is defined in an arbitrary round-robin fashion over the points in SX. We show that in T rounds
each context in SX contributes Ω(|SY|/r) to contextual regret resulting in total contextual regret Ω(N/r), and
RUB
µ (T ) ≤ O(N/r)(log T ) for each problem instance in our construction. See the full version for details.

6 Applications of contextual zooming
We describe several applications of contextual zooming: to MAB with slow adversarial change (Section 6.1),
to MAB with stochastically evolving payoffs (Section 6.2),and to the “sleeping bandits” problem (Sec-
tion 6.3). In particular, we recover some of the main results in Slivkins and Upfal (2008) and Kleinberg
et al. (2008a). Also, in Section 6.3 we discuss a recent application of contextual zooming to bandit learning-
to-rank, which has been published in Slivkins et al. (2010). Most of the proofs are deferred to the full version.

6.1 MAB with slow adversarial change
Consider the (context-free) adversarial MAB problem in which expected payoffs of each arm change over
time gradually. Specifically, we assume that expected payoff of each arm y changes by at most σy in each
round, for some a-priori known volatilities σy . The algorithm’s goal here is to adapt to the changing environ-
ment. Thus, we define dynamic regret: regret with respect to a benchmark which in each round plays the best
arm for this round. We are primarily interested in the long-term performance quantified by average dynamic
regret R̂(T ) , R(T )/T . We call this setting the drifting MAB problem.

We restate this setting as a contextual MAB problem with stochastic payoffs in which the t-th context
arrival is simply xt = t. Then µ(t, y) is the expected payoff of arm y at time t, and dynamic regret coincides
with contextual regret specialized to the case xt = t. Each arm y satisfies a “temporal constraint”:

|µ(t, y)− µ(t′, y)| ≤ σy |t− t′| (17)

for some constant σy . To set up the corresponding similarity space (P,D), let P = [T ]× Y , and

D((t, y), (t′, y′)) = min(1, σy |t− t′|+ 1{y 6=y′}). (18)

Our solution for the drifting MAB problem is the contextual zooming algorithm parameterized by the
similarity space (P,D). To obtain guarantees for the long-term performance, we run contextual zooming
with a suitably chosen time horizon T0, and restart it every T0 rounds; we call this version contextual zooming
with period T0. The general guarantees are provided by Theorem 4.2 and Theorem 4.7. Below we work out
some specific, tractable corollaries.

Corollary 6.1. Consider the drifting MAB problem with k arms and volatilities σy ≡ σ. Contextual zooming
with period T0 has average dynamic regret R̂(T ) = O(kσ log T0)1/3, whenever T ≥ T0 ≥ ( kσ2 )1/3 log k

σ .

Proof. Since R̂(T ) ≤ 2 R̂(T0) for any T ≥ T0, it suffices to bound R̂(T0). Therefore, from here on we can
focus on analyzing contextual zooming itself (rather than contextual zooming with period).

The main step is to derive the regret bound (5) with a specific upper bound on Nr. We will show that

dynamic regret R(·) satisfies (5) with Nr ≤ k dTσr e. (19)
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Plugging Nr ≤ k (1 + Tσ
r ) into (5) and taking r0 = (kσ log T )1/3 we obtain6

R(T ) ≤ O(T )(kσ log T )1/3 +O(k
2

σ )1/3(log T ) ∀T ≥ 1.

Therefore, for any T ≥ ( kσ2 )1/3 log k
σ we have R̂(T ) = O(kσ log T )1/3.

It remains to prove (19). We use a pessimistic version of Theorem 4.2: (5) with Nr = Nr(P), the r-
packing number of P . Fix r ∈ (0, 1]. For any r-packing S of P and each arm y, each time interval I of
duration ∆r , r/σ provides at most one point for S: there exists at most one time t ∈ I such that (t, y) ∈ S.
Since there are at most dT/∆re such intervals I , it follows that Nr(P) ≤ k dT/∆re ≤ k (1 + T σ

r ).

The restriction σy ≡ σ is non-essential: it is not hard to obtain the same bound with σ = 1
k

∑
y σy .

Modifying the construction in Section 5 (details omitted from this version) one can show that Corollary 6.1
is optimal up to O(log T ) factors.

Drifting MAB with spatial constraints. The temporal version (xt = t) of our contextual MAB setting
with stochastic payoffs subsumes the drifting MAB problem and furthermore allows to combine the temporal
constraints (17) described above (for each arm, across time) with “spatial constraints” (for each time, across
arms). To the best of our knowledge, such MAB models are quite rare in the literature.7 A clean example is

D((t, y), (t′, y′)) = min(1, σ |t− t′|+DY(y, y′)), (20)

where (Y,DY) is the arms space. For this example, we can obtain an analog of Corollary 6.1, where the regret
bound depends on the covering dimension of the arms space (Y,DY).

6.2 Bandits with stochastically evolving payoffs
We consider a special case of drifting MAB problem in which expected payoffs of each arm evolve over time
according to a stochastic process with a uniform stationary distribution. We obtain improved regret bounds
for contextual zooming, taking advantage of the full power of our analysis in Section 4.

In particular, we address a version in which the stochastic process is a random walk with step ±σ. This
version has been previously studied in Slivkins and Upfal (2008) under the name “Dynamic MAB”. For the
main case (σi ≡ σ), our regret bound for Dynamic MAB matches that in Slivkins and Upfal (2008).

Uniform marginals. First we address the general version that we call drifting MAB with uniform marginals.
Formally, we assume that expected payoffs µ(y, ·) of each arm y evolve over time according to some stochas-
tic process Γy that satisfies (17). We assume that the processes Γy , y ∈ Y are mutually independent, and
moreover that the marginal distributions µ(y, t) are uniform on [0, 1], for each time t and each arm y. 8 We
are interested in EΓ[R̂(T )], average dynamic regret in expectation over the processes Γy .

We obtain a stronger version of (19) via Theorem 4.7. To use this theorem, we need to bound the adjusted
r-zooming number, call it Nr. We show that

EΓ[Nr] = O(kr)dTσr e and
(
r < σ1/3 ⇒ Nr = 0

)
. (21)

Then we obtain a different bound on dynamic regret, which is stronger than Corollary 6.1 for k < σ−1/2.

Corollary 6.2. Consider drifting MAB with uniform marginals, with k arms and volatilities σy ≡ σ. Con-
textual zooming with period T0 satisfies EΓ[R̂(T )] = O(k σ2/3 log T0), whenever T ≥ T0 ≥ σ−2/3 log 1

σ .

The crux of the proof is to show (21). Interestingly, it involves using all three optimizations in Theo-
rem 4.7: Nr(Pµ,r), Nr(Pµ,r \ Wµ,r) and N adj

r (·), whereas any two of them do not seem to suffice. The rest
is a straightforward computation similar to the one in Corollary 6.1.

Dynamic MAB. Let us consider the Dynamic MAB problem from Slivkins and Upfal (2008). Here for
each arm y the stochastic process Γy is a random walk with step ±σy . To ensure that the random walk stays
within the interval [0, 1], we assume reflecting boundaries. Formally, we assume that 1/σy ∈ N, and once a
boundary is reached, the next step is deterministically in the opposite direction.9

6This choice of r0 minimizes the inf expression in (5) up to constant factors by equating the two summands.
7The only other MAB model with this flavor that we are aware of, found in Hazan and Kale (2009), combines linear

payoffs and bounded “total variation” (aggregate temporal change) of the cost functions.
8E.g. this assumption is satisfied by any Markov Chain on [0, 1] with stationary initial distribution.
9Slivkins and Upfal (2008) has a slightly more general setup which does not require 1/σy ∈ N.
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According to a well-known fact about random walks that

Pr
[
|µ(t, y)− µ(t′, y)| ≤ O(σy |t− t′|1/2 log T0)

]
≥ 1− T−3

0 if |t− t′| ≤ T0. (22)

We use contextual zooming with period T0, but we parameterize it by a different similarity space (P,DT0
)

that we define according to (22). Namely, we set

DT0((t, y), (t′, y′)) = min(1, σy |t− t′|1/2 log T0 + 1{y 6=y′}). (23)

The following corollary is proved using the same technique as Corollary 6.2:

Corollary 6.3. Consider the Dynamic MAB problem with k arms and volatilities σy ≡ σ. Let ALGT0 denote
the contextual zooming algorotihm with period T0 which is parameterized by the similarity space (P,DT0).
Then ALGT0

satisfies EΓ[R̂(T )] = O(k σ log2 T0), whenever T ≥ T0 ≥ 1
σ log 1

σ .

6.3 Other applications
Sleeping bandits. The sleeping bandits problem Kleinberg et al. (2008a) is an extension of MAB where in
each round some arms can be “asleep”, i.e. not available in this round. One of the main results in Kleinberg
et al. (2008a) is on sleeping bandits with stochastic payoffs. We recover this result using contextual zooming.

We model sleeping bandits as contextual MAB problem where each context arrival xt corresponds to the
set of arms that are “awake” in this round. More precisely, for every subset S ⊂ Y of arms there is a distinct
context xS , and P = {(xS , y) : y ∈ S ⊂ Y }. is the set of feasible context-arm pairs. The similarity distance
is simply D((x, y), (x′, y′)) = 1{y 6=y′}. Note that the Lipschitz condition (1) is satisfied.

For this setting, contextual zooming essentially reduces to the “highest awake index” algorithm in Klein-
berg et al. (2008a). In fact, we can re-derive the result Kleinberg et al. (2008a) on sleeping MAB with
stochastic payoffs as an easy corollary of Theorem 4.2.

Moreover, the contextual MAB problem extends the sleeping bandits setting by incorporating similarity
information on arms. The contextual zooming algorithm (and its analysis) applies, and is geared to exploit
this additional similarity information.

Bandit learning-to-rank. Following a preliminary publication of this paper on arxiv.org, contextual
zooming has been applied in Slivkins et al. (2010) to bandit learning-to-rank. Interestingly, the “contexts”
studied in Slivkins et al. (2010) are very different from what we considered so far.

The basic setting, motivated by web search, was introduced in Radlinski et al. (2008). In each round a
new user arrives. The algorithm selects a ranked list of k documents and presents it to the user who clicks on
at most one document, namely on the first document that (s)he finds relevant. A user is specified by a binary
vector over documents. The goal is to minimize abandonment: the number of rounds with no clicks.

Slivkins et al. (2010) study an extension in which metric similarity information is available. They consider
a version with stochastic payoffs: in each round, the user vector is an independent sample from a fixed
distribution, and assume a Lipschitz-style condition that connects expected clicks with the metric space. They
run a separate bandit algorithm (e.g., contextual zooming) for each of the k “slots” in the ranking. Without
loss of generality, in each round the documents are selected sequentially, in the top-down order. Since a
document in slot i is clicked in a given round only if all higher ranked documents are not relevant, they treat
the set of documents in the higher slots as a context for the i-th algorithm. The Lipschitz-style condition on
expected clicks suffices to guarantee the corresponding Lipschitz-style condition on contexts.

7 Contextual bandits with adversarial payoffs
In this section we consider the adversarial setting. We provide an algorithm which maintains an adaptive par-
tition of the context space and thus takes advantage of “benign” context arrivals. It is in fact a meta-algorithm:
given a bandit algorithm Bandit, we present a contextual bandit algorithm, called ContextualBandit,
which calls Bandit as a subroutine.

Our setting. Recall that in each round t, the context xt ∈ X is revealed, then the algorithm picks an arm
yt ∈ Y and observes the payoff πt ∈ [0, 1]. Here X is the context set, and Y is the arms set. In this section,
all context-arms pairs are feasible: P = X × Y .

Adversarial payoffs are defined as follows. For each round t, there is a payoff function π̂t : X×Y → [0, 1]
such that πt = π̂t(xt, yt). The payoff function π̂t is sampled independently from a time-specific distribution
Πt over payoff functions. Distributions Πt are fixed by the adversary in advance, before the first round, and
not revealed to the algorithm. Denote µt(x, y) , E[Πt(x, y)].

Following Hazan and Megiddo (2007), we generalize the notion of regret for context-free adversarial
MAB to contextual MAB. The context-specific best arm is

y∗(x) ∈ argmaxy∈Y
∑T
t=1 µt(x, y), (24)
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where the ties are broken in an arbitrary but fixed way. We define adversarial contextual regret as

R(T ) ,
∑T
t=1 µt(xt, yt)− µ∗t (xt), where µ∗t (x) , µt(x, y

∗(x)). (25)

Similarity information is given to an algorithm as a pair of metric spaces: a metric space (X,DX) on
contexts (the context space) and a metric space (Y,DY) on arms (the arms space), which form the product
similarity space (X × Y,DX + DY). We assume that for each round t functions µt and µ∗t are Lipschitz on
(X × Y,DX + DY) and (X,DX), respectively, both with Lipschitz constant 1 (see Footnote 1). We assume
that the context space is compact, in order to ensure that the max in (24) is attained by some y ∈ Y . Without
loss of generality, diameter(X,DX) ≤ 1.

Formally, a problem instance consists of metric spaces (X,DX) and (Y,DY), the sequence of context
arrivals (denoted x(1..T )), and a sequence of distributions (Πt)t≤T . Note that for a fixed distribution Πt = Π,
this setting reduces to the stochastic setting, as defined in Introduction. For the fixed context case (xt = x for
all t) this setting reduces to the (context-free) MAB problem with a randomized oblivious adversary.

Our results. Our algorithm is parameterized by a regret guarantee for Bandit for the fixed context case,
namely an upper bound on the convergence time.10 For a more concrete theorem statement we will assume
that the convergence time of Bandit is at most T0(r) , cY r

−(2+dY) log( 1
r ) for some constants cY and dY

that are known to the algorithm. In particular, an algorithm in Kleinberg (2004) achieves this guarantee if dY
is the c-covering dimension of the arms space and cY = O(c2+dY).

This is a flexible formulation that can leverage prior work on adversarial bandits. For instance, if Y ⊂ Rd
and for each fixed context x ∈ X distributions Πt randomize over linear functions π̂t(x, ·) : Y → R, then
one could take Bandit from the line of work on adversarial bandits with linear payoffs. In particular, there
exist algorithms with dY = 0 and cY = poly(d) (Dani et al., 2007, Abernethy et al., 2008). Likewise, for
convex payoffs there exist algorithms with dY = 2 and cY = O(d) (Flaxman et al., 2005). For a bounded
number of arms, algorithm EXP3 (Auer et al., 2002b) achieves dY = 0 and cY = O(

√
|Y |).

From here on, the context space (X,DX) will be only metric space considered; balls and other notions
will refer to the context space only.

To quantify the “goodness” of context arrivals, our guarantees are in terms of the covering dimension of
x(1..T ) rather than that of the entire context space. (This is the improvement over the guarantee (3) for the
uniform algorithm.) In fact, in the full version we use a more refined notion which allows to disregard a
limited number of “outliers” in x(1..T ). Our result is stated as follows:

Theorem 7.1. Consider the contextual MAB problem with adversarial payoffs, and let Bandit be a bandit
algorithm. Assume that the problem instance belongs to some class of problem instances such that for the
fixed-context case, convergence time of Bandit is at most T0(r) , cY r

−(2+dY) log( 1
r ) for some constants

cY and dY that are known to the algorithm. Then ContextualBandit achieves adversarial contextual
regret R(·) such that for any time T and any constant cX > 0 it holds that

R(T ) ≤ O(c2DBL (cX cY)1/(2+dX+dY)) T 1−1/(2+dX+dY)(log T ), (26)

where dX is the covering dimension of x(1..T ) with multiplier cX, and cDBL is the doubling constant of x(1..T ).

Our algorithm. The contextual bandit algorithm ContextualBandit is parameterized by a (context-
free) bandit algorithm Bandit, which it uses as a subroutine, and a function T0(·) : (0, 1)→ N.

The algorithm maintains a finite collection A of balls, called active balls. Initially there is one active ball
of radius 1. BallB stays active once it is activated. Then a fresh instance ALGB of Bandit is created, whose
set of “arms” is Y . ALGB can be parameterized by the time horizon T0(r), where r is the radius of B.

The algorithm proceeds as follows. In each round t the algorithm selects one active ball B ∈ A such
that xt ∈ B, calls ALGB to select an arm y ∈ Y to be played, and reports the payoff πt back to ALGB . A
given ball can be selected at most T0(r) times, after which it is called full. B is called relevant in round t
if it contains xt and is not full. The algorithm selects a relevant ball (breaking ties arbitrarily) if such ball
exists. Otherwise, a new ball B′ is activated and selected. Specifically, let B be the smallest-radius active
ball containing xt. Then B′ = B(xt,

r
2 ), where r is the radius of B. B is then called the parent of B′.

The analysis of this algorithm (which proves Theorem 7.1) is deferred to the full version.
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10The r-convergence time T0(r) is the smallest T0 such that regret is R(T ) ≤ rT for each T ≥ T0.
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P. Auer, R. Ortner, and C. Szepesvári. Improved Rates for the Stochastic Continuum-Armed Bandit Problem. In 20th

COLT, 2007.
B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. J. of Computer and System Sciences, 74

(1):97–114, February 2008. Preliminary version appeared in 36th ACM STOC, 2004.
S. Bubeck and R. Munos. Open Loop Optimistic Planning. In 23rd COLT, 2010.
S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. Online Optimization in X-Armed Bandits. In NIPS, 2008.
N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.
W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual Bandits with Linear Payoff Functions. In 14th AISTATS, 2011.
V. Dani, T. P. Hayes, and S. Kakade. The Price of Bandit Information for Online Optimization. In NIPS, 2007.
A. Flaxman, A. Kalai, and H. B. McMahan. Online Convex Optimization in the Bandit Setting: Gradient Descent without

a Gradient. In 16th ACM-SIAM SODA, 2005.
A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low–distortion embeddings. In 44th IEEE

FOCS, pages 534–543, 2003.
E. Hazan and S. Kale. Better algorithms for benign bandits. In 20th ACM-SIAM SODA, 2009.
E. Hazan and N. Megiddo. Online Learning with Prior Information. In 20th COLT, 2007.
R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In 18th NIPS, 2004.
R. Kleinberg. Online Decision Problems with Large Strategy Sets. PhD thesis, MIT, Boston, MA, 2005.
R. Kleinberg and A. Slivkins. Sharp Dichotomies for Regret Minimization in Metric Spaces. In ACM-SIAM SODA, 2010.
R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret bounds for sleeping experts and bandits. In 21st COLT, 2008a.
R. Kleinberg, A. Slivkins, and E. Upfal. Multi-Armed Bandits in Metric Spaces. In ACM STOC, 2008b.
L. Kocsis and C. Szepesvari. Bandit Based Monte-Carlo Planning. In 17th ECML, 2006.
T. Lai and H. Robbins. Asymptotically efficient Adaptive Allocation Rules. Adv. in Appl. Math., 6:4–22, 1985.
J. Langford and T. Zhang. The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits. In 21st NIPS, 2007.
A. Lazaric and R. Munos. Hybrid Stochastic-Adversarial On-line Learning. In 22nd COLT, 2009.
L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommenda-

tion. In 19th WWW, 2010.
L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recom-

mendation algorithms. In 4th WSDM, 2011.
T. Lu, D. Pál, and M. Pál. Showing Relevant Ads via Lipschitz Context Multi-Armed Bandits. In 14th AISTATS, 2010.
O.-A. Maillard and R. Munos. Online Learning in Adversarial Lipschitz Environments. In ECML PKDD, 2010.
H. B. McMahan and M. Streeter. Tighter Bounds for Multi-Armed Bandits with Expert Advice. In 22nd COLT, 2009.
R. Munos and P.-A. Coquelin. Bandit algorithms for tree search. In 23rd UAI, 2007.
S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski. Bandits for Taxonomies: A Model-based Approach. In SDM,

2007.
F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed bandits. In 25th ICML, 2008.
P. Rigollet and A. Zeevi. Nonparametric Bandits with Covariates. In 23rd COLT, 2010.
H. Robbins. Some Aspects of the Sequential Design of Experiments. Bull. Amer. Math. Soc., 58:527–535, 1952.
A. Slivkins and E. Upfal. Adapting to a Changing Environment: the Brownian Restless Bandits. In 21st COLT, 2008.
A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally diverse rankings over large document collections. In 27th

ICML, 2010.
C.-C. Wang, S. R. Kulkarni, and H. V. Poor. Bandit problems with side observations. IEEE Trans. on Automatic Control,

50(3):338–355, 2005.
Y. Wang, J.-Y. Audibert, and R. Munos. Algorithms for Infinitely Many-Armed Bandits. In NIPS, 2008.
M. Woodroofe. A one-armed bandit problem with a concomitant variable. J. Amer. Statist. Assoc., 74(368), 1979.

13


