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Abstract

The paper considers sequential prediction of individual sequences with log loss (online
density estimation) using an exponential family of distributions. We first analyze the
regret of the maximum likelihood (“follow the leader”) strategy. We find that this strategy
is (1) suboptimal and (2) requires an additional assumption about boundedness of the data
sequence. We then show that both problems can be be addressed by adding the currently
predicted outcome to the calculation of the maximum likelihood, followed by normalization
of the distribution. The strategy obtained in this way is known in the literature as the
sequential normalized maximum likelihood or last-step minimax strategy. We show for
the first time that for general exponential families, the regret is bounded by the familiar
(k/2) log n and thus optimal up to O(1). We also show the relationship to the Bayes
strategy with Jeffreys’ prior.

1 Introduction

The game of sequential prediction of individual sequences with log loss (online density estimation) is
defined in the following way. Let x1, x2, . . . ∈ X ∗, be a sequence of outcomes revealed one at a time.
After observing xn = x1, x2, . . . , xn, a forecaster assigns a probability distribution on X , denoted
P ( · | xn). Then, after xn+1 is revealed, the forecaster incurs the log loss − logP (xn+1 | xn). The
performance of the strategy is measured relative to the best in a reference set of strategies, which
we call the model P. The difference between the accumulated loss of the prediction strategy and
the best strategy in the model is called the regret. The goal is to minimize the regret in the worst
case over all possible data sequences.

We assume the model P = {Pθ | θ ∈ Θ} is an exponential family of distributions, examples of
which include normal, Bernoulli, multinomial, Gamma, Poisson, Pareto, geometric distributions and
many others. If there is a known time horizon n of the game (maximal number of outcomes), the
minimax strategy for the game is the normalized maximum likelihood (NML) strategy (Shtarkov,
1987, Rissanen, 1996). If the parameter space of a k-dimensional exponential family is constrained
to a compact subset Θ0, NML achieves regret k

2 log n + O(1) for all data sequences. NML, how-
ever, requires knowledge of the time horizon and is impractical to calculate in many situations. A
particularly simple and popular prediction strategy is the maximum likelihood (ML) strategy, (also
known as “follow the leader”), which predicts the next outcome xn by using the distribution Pµ̂n−1 ,
with µ̂n−1 being the ML estimator based on the n − 1 past outcomes. The ML strategy, contrary
to NML, belongs to the family of plug-in strategies which in each iteration predict with one of the
strategies from the model.

Despite the popularity of the “follow the leader” approach, guarantees on the regret of the ML
strategy were only obtained for some special exponential families, such as normal, Bernoulli and
Gamma distributions (Freund, 1996, Azoury and Warmuth, 2001). In this paper, we prove general
bounds which hold for any exponential family. We show (Theorem 1, Section 3) that if the parameter
space is constrained to a compact subset Θ0, and if the outcomes are bounded within a ball of radius
B, the regret can be upper bounded by C log n+O(1), where C is a constant depending on B and Θ0.
We also prove (Theorem 2) that the bound is essentially tight. In other words, (1) the ML strategy
requires boundedness of the data sequence, and (2) the rate of the regret growth is still logarithmic,
but the constant in front of log n can be very large, especially when B is large. Moreover, Theorem 2
implies that those two drawbacks are shared among all plug-in strategies.



We also show, however, that both problems can be be addressed by adding the currently predicted
outcome to the calculation of the maximum likelihood, followed by normalization of the distribu-
tion. Typically, the new strategy predicts with a distribution P (xn|xn−1) proportional to Pµ̂n(xn).
Usually, this distribution will not be equal to any of the distributions Pµ within the model, so the
new strategy is not plug-in. The strategy obtained in this way is known as sequential normalized
maximum likelihood (Rissanen and Roos, 2007, Roos and Rissanen, 2008) (SNML). It was discovered
with a different motivation in mind: Rissanen and Roos noticed that its predictions coincide with
those of the NML distribution under the assumption that the current iteration is the last iteration.
Therefore, it can be viewed as an approximation to NML for which the time horizon of the game
does not need to be known. A similar idea, though restricted to strategies within the model (plug-in
strategies), was introduced by Takimoto and Warmuth (2000) under the name last-step minimax.

In this paper, we develop bounds on the worst-case regret for SNML for general exponential
families (such bounds had been unknown so far). As our main result, in Theorem 4, we prove that
the regret of the SNML strategy is at most k

2 log n+O(1), which matches, up to the O(1) term, the
minimax regret bound. This issue is important from a practical point of view, as SNML constitutes
an interesting and effective algorithm for online density estimation and model selection. However,
our results are also interesting from a conceptual point of view, as the answer to the following
question: how much do we loose if we base our decision in a given moment by looking only one
step ahead instead of looking at the whole possible future up to a given time horizon? Our results
suggest that we do not loose anything substantial, at least asymptotically; for some models, it turns
out that we don’t even loose anything: in Section 5 we show that in some cases (but not always)
the SNML strategy coincides with the Bayes strategy, when the prior distribution is chosen to be a
Jeffreys’ prior. Moreover, we prove that when the two strategies are equal, they are also equal to
the NML strategy and thus minimax optimal.

Related Work Sequential prediction with log loss has been extensively studied in learning theory,
in the framework of prediction with expert advice (Cesa-Bianchi and Lugosi, 2006). It also plays an
important role in information theory: a key result based on the Kraft inequality (Cover and Thomas,
1991) states that, ignoring rounding issues, for every length function L of a uniquely decodable code,
there is a probability distribution P such that L(x) = − logP (x) and vice versa. Thus, at least when
X is countable, any prediction strategy can also be thought of as a universal source coding algorithm;
the cumulative logarithmic loss corresponds exactly to the incurred codelength. As Rissanen’s theory
of Minimum Description Length (MDL) learning (Barron et al., 1998, Grünwald, 2007) is based on
universal coding, a sequential prediction strategy with log loss defines an MDL model selection
criterion. Similarly, in statistics, Dawid’s theory of prequential model assessment (Dawid, 1984) is
based on sequential prediction.

The ML strategy for exponential families was considered by Freund (1996) and Azoury and
Warmuth (2001), with regret bounds proven for the particular cases of normal, Bernoulli and Gamma
distributions. Grünwald and de Rooij (2005) showed the following: let the model P be an arbitrary
1-dimensional exponential family (k = 1). Suppose the outcomes are i.i.d. by some distribution P ∗,
possibly outside the model. Then the expected regret of the ML plug-in strategy is (1/2c) log n+O(1)
where c is the variance of an outcome under the true distribution P ∗ divided by the variance under
the element of the model Pθ that minimizes the Kullback-Leibler divergence D(P ∗‖Pθ). In general,
c can be much smaller than 1. Moreoever, it was shown by Grünwald and Kot lowski (2010) that no
plug-in estimator can achieve c = 1. Our Theorems 1 and 2 are essentially extensions of this result
to individual-sequence settings. Dasgupta and Hsu (2007) considered Gaussian density estimation
with unknown mean and covariance matrix and obtained a much worse linear bound on the regret,
excluding the possibility of a logarithmic bound. Their results do not contradict ours, since the set of
reference strategies (distributions in the exponential family) was not constrained to be in a compact
subset of the parameter space, which is necessary to obtain logarithmic bounds (interestingly, if
one considers the regret conditioned on the first outcome then for some models it is possible after
all to get logarithmic bound even with full parameter space, as we show in Section 5; we pose as
an open problem whether this result extends to arbitrary exponential families). Raginsky et al.
(2009) considered a plug-in strategy based on Bregman projections and proved regret bounds for
general exponential families; their strategy, however, is different from those considered here. Hazan
et al. (2007) proved logarithmic regret bounds on the follow the leader strategy in online convex
optimization, however the assumptions of their theorem do not match online density estimation
with exponential families. Kot lowski et al. (2010) considered “folowing the ‘flattened’ leader”, an
improvement over the ML strategy, “slightly” outside the model, achieving the optimal regret bound.
However, this flattened-leader strategy still requires boundedness of the data sequence.

The idea of including the current observation to the calculation of maximum likelihood was
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considered by (Rissanen and Roos, 2007, Roos and Rissanen, 2008), though with a different mo-
tivation in mind. The regret bounds were not given apart from specific cases. A similar idea,
though restricted to strategies within the model (plug-in strategies), was introduced by Takimoto
and Warmuth (2000) under the name last-step minimax (the relation is made precise in Section 4).

The paper is organized as follows. We introduce the mathematical context for our results in
Section 2. We then analyze the ML strategy in Section 3, proving the regret bounds which reveal
suboptimal behavior in the worst case. Then, we introduce the SNML strategy in Section 4 and
prove optimal regret bounds. We give some examples for particular exponential families in Section 5
and discuss the relationship between SNML and Bayes with Jeffreys’ prior in Section 6. We end
with a conclusion in Section 7.

2 Notation and Definitions

2.1 Exponential Family
Let X be a set of outcomes, taking values either in a finite or countable set, or in a subset of Eu-
clidean space. Exponential family models (Barndorff-Nielsen, 1978) are families of distributions on
X with densities Pθ(x) = eθ

Tφ(x)−ψ(θ)h(x), defined relative to a random variable φ : X → Rk (called
sufficient statistic) and a function h : X → [0,∞). The function ψ(θ) = log

∫
x∈X e

θTφ(x)h(x) dx (the
integral to be replaced by a sum for countable X ) is called a partition function, and Θ = {θ ∈ Rk :
ψ(θ) < ∞} is called the natural parameter space. We only consider regular exponential families,
when Θ is an open and convex subset of Rk, and the representation is minimal, i.e. the functions
φi(x), i = 1, . . . , k, are linearly independent. Moreover, without loss of generality, we will make the
simplifying assumption that φ(x) ≡ x, i.e. the exponential family is in the canonical form. All
results in this paper are valid for a more general φ. The function ψ(θ) is differentiable infinitely
often, and strictly convex on Θ. A standard result for exponential families states (Barndorff-Nielsen,
1978) that the gradient µ = ∇θψ(θ) is the mean value vector of x, µ = Eθ[x], while the Hessian
∇2
θψ(θ) = Eθ[−∇2

θ logPθ(x)] = I(θ) coincides with the Fisher information matrix in the natural
parameterization, is positive definite and equal to the covariance matrix Covθ(x). Strict convexity
of ψ implies that the function µ(θ) is invertible, and thus suggests reparameterizing the distribu-
tion by µ. The function µ(θ) maps parameters in the natural parameterization to the mean value
parameterization Ξ = µ(Θ). It is a diffeomorphism (Barndorff-Nielsen, 1978), and thus Ξ is also
an open convex set of Rk. The inverse θ(µ) maps back to the natural parametrization. Moreover,
∇µθ(µ) = Eµ[−∇2

µ logPµ(x)] = I(µ) is the Fisher information in the mean-value parametrization,
which is equal to to the inverse covariance matrix Cov−1

µ (x).
The KL-divergence between distributions Pθ and Pθ′ :

Eθ
[
log

Pθ(x)
Pθ′(x)

]
= Eµ

[
log

Pµ(x)
Pµ′(x)

]
= (θ − θ′)Tµ− ψ(θ) + ψ(θ′), (1)

where µ = µ(θ) and µ′ = µ(θ′), is denoted by D(θ‖θ′) or by D(µ‖µ′), depending on the context.
Let Θ0 ⊆ Θ be any nonempty convex subset of Θ. Given the data sequence xn, the maximum

likelihood (ML) estimate θ̂n relative to Θ0 is defined as:

θ̂n = arg max
θ∈Θ0

Pθ(xn) = arg min
θ∈Θ0

− logPθ(xn), (2)

or equivalently as:
µ̂n := µ(θ̂n) = arg min

µ∈Ξ0
− logPµ(xn),

where Ξ0 = µ(Θ0) is also convex. By rewriting − logPθ(xn) = −n(θT x̄n − ψ(θ))− log h(xn), where
x̄n = 1

n

∑n
i=1 xi, we see that ∇θ − logPθ(xn) = −n(x̄n − µ(θ)). This means than when x̄n ∈ Ξ0,

then µ̂n = x̄n. More generally, we can exploit the fact that − logPθ(xn) is a convex function of θ,
and thus the necessary condition for a minimum of a convex function on a convex set states (Boyd
and Vandenberghe, 2004) that ∇θ̂n − logPθ̂n(xn)(θ − θ̂n) ≥ 0 for all θ ∈ Θ0, which implies:

(µ̂n − x̄n)T (θ − θ̂n) ≥ 0 (3)

for all θ ∈ Θ0. Condition (3) has a nice interpretation in terms of Bregman projections. Assuming
x̄n ∈ Ξ, we can rewrite (3) as:

D(x̄n‖µ) ≥ D(µ̂n‖µ) +D(x̄n‖µ̂n),
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for all µ ∈ Ξ0, which is closely related to the generalized Pythagorean inequality for Bregman
divergences (Cesa-Bianchi and Lugosi, 2006). Another expression which we are going to use is:

D(µ1‖µ2)−D(µ1‖µ3) = D(µ3‖µ2) + (θ2 − θ3)T (µ3 − µ1), (4)

for all µ1, µ2, µ3 ∈ Ξ0, where θi = θ(µi), i = 1, 2, 3. This can be derived by writing KL-divergences
on both sides according to (1).

2.2 Sequential Prediction

At every iteration n = 1, 2, . . ., the prediction P ( · | xn−1) depends on the past outcomes xn−1 and
has the form of a probability distribution on X , and therefore can be considered as a conditional
of the joint distribution of outcomes in Xn, which is P (xn) =

∏n
i=1 P (xi|xi−1). Conversely, any

probability distribution P on the set Xn defines a prediction strategy induced by its conditional
distributions P ( · | xi) for 0 ≤ i < n (Cesa-Bianchi and Lugosi, 2006, Grünwald, 2007). The
performance of the strategy P on the outcome sequence xn is measured relative to the best strategy
in the model (reference set of strategies) P by the regret, defined as:

R(P ;xn) =
n∑
i=1

− logP (xi|xi−1)− inf
Pθ∈P

n∑
i=1

− logPθ(xi) = − logP (xn)− inf
Pθ∈P

− logPθ(xn). (5)

The regret is the difference in cumulative losses incurred so far by the prediction strategy and
the best strategy (distribution) in the model. We are usually interested in the worst-case regret,
R(P ;n) = supxn R(P ;xn). Unfortunately, for most common exponential families P = {Pθ : θ ∈ Θ}
(extended to sequences by the i.i.d. assumption), R(P ;n) cannot be made finite even for n = 1,
whatever P is. Indeed, let P be a one-dimensional normal family N(θ, 1) with fixed unit variance,
so that Θ = R. For every strategy P , we must have P (x1) → 0 as x1 → ∞ (otherwise P would
not be normalizable), and therefore − logP (x1) → ∞. On the other hand, infPθ∈P − logPθ(x1) =
− logPx1(x1) = 1

2 log 2π, so that by increasing x1, we can make the regret as large as we want.
Therefore, to obtain non-trivial regret bounds, we choose a compact convex subset Θ0 ⊂ Θ and

define P = {Pθ : θ ∈ Θ0}; equivalently, we can choose Ξ0 = µ(Θ0) and define P = {Pµ : µ ∈ Ξ0} (we
will use both interchangeably). Then,

R(P ;xn) = − logP (xn) + logPµ̂n(xn),

where µ̂n is the ML estimator relative to Ξ0.
Let P be a prediction strategy. If for every n, P (xn|xn−1) ∈ P, i.e. P (xn|xn−1) = Pµ̄n−1(xn)

for some µ̄n−1 = µ̄n−1(xn−1), we call such P a plug-in strategy. In other words, a plug-in strategy
always predicts with one of the distributions from the model. An example of a plug-in strategy is
the maximum likelihood (or follow the leader) strategy defined as Pml(xn|xn−1) = Pµ̂n−1(xn).

There is, however, an advantage in using strategies which are not in the model. An important
out-model strategy is the normalized maximum likelihood (NML) strategy, defined as:

Pnml(xn) =
supθ∈Θ0

Pθ(xn)∫
Xn supθ∈Θ0

Pθ(zn) dzn
=

supµ∈Ξ0
Pµ(xn)∫

Xn supµ∈Ξ0
Pµ(zn) dzn

. (6)

NML is known to be the minimax prediction strategy for the log-loss game: it can be shown (see,
e.g. Cesa-Bianchi and Lugosi (2001)) that:

inf
P

sup
xn
R(P ;xn) = R(Pnml;n),

where the infimum is over all, both in-model (plug-in) and out-model, prediction strategies. The
value of R(Pnml;n) is also known: if P is a k-dimensional exponential family and Ξ0 is a closed
convex subset of Ξ with non-empty interior, then

R(Pnml, x
n) =

k

2
log n+O(1). (7)

For a proof, see e.g. (Grünwald, 2007). (7) is the famous ‘k over 2 log n formula’, refinements of
which lie at the basis of practical approximations to MDL and Bayesian learning (Grünwald, 2007).
Since the NML strategy is minimax, a worst-case regret of k

2 log n+O(1) is optimal.
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3 Regret Bounds for ML Strategy

In this section, we analyze the performance of ML strategy and show, that under an additional
boundedness assumption on the data sequence, one can get a non-trivial regret bound. The bound,
however, reveals suboptimal behavior and dependence on the range of the data sequence. Later, we
show the bound is essentially unimprovable for any plug-in strategy.

Before we prove the main theorem, we need several propositions, which will also be useful in the
next section, while proving the regret bound for SNML.

Proposition 1 Let ȳn = (n−1)µ̂n−1+xn
n , and let µ̃n = arg minµ∈Ξ0 D(ȳn‖µ). Then:

− logPµ̂n−1(xn) + logPµ̂n(xn) ≤ nD(ȳn‖µ̂n−1)− nD(ȳn‖µ̃n). (8)

Proof: From the definition of µ̃n, we have D(ȳn‖µ̃n) ≤ D(ȳn‖µ̂n), so that:

D(ȳn‖µ̂n−1)−D(ȳn‖µ̃n) ≥ D(ȳn‖µ̂n−1)−D(ȳn‖µ̂n) (from definition of µ̃n)

= D(µ̂n‖µ̂n−1) + (θ̂n−1 − θ̂n)T (µ̂n − ȳn) (from (4))

= D(µ̂n‖µ̂n−1) + (θ̂n−1 − θ̂n)T (µ̂n − x̄n) + (θ̂n−1 − θ̂n)T (x̄n − ȳn)

= D(µ̂n‖µ̂n−1) + (θ̂n−1 − θ̂n)T (µ̂n − x̄n) +
n

n− 1
(θ̂n−1 − θ̂n)T (x̄n−1 − µ̂n−1)

≥ D(µ̂n‖µ̂n−1) + (θ̂n−1 − θ̂n)T (µ̂n − x̄n) (from (3))

= −(θ̂n−1 − θ̂n)T x̄n + ψ(θ̂n−1)− ψ(θ̂n)

=
1
n

(
− logPµ̂n−1(xn) + logPµ̂n(xn)

)
.

Proposition 1 states that if we pretend µ̂n−1 (rather than x̄n−1) is the sufficient statistic in the
previous iteration, and do all the updates accordingly, then the drop of the KL divergence from the
data to the ML estimator per iteration will decrease. Thus, if we imagine the data is generated by
an adversary trying to maximize the regret, it does not pay for him/her to choose x̄n−1 outside Ξ0

(since then µ̂n−1 6= x̄n−1).
We now show that within a compact set Ξ0, the KL-divergence behaves approximately as a

quadratic form:

Proposition 2 Let Ξ1 be a compact subset of Ξ. Then, for all µ, µ′ ∈ Ξ1,

D(µ‖µ′) ≤ 1
2

(µ− µ′)T I(µ′)(µ− µ′) + C‖µ− µ′‖3,

where C <∞ depends on Ξ1.

Proof: We need two standard results regarding the properties of KL divergence (see, e.g. Barndorff-
Nielsen (1978), Grünwald (2007)): for any µ, µ′ ∈ Ξ, it holds:

1. D(µ‖µ′) ≥ 0 and the equality only holds for µ = µ′,

2. For exponential families, ∇2
µD(µ‖µ′) = I(µ).

By Taylor expanding D(µ‖µ′) around µ′ up to the second order, we get:

D(µ‖µ′) = D(µ′‖µ′) +∇µD(µ‖µ′)T
∣∣
µ=µ′

(µ− µ′) +
1
2

(µ− µ′)T I(µ̄)(µ− µ′),

for some µ̄ between µ and µ′. Due to the first property the zeroth order term disappears; the second
order term also disappears because the gradient vanishes at the minimum, so we have:

D(µ‖µ′) =
1
2

(µ− µ′)T I(µ̄)(µ− µ′) =
1
2

(µ−µ′)T I(µ′)(µ−µ′) +
1
2

(µ−µ′)T
(
I(µ̄)− I(µ′)

)
(µ−µ′)

≤ 1
2

(µ− µ′)T I(µ′)(µ− µ′) +
1
2
‖I(µ̄)− I(µ′)‖‖µ− µ′‖2, (9)

where ‖ · ‖ denotes vector or matrix norm, depending on the context. Taylor expanding I(µ̄) around
µ′ up to the first order gives I(µ̄) = I(µ′) +∇I(µ̃)T (µ̄ − µ′), for some µ̃ between µ̄ and µ′. From
that we get:

‖I(µ̄)− I(µ′)‖ ≤ ‖∇I(µ̃)‖‖µ̄− µ′‖ ≤ C‖µ̄− µ′‖, (10)
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where C = supµ∈Ξ1
‖∇I(µ)‖ is finite due to compactness of Ξ1 and continuity of all derivatives of

the information matrix. It follows from the definition of µ̄ that ‖µ̄ − µ′‖ ≤ ‖µ − µ′‖; using this in
(10) and plugging the result into (9) finishes the proof.

Proposition 3 Let the data sequence x1, x2, . . . be such that ‖xn‖ ≤ B for all n. Then, for all large
n,

logPµ̂n(xn)− logPµ̂n−1(xn) ≤ 1
2n

(µ̂n−1 − xn)T I(µ̂n−1)(µ̂n−1 − xn) +
C

n2
, (11)

where C depends on both Ξ0 and B.

Proof: Proposition 1 states that the left hand side of (11) is upper bounded by nD(ȳn‖µ̂n−1) −
nD(ȳn‖µ̃n). Let Ξ1 ⊂ Ξ be a compact set such that Ξ0 ⊂ Ξ1 and:

inf
µ∈Ξ\Ξ1,µ′∈Ξ0

‖µ− µ′‖ ≥ δ

for some δ > 0. In other words, Ξ0 and the outside of Ξ1 never come arbitrarily close to each other.
Such a set always exists, because Ξ is open, while Ξ0 is compact. Compactness of Ξ0 also imply
that ‖µ̂n‖ ≤ CΞ0 for some CΞ0 <∞. Due to boundedness of xn we have:

‖ȳn − µ̂n−1‖ =
∥∥∥xn − µ̂n−1

n

∥∥∥ ≤ B + CΞ0

n
≤ δ,

for all sufficiently large n, which implies that ȳn ∈ Ξ1. Using first Proposition 1, and then Proposition
2 with µ = ȳn and µ′ = µ̂n−1 for compact set Ξ1, we get:

logPµ̂n(xn)− logPµ̂n−1(xn) ≤ nD(ȳn‖µ̂n−1)− nD(ȳn‖µ̃n) ≤ nD(ȳn‖µ̂n−1)

≤ n

2
(ȳn − µ̂n−1)T I(µ̂n−1)(ȳn − µ̂n−1) + nC‖ȳn − µ̂n−1‖3

=
1

2n
(xn − µ̂n−1)T I(µ̂n−1)(xn − µ̂n−1) +

C

n2
‖xn − µ̂n−1‖3

≤ 1
2n

(xn − µ̂n−1)T I(µ̂n−1)(xn − µ̂n−1) +
C(B + CΞ0)3

n2
.

With the propositions stated above, we are able to prove the main theorem of this section:

Theorem 1 Let the data sequence x1, x2, . . . be such that ‖xn‖ ≤ B. Then,

R(Pml;xn) ≤ IΞ0(B + CΞ0)2

2
log n+O(1),

where CΞ0 = maxµ∈Ξ0 ‖µ‖ and IΞ0 = maxµ∈Ξ0 ‖I(µ)‖.

Proof: Proposition 3 states that there exists n0 such that for all n ≥ n0,

logPµ̂n(xn)− logPµ̂n−1(xn) ≤ 1
2n

(µ̂n−1 − xn)T I(µ̂n−1)(µ̂n−1 − xn) +
C

n2
≤ IΞ0(B + CΞ0)2

2n
+
C

n2

For n < n0,

logPµ̂n(xn)− logPµ̂n−1(xn) ≤ − logPµ̂n−1(xn) = x̄nµ̂n−1 − ψ(θ̂n−1) ≤ C <∞,

due to compactness of Ξ0 and boundedness of x̄n. Using those bounds, we get:

R(Pml;xn) =
n∑
i=1

− logPθ̂i−1
(xi) + logPθ̂n(xn) =

n∑
i=1

− logPθ̂i−1
(xi) + logPθ̂i(x

i)− logPθ̂i−1
(xi−1)

=
n∑
i=1

− logPθ̂i−1
(xi) + logPθ̂i(x

i) ≤ O(1) +
n∑

i=n0

− logPθ̂i−1
(xi) + logPθ̂i(x

i)

≤ O(1) +
IΞ0(B + CΞ0)2

2

n∑
i=n0

1
i

+ C

n∑
i=n0

1
n2

=
IΞ0(B + CΞ0)2

2
log n+O(1).
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Theorem 1 states that when playing against distributions from a compact subset of the parameter
space, the ML strategy achieves the logarithmic regret growth. However, the constant factor in front
of the logarithm can be very large, especially when the bound on the data sequence B is large.

An important question is whether the bound in Theorem 1 is improvable or whether any of the
assumptions of the theorem can be relaxed? The answer appears to be negative. First, without
restricting the reference strategies to the compact subset Ξ0, one cannot account for a logarith-
mic regret at all. Dasgupta and Hsu (2007) consider predicting with Gaussian distributions with
unknown mean and covariance without restricting the parameter space, and show that the ML strat-
egy will incur linear regret growth. Second, the following theorem shows that one cannot avoid the
boundedness assumption and the bound in Theorem 1 is essentially unimprovable:

Theorem 2 Let k = 1, i.e. the exponential family is one-dimensional. Let P be a plug-in prediction
strategy, i.e. P (xn|xn−1) = Pµ̄n−1(xn), for some µ̄n−1 = µ̄n−1(xn−1) ∈ Ξ, n = 1, 2, . . .. Then, for
Lebesgue almost all µ ∈ Ξ (all except Lebesgue measure zero set), there exists a data sequence
x1, x2, . . ., such that ‖xn − µ‖ ≤ B, for which:

R(P ;xn) ≥ I(µ)B2

2
log n+O(1).

Proof: We will use a theorem from Grünwald and Kot lowski (2010), which states for any plug-in
strategy P and one dimensional exponential family M, when the outcomes are generated i.i.d. by
some distribution P ∗, with EP∗ [x] = µ∗ ∈ Ξ,

EP∗ [R(P ;xn)] ≥ 1
2

varP∗(x)
varPµ∗ (x)

log n+O(1), (12)

for Lebesgue almost all µ∗ ∈ Ξ, where var denotes the variance.
We will apply the theorem with P ∗ which distributes its mass equally on the two outcomes x =

µ+ B and x = µ− B. Then, EP∗ [x] = µ∗ = µ and varP∗(x) = B2. Moreover, varPµ∗ (x) = I−1(µ).
Since the bound (12) holds in expectation, it must also hold for some particular data sequence.

4 Regret Bounds for Sequential Normalized Maximum Likelihood
Strategy

In the previous section, it was shown that the ML strategy behaves suboptimally and cannot achieve
logarithmic regret without bounding the data sequence. In this section, we present a modification
of the ML strategy, that achieves logarithmic regret without any boundedness assumptions on the
data, and also achieves the optimal constant in front of the logarithm.

The modification is based on calculating the ML estimator of the data sequence including the
current observation. In other words, the strategy predicts xn with a distribution proportional to
Pµ̂n(xn): P (xn|xn−1) ∝ Pµ̂n(xn). The proportionality constant differs from unity since Pµ̂n(xn)
does not normalize properly anymore (µ̂n depends on xn). If µ̂xn denotes the ML estimator for the
data sequence x1, . . . , xn−1, x (i.e. µ̂xnn = µ̂n), we can write the strategy as follows:

P (xn|xn−1) =
Pµ̂n(xn)∫

X Pµ̂xn(xn−1, x)dx
. (13)

Typically, the strategy will not predict with one of the distributions from the model. The strategy
(13) is known as sequential normalized maximum likelihood (SNML) (Rissanen and Roos, 2007, Roos
and Rissanen, 2008) and will be denoted Psnml. It was arrived at from a different starting point: by
noticing that (13) is the prediction of the NML distribution in the n-th iteration, with time horizon
n. In other words, SNML predicts as NML, assuming that the current iteration is the last iteration.
Therefore, contrary to NML, the time horizon of the game does not need to be known. As noted by
Rissanen and Roos (2007), the prediction of the SNML strategy can be defined as the solution to
the following minimax problem:

Psnml(·|xn−1) = arg min
P (·|xn−1)

max
xn
R(P ;xn) = arg min

P (·|xn−1)

max
xn

{
− logP (xn|xn−1) + logPµ̂n(xn)

}
. (14)

A similar idea, though restricted to strategies within the model, was introduced by Takimoto and
Warmuth (2000) under the name last-step minimax. It is defined as (14), except that the argmin
is only over the distributions from the model P. However, the strategy obtained in such a way is a
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plug-in strategy, and plug-in strategies were already ruled out from having optimal regret bound by
Theorem 2.

Surprisingly, the behavior of the worst-case regret for (13) for general exponential families has not
been studied before. At the same time, this issue seems to be important, not only from a practical
point of view (as SNML constitutes an effective algorithm for online density estimation and model
selection), but also from a conceptual point of view. It raises the following question: how much do
we loose if we base our decision in a given moment by looking only one step ahead instead of looking
at the whole possible future up to a given time horizon. In this section, we show that we do not
loose much, at least asymptotically: the regret of the SNML strategy is at most k

2 log n+O(1) for all
exponential families, which matches, up to the O(1) term, the minimax regret bound (in Section 5
we will see that for some exponential families even the difference in the O(1) terms is negligible).

We start by rewriting the regret of SNML strategy using (in the second line) telescoping:

R(P ;xn) = − logP (xn) + logPµ̂n(xn)

=
n∑
i=1

− logP (xi|xi−1) + logPµ̂i(x
i)− logPµ̂i−1(xi−1)

=
n∑
i=1

log
∫
X
Pµ̂xi (xi−1, x)dx− logPµ̂i−1(xi−1)

=
n∑
i=1

log
∫
X

exp
{

logPµ̂xi (xi−1, x)− logPµ̂i−1(xi−1)
}
dx. (15)

We will bound each term of the sum separately. To this end, we need the following lemma, which
states that the integral is negligibly small outside a ball around µ̂n−1, slowly growing with n.

Lemma 3 Fix an arbritrary α > 0 and let Bn(α) = {x ∈ X : ‖x − µ̂n−1‖ ≤ nα}. Then, for every
γ > 0, there exists a constant Cγ > 0 such that for all large n,∫

X\Bn(α)

exp
{

logPµ̂xn(xn−1, x)− logPµ̂n−1(xn−1)
}
dx ≤ Cγn−γ . (16)

Proof: Let us denote the left hand side of (16) as An. Rewriting the integral, we get:

An =
∫
X\Bn(α)

Pµ̂xn(x) exp
{

logPµ̂xn(xn−1)− logPµ̂n−1(xn−1)
}
dx ≤

∫
X\Bn(α)

Pµ̂xn(x)dx,

because from the definition of µ̂n−1, Pµ̂n−1(xn−1) ≥ Pµ̂xn(xn−1).
We will use the fact that exponential families have all central moments finite (Barndorff-Nielsen,

1978). This means, that
∫
X ‖x − µ‖

βPµ(x)dx < ∞, for all β = 1, 2, . . ., so if x → ∞, Pµ(x) must
converge to 0 faster than any monomial ‖x − µ‖−β for the integral to be finite. This implies that
for any β > 0, Pµ(x) ≤ Cµ,β‖x− µ‖−β for some Cµ,β <∞. Moreover, Cβ := supµ∈Ξ0

Cµ,β is finite.
Otherwise, we could form a monotonic sequence µi with Cµi,β > Cµi−1,β + 1, i = 1, 2, . . .; due to
compactness of Ξ0, this sequence has a subsequence converging to µ∗ ∈ Ξ0 and due to monotonicity,
Cµ∗,β cannot be finite, which is a contradiction. Therefore, we can write:

An ≤
∫
X\Bn(α)

Pµ̂xn(x)dx ≤ Cβ
∫
X\Bn(α)

‖x− µ̂xn‖−β .

From the triangle inequality, ‖x− µ̂xn‖ ≥ ‖x− µ̂n−1‖− ‖µ̂xn − µ̂n−1‖. Since the former is at least nα
for x /∈ B(α), while the latter is bounded, for n large enough, ‖x− µ̂xn‖ ≥ 1

2‖x− µ̂n−1‖ and therefore:

An ≤ Cβ2β
∫
‖x‖≥nα

‖x‖−βdx ≤ C ′nα(k−β).

Setting Cγ = C ′ and γ = α(β − k) finishes the proof.

We are now ready to prove the main theorem:

Theorem 4 Assume the setting of Section 2.1; in particular, let the ML distribution be defined as
in (2) where Θ0 (and hence Ξ0) is compact. Let P be the SNML strategy. Then,

R(P ;xn) ≤ k

2
log n+O(1),

where the constant in O(1) depends on Ξ0, but does not depend on the data sequence xn.
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Proof: Using the simple fact that log(a+ b) ≤ max{0, log(a)}+ b for a, b ≥ 0, and applying Lemma
3, we can bound:

log
∫
X
elogPµ̂xn (xn−1,x)−logPµ̂n−1(x

n−1)dx ≤ max
{

0, log
∫
Bn(α)

elogPµ̂xn (xn−1,x)−logPµ̂n−1 (xn−1)dx
}

+ Cγn
−γ .

(17)
Let us denote the integral over Bn(α) on the right hand side of (17) as Sn. We have:

Sn = log
∫
Bn(α)

exp
{

logPµ̂xn(xn−1, x)− logPµ̂n−1(xn−1, x) + logPµ̂n−1(x)
}
dx

= log
∫
Bn(α)

Pµ̂n−1(x) exp
{

logPµ̂xn(xn−1, x)− logPµ̂n−1(xn−1, x)
}
dx

≤ log
∫
Bn(α)

Pµ̂n−1(x) exp
{
nD(ȳxn‖µ̂n−1)− nD(ȳxn‖µ̃xn)

}
dx (Proposition 1)

≤ log
∫
Bn(α)

Pµ̂n−1(x) exp
{
nD(ȳxn‖µ̂n−1)

}
dx,

where ȳxn = (n−1)µ̂n−1+x
n and µ̃xn = arg minµ∈Ξ0 D(ȳxn‖µ).

Let Ξ1 ⊂ Ξ be a compact set such that Ξ0 ⊂ Ξ1 and: infµ∈Ξ\Ξ1,µ′∈Ξ0 ‖µ − µ′‖ ≥ δ for some
δ > 0, as in the proof of Proposition 3. Let us choose α < 1/4 in the definition of Bn(α). Then, for
n large enough,

‖ȳxn − µ̂n−1‖ =
‖x− µ̂n−1‖

n
≤ nα−1 < δ

for sufficiently large n, which means that ȳxn ∈ Ξ1. Using Proposition 2 with µ = ȳxn and µ′ = µ̂n−1

for compact set Ξ1 and x ∈ Bn(α), we get:

nD(ȳxn‖µ̂n−1) ≤ n

2
(ȳxn − µ̂n−1)T I(µ̂n−1)(ȳxn − µ̂n−1) + nC‖ȳxn − µ̂n−1‖3

=
1

2n
(x− µ̂n−1)T I(µ̂n−1)(x− µ̂n−1) +

C

n2
‖x− µ̂n−1‖3

≤ 1
2n

(x− µ̂n−1)T I(µ̂n−1)(x− µ̂n−1) + C ′n3α−2

Let B(x) be a function, equal to the right hand side of the above inequality, if x ∈ Bn(α), and
B(x) = 0 for x /∈ Bn(α). Since I(µ) is continuous on Ξ, and Ξ0 is compact, supµ∈Ξ0

‖I(µ)‖ = IΞ0 <
∞, and thus B(x) is bounded by:

B(x) ≤ 1
2n
IΞ0n

2α + C ′n3α−2 = C ′′n2α−1,

(because α < 1/4). Note that:

log
∫
Bn(α)

Pµ̂n−1(x)eB(x)dx ≤ log
∫
X
Pµ̂n−1(x)eB(x)dx = log E

[
eB(x)

]
.

We can therefore use Hoeffding’s lemma, log E
[
eB(x)

]
≤ E

[
B(x)

]
+ (C′′)2

8 n2(2α−1) (Cesa-Bianchi

and Lugosi, 2006), and bound E
[
B(x)

]
:

E
[
B(x)

]
≤ 1

2n
E
[
(x− µ̂n−1)T I(µ̂n−1)(x− µ̂n−1)

]
+ C ′n3α−2

=
1

2n
E
[
Tr
{

(x− µ̂n−1)(x− µ̂n−1)T I(µ̂n−1)
}]

+ C ′n3α−2

=
1

2n
Tr
{

Covµ̂n−1(x)I(µ̂n−1)
}

+ C ′n3α−2 =
k

2n
+ C ′n3α−2.

Thus, we finally get:

log
∫
X
elogPµ̂xn (xn−1,x)−logPµ̂n−1 (xn−1)dx ≤ k

2n
+C ′n3α−2 +

(C ′′)2

8
n2(2α−1) +Cγn

−γ =
k

2n
+O(n−2),

for sufficiently large γ, α < 1/4, for all large n. Since:

log
∫
X
Pµ̂xi (x) exp

{
logPµ̂xi (xi−1)− logPµ̂i−1(xi−1)

}
dx ≤ log

∫
X
Pµ̂xi (x)dx ≤ log

∫
X
Pµ̂x1 (x)dx,

which is the minimax (NML) regret for n = 1 and thus finite (Section 2.2) , the terms in (15) are
finite and well-controlled for small n. Thus we conclude that R(P ;xn) ≤ k

2 log n+O(1).
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5 Examples

In this section, we calculate and analyze SNML for few examples of commonly used exponential
families.

5.1 Bernoulli Distribution
The SNML for Bernoulli was first considered by Takimoto and Warmuth (2000) as the last-step
minimax algorithm. The simplest derivation is in the mean value parametrization, in which the
Bernoulli distribution looks like:

Pµ(x) = µx(1− µ)1−x,

where x ∈ {0, 1} and Ξ = (0, 1); note that we need to exclude from Ξ two extreme points 0 and 1 to
be consistent with the assumptions made in this paper. We set Ξ0 = [ε, 1 − ε]. The ML estimator
µ̂n to relative Ξ0 equals:

µ̂n = min{1− ε,max{ε, x̄n}},
i.e. µ̂n is x̄n truncated to the range [ε, 1 − ε]. Then, the SNML strategy can easily be computed
from:

Psnml(xn = 1|xn−1) =
(µ̂1
n)k+1(1− µ̂1

n)n−k

(µ̂1
n)k+1(1− µ̂1

n)n−k + (µ̂0
n)k(1− µ̂0

n)n−k+1
,

where k = (n− 1)x̄n−1 is the number of ones in the past, and µ̂xn for x ∈ {0, 1} is defined as usual.
One can also show that even for the case Ξ = [0, 1] and ε = 0, although not covered by our theorem,
the regret of the strategy is bounded by 1

2 log(n + 1) + 1
2 (Takimoto and Warmuth, 2000), and is

superior even to the celebrated Krichevsky-Trofimov estimator (Cesa-Bianchi and Lugosi, 2006).

5.2 Exponential Distribution
The distribution has the form:

Pθ(x) =
1
µ
e−x/µ,

with Ξ = (0,∞). The strategy becomes particularly simple if we take Ξ0 = Ξ (although this case is
not covered by Theorem 4). Like in the Bernoulli case, the ML estimator is equal to the truncation
of x̄n into the range Ξ0, so that for Ξ0 = (0,∞), µ̂n = x̄n. Thus:

Psnml(xn|xn−1) ∝ sup
µ∈Ξ0

Pµ(xn) = x̄−nn e−
Pn
i=1 xn
x̄n =

e−nnn

((n− 1)x̄n−1 + xn)n
,

which, after proper normalization, becomes:

Psnml(xn|xn−1) =
(n− 1)nx̄n−1

n−1

((n− 1)x̄n−1 + xn)n
.

One can directly show that the per-round regret increase R(Psnml;xn) − R(Psnml;xn−1) equals
n log n

n−1 − 1, which is upper bounded by 1
2(n−1) except the first iteration. Indeed, choosing Ξ0 = Ξ

implies infinite regret in the first trial. That being said, in the rest of the game such a choice of Ξ0

does not seem to be harmful anymore.

5.3 Gaussian Distribution, Fixed Variance
The k-dimensional Gaussian distribution N(x|µ,Σ) reads:

Pµ(x) = (2π)−k/2|Σ|−1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

and without loss of generality we can assume Σ = I, the identity matrix (we can always rotate the
coordinate system so that it matches with the principal axes of Σ, and rescale it by the inverses of
the eigenvalues). We set Ξ = Rk and we will use Ξ0 = {µ : ‖µ‖ ≤ R}. The ML estimator µ̂n relative
to Ξ0 equals:

µ̂n =

{
x̄n if ‖x̄n‖ ≤ R,
R
‖x̄n‖ x̄n if ‖x̄n‖ > R.

The derivation of the SNML strategy simplifies a lot if we choose R→∞. Then, µ̂n = x̄n and:

Psnml(xn|xn−1) ∝ e− 1
2

Pn
i=1 ‖xi−x̄n‖

2
.
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A bit of algebra reveals that:

n∑
i=1

‖xi − x̄n‖2 =
n−1∑
i=1

‖xi − x̄n−1‖2 +
n− 1
n
‖xn − x̄n−1‖2,

so that Psnml(xn|xn−1) ∝ e− 1
2
n−1
n ‖xn−x̄n−1‖2 , which means that SNML predicts withN(x|x̄n−1,

n
n−1I).

Note, that although SNML predict with a Gaussian distribution, it is not a plug-in type strategy, as
the predictive distribution is outside the model (the variance is not equal to I). Although Theorem 4
does not apply for R =∞, one can directly show that the per-round regret increase equals k

2 log n
n−1 ,

which gives the regret k
2 log n if we do not count the regret in the first iteration (which is, again,

infinite).

5.4 Gaussian Distribution, Unknown Mean and Variance
As a final example, consider the family of one-dimensional Gaussian distributions with unknown
mean µ and variance σ2. Writing down the distribution in the natural parameterization:

Pµ,σ(x) =
1√
2π

exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
+ log σ

}
,

shows that the exponential family is two-dimensional with sufficient statistic (x, x2). Similarly as
in the previous cases, setting Ξ0 = Ξ significantly simplifies all the derivations. The ML estimator
becomes µ̂n = x̄n and σ̂2

n = n−1
∑

(xi − x̄n)2. The SNML strategy predicts with:

Psnml(xn|xn−1) ∝ (2πσ̂2
n)−n/2 exp

{
−
∑n
i=1(xi − x̄n)2

2σ̂2
n

}
=

e−
n
2 nn/2

(2π(n− 1))n/2
1

(σ̂2
n−1 + 1

n (xn − x̄n−1)2)n/2
,

which after normalization gives:

Psnml(xn|xn−1) =
Γ(n/2)

Γ(1/2)Γ((n− 1)/2)
(nσ̂2

n−1)−1/2

(
1 +

(xn − x̄n−1)2

nσ̂2
n−1

)−n/2
.

One can directly show that the per-round regret increase

R(Psnml;xn)−R(Psnml;xn−1) =
n+ 1

2
log n− n

2
log(n− 1)− 1

2
log 2e+ log

Γ((n− 1)/2)
Γ(n/2)

,

and grows as 1
n +O(n−2) (except the first iteration), which is optimal for k = 2.

5.5 Open Problem
In the paper, the SNML strategy always plays against the exponential family M with parameter
space restricted to a compact subset Ξ0. As shown in Section 2, this is necessary, otherwise the
strategy would suffer infinite regret already in the first iteration. However, as we saw in all the
above examples, starting from the second iteration, choosing Ξ0 = Ξ does not hurt anymore, so
that the only place in which restricting the power of the reference strategies to Ξ0 matters, is the
beginning of the game. A similar phenomenon was already found in the MDL community (Grünwald,
2007), in which it was noticed that some models with infinite complexity (i.e. with infinite worst-case
regret) can be made finitely complex when conditioned on the first outcome(s).

Therefore we pose the following problem. Assume that the loss suffered in the first n0 ≥ 1
iterations is not included in the cumulative regret of the predicting strategy. Is it then possible to
achieve the worst-case regret k

2 log n+O(1) without restricting the parameter space of the exponential
family?

6 SNML and Bayes with Jeffreys’ Prior

Given a prior distribution π(µ) over Ξ, the Bayes prediction strategy Pbayes is defined as:

Pbayes(xn) =
∫

Ξ

Pµ(xn)π(µ)dµ, (18)

a π-mixture of distributions from Ξ. Let Ξ0 be a compact subset of Ξ. It is known (Grünwald, 2007)
that under the assumption, that the sequence x1, x2, . . . satisfies x̄n ∈ Ξ0 for all large n, the Bayes

11



strategy achieves asymptotically optimal regret R(Pbayes;xn) = k
2 log n+O(1). Moreover, using the

Jeffreys’ prior π(µ) ∝
√

det I(µ) minimizes the O(1) term in the worst case, up to an o(1) term, so
that the Jeffreys’ prior is in some sense a minimax prior, achieving asymptotically the same regret
as NML.

Let us consider instead the case when Ξ0 = Ξ. Although the joint distribution for Bayes with
Jeffreys’ prior Pjef(xn) is often undefined in this case (the prior cannot be normalized), the condi-
tionals Pjef(xn|xn−1) for all n ≥ m, for some m, can still be properly defined (Grünwald, 2007).
This is also the case of SNML (examples in Section 5 show that SNML is properly defined for n ≥ 2).
Moreover, the same story will apply to NML (minimax) strategy if, instead of using definition (6),
we will define NML through the conditionals:

Pnml(xi|xi−1) =
Pnml(xi)
Pnml(xi−1)

=

∫
Xn−i supµ∈Ξ Pµ(xi, zn−i)dzn−i∫

Xn−i+1 supµ∈Ξ Pµ(xi−1, zn−i+1)dzn−i+1
,

where n is the time horizon for NML. Note that the definition coincides with the concept of condi-
tional NML-2 in (Grünwald, 2007).

Interestingly, in all but one of the examples from Section 5, the SNML strategy and Jeffreys’
strategy coincide. Only in the case of Bernoulli, the strategies differ, with an advantage for SNML,
whose worst-case regret is smaller by a constant than the one achieved by Jeffreys’ strategy1. The
two open questions we pose are: (1) Under what conditions are SNML and Bayes with Jeffreys’ prior
the same? (2) If SNML and Jeffreys’ differ, is there any general relationship between the worst-case
regrets of the two?

To shed some light on the questions above, we prove the following fact, which shows that the
equivalence of SNML and Jeffreys’ implies that both strategies are equal to the NML strategy. This
is what actually happens in three out of four examples shown in Section 5.

Theorem 5 Let P be an exponential family, such that, starting from some m, the conditional
distributions for SNML and Jeffreys’ strategies are properly defined and coincide, Psnml(xn|xn−1) =
Pjeff(xn|xn−1) for all xn, n ≥ m. Then, both strategies are equal to the minimax (NML) strategy
Pnml(xn|xn−1), for n ≥ m, and the NML strategy does not depend on the time horizon.

Proof: Since the strategies might only be defined for n ≥ m, let us focus on the conditional regret
defined as R(P ;xm:n|xm−1) = − logP (xn:m|xm−1) + logPµ̂n(xn), where xm:n = xm, xm+1, . . . , xn.
From the definition (13), the conditional regret of the SNML strategy does not depend on the last
outcome:

R(Psnml;xm:n|xm−1) = − logPsnml(xm:n−1|xm−1) + log
∫
X
Pµ̂xn(xn−1, x)dx.

Since Pjef(xm:n|xm−1) = Psnml(xm:n|xm−1), Jeffreys’ strategy inherits this property. On the other
hand, Jeffreys’ is a particular case of the Bayes strategy, which is known to be exchangeable, i.e.
Pbayes(xm:n|xm−1) does not depend on the order of the outcomes in xm:n; this property follows
directly from the definition (18). Since the comparator Pµ̂n(xn) does not depend on the order either,
the same property holds for the conditional regret. But then, if the conditional regret is invariant
under changing the last outcome and under changing the order of the outcomes, it is also invariant
under changing all the outcomes in xm:n. This means that the strategy Pjef gives equal conditional
regret for all possible data sequences xm:n (i.e. the strategy is an equalizer of conditional regret),
which implies Pjef(xm:n|xm−1) must be equal Pnml(xm:n|xm−1) for all xn (Grünwald, 2007).

Theorem (5) would also hold if we replace Jeffreys’ strategy with a general Bayes strategy. However,
due to the known relationship between the Jeffreys’ strategy and the minimax regret, we do not
expect the conditions of the theorem to be satisfied by Bayes with any other prior than Jeffreys’.

7 Conclusions and Further Work

We analyzed the regret of the ML (“follow the leader”) strategy for general exponential families.
The lower and upper bounds show that the ML strategy requires boundedness of the data sequence
to obtain logarithmic regret, and moreover, the constant in front of the logarithm is suboptimal
and can be very large. Those two drawbacks are essentially unavoidable, not only for the ML
strategy, but for any plug-in strategy. However, we also showed that both problems are solved by
adding the currently predicted outcome to the calculation of the maximum likelihood, followed by

1The Jeffreys’ strategy for Bernoulli is the Krichevsky-Trofimov strategy.
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normalization, which leads to the SNML strategy. We proved that SNML achieves asymptotically
optimal regret. We also noted an interesting relationship to the Bayes strategy with Jeffreys’ prior.

In future work, we plan to work on the two open questions posed in the paper: (1) Is is possible
to relax the condition that the model is constrained to the compact subset of the parameter space by
conditioning the regret on the outcome from the first iteration? (2) When is SNML equal to Bayes
with Jeffreys’ prior and is there any general relationship between the worst-case regrets of the two?
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