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Abstract

Concept classes can canonically be represented by sign-matrices, i.e., by matrices with
entries 1 and −1. The question whether a sign-matrix (concept class) A can be learned
by a machine that performs large margin classification is closely related to the “margin
complexity” associated with A. We consider several variants of margin complexity, reveal
how they are related to each other, and we reveal how they are related to other notions of
learning-theoretic relevance like SQ-dimension, CSQ-dimension, and the Forster bound.

1 Introduction

Large margin classifiers implicitly use a feature map that transforms linearly inseparable data into
feature vectors that can be linearly separated in feature space so as to achieve a (hopefully) large
margin, which then leads to a small generalization error. Concept classes C over a domain X that
can potentially be learned by large margin classifiers must therefore admit a linear arrangement
consisting of hyperplanes and points (with the hyperplanes representing the concepts from C and
the points representing the instances from X ) such that positive (resp. negative) examples appear
as points lying in a positive (resp. negative) halfspace and having a certain “safety distance” to the
corresponding separating hyperplane. In practice, a large “hard” margin cannot often be achieved
so that softer notions of a margin come into play. Soft margins can be achieved by arrangements
which occasionally put points close to the separating hyperplane (small margin) or, may be, even in
the wrong half-space (negative margin). But one would still insist on something like a large “average
margin”. This will (roughly) be captured by our notion of average margin complexity.

In this paper, we deal with sign-matrices (which represent finite concept classes: every column
is a Boolean function and the rows correspond to the instances), and we study various notions
of (average) margin complexity, where “high (average) margin complexity” means that even the
best arrangement achieves a small (average) margin only. Sign-matrices with high average margin
complexity represent concept classes that cannot be successfully learned by large margin classifiers
(thereby indicating the limitations of this approach). In a seminal paper, Forster (2002) presented
a lower bound on the margin complexity (and on the dimension complexity which, however, is
not considered in this paper) of a sign-matrix in terms of its spectral norm. Loosely speaking,
the Forster bound measures the “amount of orthogonality” that is contained in A. It achieves its
maximal value for Hadamard matrices. In this paper, we generalize the Forster bound by imposing
probability distributions on the rows and the columns of A. In case of uniform distributions, the
generalized bound collapses to the original-one. It is easy to construct matrices for which the original
bound evaluates to a small number but, when the probability distributions are chosen properly, the
generalized bound becomes large.

The SQ model of learning was introduced by Kearns (1998). It is an elegant abstraction from
the PAC learning model of Valiant (1984). In this model, instead of having direct access to random
examples (as in the PAC learning model) the learner obtains information about random examples via
an oracle that provides estimates of various statistics about the unknown concept. Kearns showed
that any learning algorithm that is successful in the SQ model can be converted, without much loss
of efficiency, into a learning algorithm that is successful in the PAC learning model despite noise
uniformly applied to the class labels of the examples. Furthermore, almost all concept classes known
to be efficiently learnable in the PAC learning model can efficiently be learned in the SQ model too.



This is why the SQ model attracted a lot of attention in the Computational Learning Community.
“Correlational Statistical Queries” are statistical queries of a special form and lead in the obvious way
to the CSQ model of learning. As shown by Bshouty and Feldman (2002), the two models coincide
in case of a fixed distribution, but, as shown by Feldman (2008), the SQ model is exponentially
more powerful in the distribution-independent setting. Blum et al. (2003) have shown that the
number of statistical queries needed for weak SQ-learning under a fixed distribution is polynomially
related to the SQ-dimension (defined w.r.t. the same distribution). Feldman (2008) has defined
the CSQ-dimension and has shown that it plays a similar role for distribution-independent weak
learning in the CSQ model. In the same paper, he shows furthermore that CSQ-learnability is
equivalent to evolvability (a framework introduced by Valiant (2009) and designed so as to catch
the computational aspects of evolution).

In this paper, we will be concerned with the relations that hold between the various notions of
margin complexity on one hand and parameters like SQ-dimension or CSQ-dimension on the other
hand. The main results are as follows:1

• By means of semi-definite programming duality, we show in Section 3 that the optimal margin
(the smallest distance between one of the points and one of the hyperplanes in a margin-
optimal arrangement) coincides with the optimal average margin (the average distance between
points and hyperplanes in an optimal arrangement) provided that the underlying distribution
(according to which the average is taken) is chosen in a worst-case fashion. More formally:

mc(A) = max
Y

mcY (A)

• In Section 3.1, we complement the well-known lower bound
√
mn/|||A|||2 on the average margin

complexity (w.r.t. uniform distributions on the rows and the columns of A) by the upper bound
mn/|||A|||tr. More formally: √

mn

|||A|||2
≤ mc(A) ≤ mn

|||A|||tr
• In Section 3.2, we identify two families of matrices whose average margin complexity (w.r.t. uni-
form distributions on the rows and the columns) is determined exactly: Hadamard matrices and
matrices composed of all reflections of a single Boolean function.

• In Sections 4, 5, and 6, we determine relations between the various notions of margin complexity,
the various versions of the Forster bound, the SQ-dimension and the CSQ-dimension. Here is
a quick overview over our results:

– Let p, q denote vectors assigning probabilities to the rows and the columns of a matrix A,
respectively. We show that the SQ-dimension w.r.t. p of a sign-matrix A is polynomially
related to the generalized Forster bound and also polynomially related to the average
margin complexity of A according to

SQdimp(A) < 2 ·max
q

FBp,q(A)
2 ≤ 2 ·max

q
mcp,q(A)

2 < 2 ·SQdimp(A) · (SQdimp(A) + 1)2 .

– We reveal the following polynomial relationship between the CSQ-dimension of a matrix
A ∈ Rm×n and the margin complexity of A:

mc(A) ≤ CSQdim(A)1.5 and CSQdim(A) ≤
⌈
32 ln(4mn) ·mc(A)2

⌉

– We show that
SQdim(AT ) < 2 · SQdim(A) · (SQdim(A) + 1)2 .

This improves on SQdim(A⊤) ≤ 32 · SQdim(A)4, a result that had been shown before
by Sherstov (2008).

– We show that the generalized Forster bound is, up to a polynomial, not more effective
than simply applying the classical bound to a properly chosen sub-matrix A′′ of A. More
formally:

max
A′′

FB(A′′) ≤ max
p,q

FBp,q(A) < 64 · (1 + o(1)) ·max
A′′

FB(A′′)9

Although we are mainly interested in the study of sign-matrices, most of our notions and results deal
with real-valued matrices because we do not want to impose unnecessary restrictions. A notable
exception are the results in Section 5 which hold for sign-matrices only.

1The formal definitions needed for a precise understanding of the following statements are given in
Section 2.
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2 Definitions, Notations, and Facts

In this section, we provide the reader with the definitions and facts which will play a central role in
the course of this paper.

Vectors, Matrices, and Norms: The all-ones vector in a finite-dimensional Euclidean space is
simply denoted ~1. The vector with value 1 in component k and zeros elsewhere is denoted ~ek. The
(d×d) identity matrix is denoted by Id or simply by I. Whenever the notation hides the dimension,
say d, of the underlying Euclidean space, then d will be clear from context. The Hadamard product
of two matrices A,B yields the matrix A ◦B = (ai,jbi,j), i.e., the matrices are multiplied entrywise.
With diag(p) we denote the diagonal matrix build up from a vector p (i.e. the components of p are
on the main diagonal and the remaining is zero). The trace norm of A ∈ Rm×n, denoted |||A|||tr , is
defined as the sum of all singular values of A. Let ‖ · ‖ denote a vector norm. The notation ‖A‖
is understood as the norm of the mn-dimensional vector that results by concatenating the n m-
dimensional columns of A so as to form a single mn-dimensional vector. For example, the Euclidean
norm applied to a matrix yields

‖A‖2 =

√
∑

i,j

A2
i,j ,

and this is sometimes called the Frobenius norm of A. The operator norm associated with ‖ · ‖ is
given by

|||A||| = max
‖v‖=1

‖Av‖ = max
‖v‖≤1

‖Av‖ .

For example, the operator norm associated with the Euclidean norm is given by

|||A|||2 = max
‖v‖2=1

‖Av‖2 = max
‖v‖2≤1

‖Av‖2 ,

and this is sometimes called the spectral norm of A. We remind the reader to the following facts:

|||A|||2 = |||A⊤|||2 , |||AA⊤|||2 = |||A⊤A|||2 = |||A|||22 , |||A|||2 ≤ ‖A‖2
|||A|||2 = max

‖u‖2=‖v‖2=1
u⊤Av = max

‖u‖2,‖v‖2≤1
u⊤Av (1)

By viewing matrices as vectors, we may consider the inner product of two matrices. An inner
product without further specification refers to the standard scalar product. For example, 〈A,B〉 =
∑

i,j Ai,jBi,j . The dual of a norm ‖ · ‖ is given by

‖u‖∗ = max
‖v‖≤1

〈u, v〉 .

For example, L∞ is the dual of L1, and the trace norm is the dual of the spectral norm. It is well
known that ‖ · ‖∗∗ = ‖ · ‖, i.e., twofold dualization gives the original norm. Furthermore, for two
norms ‖ · ‖1, ‖ · ‖2 and every c > 0, we have

‖ · ‖1 ≤ c · ‖ · ‖2 ⇔ ‖ · ‖∗1 ≥ ‖ · ‖∗2
c

.

SQ- and CSQ-Dimension: Let p be a probability vector, i.e., p has non-negative components
that sum up to 1. Consider the inner product

〈x, y〉p :=
∑

i

pixiyi .

A collection of vectors u1, . . . , ud is said to be almost p-orthogonal if

∀k 6= l ∈ {1, . . . , d} : |〈uk, ul〉p| ≤
1

d
.

The SQ-dimension of a matrix A ∈ Rm×n w.r.t. p is given by

SQdimp(A) = max{d ∈ {1, . . . , n} : there exist d almost p-orthogonal column vectors in A} .

The SQ-dimension of A is given by

SQdim(A) = max
p

SQdimp(A) .

A collection of (not necessarily different) vectors h1, . . . , hd ∈ [−1, 1]m is said to be universally
correlated with A ∈ Rm×n if, for every m-dimensional probability vector p and every j ∈ {1, . . . , n},
there exists k ∈ {1, . . . , d} such that |〈hk, Aj〉p| ≥ 1/d. The CSQ-dimension of A is given by

CSQdim(A) = min{d : there exists a collection of d vectors that is universally correlated with A} .
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Margin Complexity: A d-dimensional (homogeneous linear) arrangement for a matrix A ∈Rm×n is given by vectors
u1, . . . , un; v1, . . . , vm ∈ Rd

whose Euclidean norm is bounded by 1. With an arrangement A = (u1, . . . , un; v1, . . . , vm) for
matrix A, we associate the margin parameters

γi,j(A|A) = 〈ui, vj〉 ·Ai,j .

The margin complexity of A is given by

mc(A) =

(

max
A

min
i,j

γi,j(A|A)

)−1

.

It is easy to see that, for every matrix A without zero-entries (the matrices we are mainly interested
in), there is always an arrangement that makes all margin parameters strictly positive, which implies
that the margin complexity of A is strictly positive and finite. As outlined already by Linial et al.
(2007) and Lee and Shraibman (2009), the so-called γ2-norm and its dual, γ∗

2 , are related to margin
complexity as follows. Let r(M) denote the largest Euclidean norm of a row of the matrix M . With
this notation γ2 and γ∗

2 , satisfy the following equations (which, for the purpose of this paper, may
also serve as a definition of these norms):

γ2(A) = min
A=XY ⊤

r(X)r(Y ) and γ∗
2 (A) = max

A

∑

i,j

γi,j(A|A) (2)

Thus, γ∗
2(A) is basically the largest “total margin” that can be achieved by an arrangement for A.2

Let Y = (yi,j) be an (m× n)-dimensional matrix with non-negative entries that sum up to 1. The
Y -average margin complexity of A is given by

mcY (A) = (γ∗
2 (Y ◦A))−1 .

In the special case where yi,j = piqj for two probability vectors p, q (so that Y = p ·q⊤), we introduce
the notations

mcp,q(A) := mcpq⊤(A) , mcp(A) := mcp,~1/n(A) , mc(A) := mc~1/m,~1/n(A)

so that

mc(A) =

(
1

mn
· γ∗

2 (A)

)−1

=
mn

γ∗
2 (A)

. (3)

Note that vector ~1/n (resp. ~1/m) makes the columns (resp. rows) of A uniformly distributed. Con-
sidering the “smallest p-average margin” leads to the following definition:

mcp,MIN (A) =

(

max
A

min
j

∑

i

piγi,j(A|A)

)−1

.

The various margin complexities are obviously related as follows:

mc(A) ≤ max
p

mcp(A) ≤ max
p,q

mcp,q(A) ≤ max
Y

mcY (A) ≤ mc(A)

max
q

mcp,q(A) ≤ mcp,MIN (A)

We will argue later that maxY mcY (A) = mc(A) and maxq mcp,q(A) = mcp,MIN (A), but for the
remaining inequalities the gap between the smaller and larger parameter can be exponentially large.

Some Variants of the Forster bound: It was shown by Forster and Simon (2006) that, for
every A ∈ Rm×n,

mc(A) ≥
√
mn

|||A|||2
. (4)

As for probability vectors p, q, we introduce the following notational convention: P and Q are defined
as the diagonal matrices containing the components of p and q , respectively. That is P := diag(p)
and Q := diag(q). But keep in mind that this convention is not applied to letters different from P

2Note that the arrangement that maximizes the total margin may have some negative individual margin
parameters.

4



and Q. Let A be a real-valued matrix with m rows and n columns. Consider the following variant
of the Forster bound:

FBp,q(A) =
1

|||P 1/2AQ1/2|||2
For q = ~1/n, we simply write FBp(A) instead of FBp,~1/n. For this choice of q, Q = 1

nIn and we

obtain

FBp(A) =

√
n

|||P 1/2A|||2
.

Similarly, if p = ~1/m, we simply write FB(A) instead of FBp(A). For this choice of p, P = 1
mIm

and we obtain

FB(A) =

√
mn

|||A|||2
,

which is the “classical” Forster bound in (4). Here, and in what follows, we use the notation A′ to
indicate a sub-matrix of A that is formed by a subset of the columns of A. Let n(A′) ≤ n denote
the number of columns in A′. Note that

max
A′

FBp(A
′) ≤ max

q
FBp,q(A)

because FBp,q collapses to FBp(A
′) when the components of q are either 0 or 1/n(A′), and the non-

zero components are in one-to-one correspondence to the columns of A that are used to build A′.

Semidefinite Programming (SDP): We write A � B iff A − B is a symmetric positive semi-
definite matrix. The following definitions and facts about semi-definite programming are taken
from Alizadeh (1995). A standard primal SDP is an optimization problem of the following form:

min
X

〈C,X〉 s.t. ∀ρ = 1, . . . , r : 〈Aρ, X〉 = bρ , X � 0 (5)

Here, the matrices C,Ai are assumed to be symmetric. As in Linear Programming there is a duality
theory for SDPs. The variables for the dual are denoted y1, . . . , yr (one dual variable per equality-
constraint in the primal). We say that the equality-constraints of the primal induce the matrix
∑r

ρ=1 yρAρ. The dual of (5) looks as follows:

max
y

〈b, y〉 s.t. C −
r∑

ρ=1

yρAρ � 0

If the optimal values of the primal and dual are equal, we achieve “strong duality”. Among the well-
known sufficient conditions for strong duality is the following-one (where “SCQ” means “Slater’s
Constraint Qualification”).

SCQ: There exists y such that
∑r

ρ=1 yρAρ is (strictly) positive definite.

Note that non-negativity constraints for individual variables wi can be expressed within a constraint

of the form X � 0 because the matrix X could be of the form

[
X ′ 0
0 diag(w1, . . . , ws)

]

. We may

therefore liberalize our definition of a standard primal SDP and allow constraints of the form wi ≥ 0.

3 Margin Maximization and its Dual

The fact that the optimal margin can be computed in polynomial time using semi-definite program-
ming (SDP) had been observed first by Linial et al. (2007). In this section, we make use of this
observation and express several variants of margin optimization as instances of SDP. Throughout
this section, A,M are (m× n)-matrices, X is an (m + n) × (m + n)-matrix containing variables of
the primal SDP, index i ranges from 1 to m, index j ranges from 1 to n, and index k ranges from 1
to m+ n.

We call into mind the fact that a semi-definite matrix X can be written in the form X = W⊤ ·W
(e.g., Cholesky-decomposition). If X has m+ n rows and columns, respectively, then W has, say, d
rows and m+ n columns. Let W = [U V ] be the decomposition of W with U containing the first m
columns. Then,

W⊤ ·W = [U V ]⊤ · [U, V ] =

[
U⊤U U⊤V

(U⊤V )⊤ V ⊤V

]

.
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Imposing constraints like Xi,i = 〈Ui, Ui〉 = 1, Xm+j,m+j = 〈Vj , Vj〉 = 1, we can view X as a
representation of an arrangement A given by the columns of U and the columns of V . Note that
γi,j(A|A) = Ai,j〈Ui, Vj〉 = Ai,jXi,m+j . This is why many variants of margin-maximization problems
can be expressed as instances of SDP. The following results are applications of strong SDP-duality.

Theorem 1 For every A ∈ Rm×n: mc(A) = maxY mcY (A).

Proof: We will prove the equivalent statement

max
A

min
i,j

γi,j(A|A) = min
Y

γ∗
2 (Y ◦A) (2)

= min
Y

max
A

∑

i,j

γi,j(Y ◦A|A) . (6)

Finding an arrangement A for M = Y ◦ A that maximizes
∑

i,j γi,j(M |A) can be expressed as a

standard SDP-problem (with optimal value γ∗
2(Y ◦A)) as follows:

min
X

−1

2
·
∑

i,j

Mi,j(Xi,m+j +Xm+j,i) s.t. ∀k : Xk,k = 1 and X � 0 (7)

There arem+n equality constraints, which leads to dual variables y1, . . . , ym+n. The matrix induced
by the equality-constraints equals diag(y1, . . . , ym+n). Obviously, condition SCQ is satisfied so that
we have strong duality. The cost matrix of the primal is given by

C =
1

2
·
[

0 −M
−M⊤ 0

]

Thus, the dual problem (with variables −yk/2 substituted for yk and Y ◦A substituted for M) looks
as follows:

min
y

1

2
·
∑

k

yk s.t.

[
diag(y1, . . . , ym) −(Y ◦A)

−(Y ◦A)⊤ diag(ym+1, . . . , ym+n)

]

︸ ︷︷ ︸

=:S

� 0 (8)

Finding an arrangement A for A that maximizes mini,j γi,j(A|A) can be expressed as a standard
SDP-problem (with slack variables si,j) as follows:

min
X,µ,s

−µ s.t. ∀k : Xk,k = 1 , ∀i, j : Ai,j(Xi,m+j +Xm+j,i)− si,j = 2µ , X � 0 , si,j ≥ 0 , µ ≥ 0

The (m+ n+mn+ 1)× (m+ n+mn+ 1)-matrix of primal variables is then given by

[
X 0 0
0 diag(s1,1, . . . , sm,n) 0
0 0 µ

]

.

The dual variables are denoted yk and yi,j . Setting Y = (yi,j), the matrix induced by the equality-
constraints equals






diag(y1, . . . , ym) Y ◦A 0 0
(Y ◦A)⊤ diag(ym+1, . . . , ym+n) 0 0

0 0 − diag(y1,1, . . . , ym,n) 0
0 0 0 −2

∑

i,j yi,j




 .

It is easy to see that condition SCQ is satisfied: one may assign value −1 to every variable yi,j and a
sufficiently large value to every variable yk so that all eigenvalues must be strictly positive according
to the Geršgorin Disc Theorem. Thus, we have strong duality. The dual problem (with variables
−yk/2 substituted for yk and yi,j/2 substituted for yi,j) looks as follows:

3

min
Y,y

1

2

∑

k

yk s.t.
∑

i,j

yi,j = 1 , yi,j ≥ 0 ,

[
diag(y1, . . . , ym) −(Y ◦A)

−(Y ◦A)⊤ diag(ym+1, . . . , ym+n

]

� 0 (9)

By strong duality, (9) equals maxA mini,j γi,j(A|A), and (8) equals γ∗
2 (Y ◦A). A comparison of (9)

with (8) shows that (6) holds.

3The constraint C −
∑

ρ
yρAρ � 0 forces the yi,j to be non-negative and to satisfy

∑
i,j

yi,j − 1 ≥ 0, but
it is obvious that, for an optimal assignment to the variables yi,j , their values will sum up to 1 exactly.
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One can show that any arrangement of arbitrary dimension can be transformed (by virtue of
Cholesky decomposition) into another arrangement of dimension at mostm+n+mn+1 that achieves
the same values for the respective margin parameters. Combined with a straightforward compactness
and continuity argument this shows that there exists a maximizer A∗ for mini,j γi,j(A|A), and there
exists a minimizer Y ∗ for γ∗

2 (Y ◦A). According to (6), both problems have the same optimal value,
say γ∗, i.e.,

γ∗ := min
i,j

γi,j(A|A∗) = γ∗
2 (Y

∗ ◦A) .

The following set K(A) represents the “hard part” of the matrix A ∈ Rm×n (thereby playing a
similar role as support vectors in SVM optimization problems):

K(A|A∗) := {(i, j) : γi,j(A|A) = γ∗} and K(A) :=
⋂

A∗

K(A|A∗)

In the definition of K(A), A∗ ranges over all maximizers for mini,j γi,j(A|A). We say that Y is
centered on K ⊆ {1, . . . ,m} × {1, . . . , n} if yi,j = 0 for all (i, j) /∈ K. With these notations, the
following holds:

Corollary 2 1. Every minimizer Y ∗ for γ∗
2(Y ◦A) is centered on K(A).

2. maxA mini,j γi,j(A|A) = maxA min(i,j)∈K(A) γi,j(A|A).

Proof:

1. The claim is proved indirectly. Consider a matrix Y such that, for some (i′, j′) /∈ K(A), yi′,j′ >
0. According to the definition of K(A), there must exist a maximizer A∗ for mini,j γi,j(A|A)
such that (i′, j′) /∈ K(A|A∗). This implies that A∗ achieves a Y -average margin strictly greater
than γ∗. Thus, Y is not a minimizer for γ∗

2 (Y ◦A).
2. Let Y ′ range over all Y that are centered on K(A). A straightforward modification of the proof

of (6) shows that
max
A

min
(i,j)∈K(A)

γi,j(A|A) = min
Y ′

γ∗
2 (Y

′ ◦A) (10)

Thus it suffices to show that

min
Y

γ∗
2 (Y ◦A) = min

Y ′

γ∗
2(Y

′ ◦A) .

But this is evident from the first part of the corollary.

The proof of the following result is similar to the proof of Theorem 1. It is found in Section A.

Theorem 3 For every A ∈ Rm×n and every probability vector p: mcp,MIN (A) = maxq mcp,q(A).

3.1 Bounds on Average Margin Complexity

We make use of the inequalities

|||M |||tr ≤ γ∗
2 (M) ≤

√
mn · |||M |||2 . (11)

Because of (3), the second inequality is equivalent to (4), and it can also be found in (Linial et al.,
2007). The first inequality is probably known as well but, since we are not aware of a proper
reference, we will now provide the reader with a short proof for sake of completeness. Since the
spectral norm is the dual of the trace norm, it suffices to show that

γ2(M) ≤ |||M |||2 .

We denote the rank of M by r, and we make use of the singular value decomposition

M = U · diag(σ1, . . . , σr) · V ⊤ = (U · diag(√σ1, . . . ,
√
σr)

︸ ︷︷ ︸

=:X

·(V · diag(√σ1, . . . ,
√
σr)

︸ ︷︷ ︸

=:Y

⊤
. (12)

Here, U is an (m × r)-matrix whose columns U1, . . . , Ur have unit norm and are pairwise orthog-
onal. Likewise, V is an (n × r)-matrix whose columns V1, . . . , Vr have unit norm and are pairwise
orthogonal. σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of M . As a matter of fact, |||M |||2 = σ1.
Now obviously

γ2(M)
(2)

≤ r(X) · r(Y ) ≤ √
σ1 ·

√
σ1 = |||M |||2

which concludes the verification of (11). Because of (3), (11) is equivalent to
√
mn

|||M |||2
≤ mc(M) ≤ mn

|||M |||tr
. (13)
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3.2 Exact Determination of Average Margin Complexity

In general, the bounds (11) and (13) leave a gap. In this section, we consider families of matri-
ces whose average margin complexity can be determined exactly: Hadamard matrices and matrices
composed of all reflections of a single Boolean function.

By definition, a Hadamard matrix H of order n is a sign-matrix that satisfies H ·H⊤ = n · I.

Corollary 4 Let H be a Hadamard matrix of order n. Then, mc(H) =
√
n.

Proof: A Hadamard matrix H of order n satisfies σ1(H) = · · · = σn(H). Thus, |||H |||tr = n · |||H |||2,
which makes the upper bound in (13) collapse to the lower bound in (13).

Lemma 5 If M ∈ Rn×n and the matrices U, V in its singular value decomposition (12) have only
entries from {±1/

√
n}, then γ∗

2 (M) = n · |||M |||2.

Proof: According to (11), γ∗
2 (M) ≤ n · |||M |||2. By duality of norms, the converse direction is

equivalent to γ2(M) ≤ |||M |||tr/n. An inspection of (12) shows that, given our assumptions on the

entries of U and V , r(X) = r(Y ) =
√

|||M |||tr/n. Thus, γ2(M) ≤ r(X)r(Y ) = |||M |||tr/n, as required.

We briefly note that the assumptions of Lemma 5 can be weakened: it suffices to assume that
the first columns of U and V , respectively, have entries from {±1/

√
n}. The proof will then make

use of strong SDP duality.

Corollary 6 Let f : {−1, 1}d → {−1, 1} be a Boolean function, and let L∞(f) denote the largest
Fourier-coefficient in terms of absolute value. Consider the (2d × 2d)-matrix Fx,y := f(x ◦ y) where
x ◦ y := (x1y1, . . . , xdyd). Then: mc(F ) = 1/L∞(f).

Proof: Let F̂ be the matrix with the Fourier-coefficients of f on its main diagonal and zeros
elsewhere. Let H denote the Silvester-type Hadamard matrix of order 2d. It is well-known (e.g.,
Doliwa et al., 2008) that the spectral decomposition of 2−dF has the form

2−dF = 2−d/2H · F̂ · 2−d/2H .

This implies that |||F |||2 = 2d · L∞(f) and that M = 2−dF satisfies the assumptions of Lemma 5 so
that γ∗

2 (F ) = 2d|||F |||2 = 22dL∞(f). Thus, according to (3) with n = m = 2d, mc(F ) = 1/L∞(f).

4 The Replication Trick

We have learned the replication trick from Sherstov (2008). He used it (together with the classi-
cal Forster bound on dimension complexity) to show that, for every sign-matrix A, SQdim(A) =
maxp SQdimp(A) is bounded from above by twice the square of the dimension complexity of A.
Here, we will use the trick (together with (4)) for showing that, for every real-valued matrix A,
mcp,q(A) ≥ FBp,q(A).

Lemma 7 Let A ∈ Rm×n. Let p be an m-dimensional probability vector with rational components
ri/R (so that

∑m
i=1 ri = R). Similarly, let q be an n-dimensional probability vector with rational

components sj/S (so that
∑n

j=1 sj = S). Let A~s be the matrix that results from A by duplicating
the j-th column sj-times. Let A~r,~s denote the matrix that results from A~s by duplicating the i-th row
ri-times. With this notation, the following holds:

mcp,q(A) = mc(A~r,~s) and
√
RS · |||P 1/2AQ1/2|||2 = |||A~r,~s|||2 (14)

Proof: We first show that mcp,q(A) ≤ mc(A~r,~s). Any arrangement A = (u1, . . . , um; v1, . . . , vn)
for A induces an arrangement A′ for A~r,~s where the k-th duplicate of row i (resp. column j) is
represented by the (same) vector ui (resp. vj). The average margin achieved by A′ equals

1

RS

∑

i

∑

j

risj〈ui, vj〉Ai,j =
∑

i

∑

j

ri
R

sj
S
〈ui, vj〉Ai,j .

But the right hand-side equals the (p, q)-average margin achieved by A.
Now, we show that mc(A~r,~s) ≤ mcp,q(A). To this end, we start with an arrangement A′ for A~r,~s

8



where the k-th duplicate of row i (resp. column j) is represented by ui(k) (resp. vj(k)). The average
margin achieved by A′ equals

1

RS

∑

i

∑

j

ri∑

ki=1

sj∑

lj=1

〈ui(ki), vj(lj)〉Ai,j =
1

RS

∑

i

∑

j

〈
ri∑

ki=1

ui(ki),

sj∑

lj=1

vj(lj)

〉

Ai,j

=
∑

i

∑

j

ri
R

sj
S

〈

1

ri

ri∑

ki=1

ui(ki),
1

sj

sj∑

lj=1

vj(lj)

〉

Ai,j .

But the final term coincides with the (p, q)-average margin that is achieved for A by the vectors

ui =
1

ri

ri∑

ki=1

ui(ki) and vj =
1

sj

sj∑

lj=1

vj(lj) .

Note that, by the triangle inequality, ‖ui‖2 is bounded by 1 provided that ‖ui(1)‖2, . . . , ‖ui(ri)‖2
are bounded by 1. The analogous argument applies to vj .

As for the second equation in (14), it suffices to show that |||
√
SAQ1/2|||2 = |||A~s|||2. (We can then

apply this equality with P 1/2A substituted for A and proceed with a symmetry argument.) Our

proof for |||
√
SAQ1/2|||2 = |||A~s|||2 will make use of (1). We first show that |||

√
SAQ1/2|||2 ≤ |||A~s|||2.

Note that the entry (i, j) of matrix
√
SAQ1/2 coincides with

√
sjAi,j . With any n-dimensional

vector v, we associate the S-dimensional vector v′ which is composed of sub-vectors v′(1), . . . , v′(n)
of dimensions s1, . . . , sn, respectively, such that v′(j) = vj√

sj
·~1. Note that ‖v′‖2 = ‖v‖2. Furthermore

note that

u⊤A~sv
′ =

∑

i

∑

j

sjui
vj√
sj

Ai,j =
∑

i

∑

j

uivj(
√
sjAi,j) = u⊤(

√
SAQ1/2)v .

Now, we show that |||A~s|||2 ≤ |||
√
SAQ1/2|||2. To this end, we consider an m-dimensional vector u and

an S-dimensional vector v′. We can think of v′ as being composed of sj-dimensional sub-vectors
v′(j) for j = 1, . . . , n. Then,

u⊤A~sv
′ =

∑

i

∑

j

sj∑

kj=1

uiv
′(j)kj

Ai,j =
∑

j

(
∑

i

uiAi,j

)



sj∑

kj=1

v′(j)kj



 .

Setting vj :=
1√
sj

∑sj
kj=1 v

′(j)kj
, the latter term equals

∑

i

∑

j

uivj(
√
sjAi,j) = u⊤(

√
SAQ1/2)v .

Note that

v2j =
1

sj
·
〈

v′(j),~1
〉2

≤ 1

sj
· 〈v′(j), v′(j)〉 ·

〈

~1,~1
〉

= 〈v′(j), v′(j)〉 ,

which implies that ‖v‖2 ≤ ‖v′‖2.

Corollary 8 For all probability vectors p, q: mcp,q(A) ≥ FBp,q(A).

Proof: With the notation from Lemma 7, the following holds for all rational probability vectors
p, q:

mcp,q(A) = mc(A~r,~s)
(4)

≥ FB(A~r,~s) = FBp,q(A) .

In order to generalize this equality to arbitrary probability vectors (with possibly non-rational com-
ponents), we can use that fact that Q is dense in R and apply an obvious continuity argument.
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5 SQ-Dimension and Margin-Complexity

In this section we focus on sign matrices. We establish two more relations (see Lemmas 9 and 10),
and then we put all pieces together and arrive at the inequalities in (15) and (16). As a by-product,
we obtain two results, see (17) and (18), which might be of independent interest.

Lemma 9 For every A ∈ {−1, 1}m×n: mcp,MIN (A) <
√

SQdimp(A) · (SQdimp(A) + 1).

Proof: Let d := SQdimp(A). Select a subset S = {s(1), . . . , s(d)} ⊆ {1, . . . , n} such that

(

∀k 6= l ∈ S : |〈Ak, Al〉p| ≤
1

d

)

∧
(

∀j ∈ {1, . . . , n}, ∃k(j) ∈ {1, . . . , d} : |
〈
Aj , As(k(j))

〉

p
| > 1

d+ 1

)

.

Let σj := sign(
〈
Aj , As(k(j))

〉

p
). We define a d-dimensional arrangement for A as follows:

(

∀i = 1, . . . ,m : ui =
1√
d
· (Ai,s(1), . . . , Ai,s(d))

)

∧
(
∀j = 1, . . . , n : vj = σj · ~ek(j)

)

It follows that 〈ui, vj〉 = σj ·Ai,s(k(j))/
√
d, and our embedding exhibits the margin parameters

γi,j = 〈ui, vj〉 ·Ai,j =
σj · Ai,s(k(j)) ·Ai,j√

d
.

Averaging w.r.t. to p yields

∑

i

piγi,j =
1√
d
· |
〈
Aj , As(k(j))

〉

p
| > 1√

d · (d+ 1)
.

Since this holds for every choice j, we get mcp,MIN (A) <
√
d · (d+ 1), as desired.

The proof of the following result builds on a proof by Sherstov (2008) for a quite similar result:

Lemma 10 For every A ∈ {−1, 1}m×n: SQdimp(A) < 2 ·maxA′ FBp(A
′)2.

Proof: Let d = SQdimp(A), and let S ⊆ {1, . . . , n} be chosen as in the proof of Lemma 9. Let A′

be the submatrix that is formed by the columns s(1), . . . , s(d) of A. It follows that

C := A′⊤PA′ = (P 1/2A′)⊤(P 1/2A′) ∈ Rd×d

has ones on the main diagonal and entries of absolute value at most 1/d elsewhere. We apply an
argument of Sherstov (2008) and conclude that

|||C|||2 ≤ |||C − Id|||2 + |||Id|||2 ≤ ‖C − Id‖2 + |||Id|||2 =

√

d(d− 1)

d2
+ 1 < 2 .

Note that
|||C|||2 = |||P 1/2A′|||22 .

The proof is now accomplished as follows:

FBp(A
′)2 ≥ d

|||P 1/2A′|||22
=

d

|||C|||2
>

d

2

The combination of Lemma 9, Lemma 10, and Corollary 8 demonstrates that the parameters
SQdimp(A), maxA′ FBp(A

′), maxq FBp,q(A), and maxq mcp,q(A) = mcp,MIN (A) are related as fol-
lows:

SQdimp(A) < 2max
A′

FBp(A
′)2 ≤ 2max

q
FBp,q(A)

2 ≤ 2max
q

mcp,q(A)
2 < 2SQdimp(A)(SQdimp(A)+1)2

(15)
Applying the operation “maxp” to (15), we get

SQdim(A) < 2 ·max
p,q

FBp,q(A)
2 ≤ 2 ·max

p,q
mcp,q(A)

2 < 2 · SQdim(A) · (SQdim(A) + 1)2 . (16)
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Since maxp,q mcp,q(A) = maxp,q mcp,q(A
⊤) — an analogous remark is valid for maxp,q FBp,q —

it follows from (16) that

SQdim(A⊤) < 2 · SQdim(A) · (SQdim(A) + 1)2 . (17)

This improves on a result by Sherstov (2008): he used a polynomial relation between SQdim(A)
and the discrepancy of A with respect to product distributions for showing that SQdim(A⊤) ≤
32 · SQdim(A)4.

Recall that, by convention, A′ ranges over all sub-matrices of A which can be composed by
(complete) columns of A. Let A′′ range over all sub-matrices of A. We claim that

max
A′′

FB(A′′) ≤ max
p,q

FBp,q(A) < 64 · (1 + o(1)) ·max
A′′

FB(A′′)9 . (18)

The first inequality is obvious. The last inequality is obtained by applying (15) twice, the first time
on A and the second time on the transpose of A′.

6 CSQ-Dimension and Margin Complexity

Feldman (2008) has shown the following result. If a concept class C over domain X has CSQ-
dimension d, then there exists a family W consisting of d Boolean base functions such every function
in C can be written as the majority of O(log(|X |)d2) functions properly chosen from W . Viewing a
sign-matrix A as a concept class, it is not hard to infer from that result an upper bound on mc(A)
in terms of CSQdim(A). However, a direct derivation of such an upper bound (as in the proof of
the following lemma) leads to a tighter relationship:

Lemma 11 For every A ∈ Rm×n: mc(A) ≤ CSQdim(A)1.5.

Proof: Let d := CSQdim(A), and let h1, . . . , hd ∈ Rm be universally correlated with A. According
to Lemma 1, there exists a matrix Y = (yi,j) such that mc(A) = mcY (A). We will present a d-
dimensional arrangement u1, . . . , um; v1, . . . , vn whose Y -average margin equals 1/d1.5 (which proves
the lemma). To this end, we set

ui :=
1√
d
· (hi,1, . . . , hi,d)

where hi,k denotes the i-th component of vector hk. Note that ‖ui‖2 ≤ 1. Furthermore, let Yj :=
y1,j + · · · + ym,j , and let the m-dimensional probability vector pj be given by (pj)i := yi,j/Yj.
Because h1, . . . , hd is universally correlated with A, the following holds. For every j, there exists
k(j) ∈ {1, . . . , d} such that |

〈
hk(j), Aj

〉

pj
| ≥ 1/d. Now we set σj := sign(

〈
hk(j), Aj

〉

pj
), vj := σj ·~ek(j),

and we bound the Y -average margin from below as follows:
∑

i

∑

j

yi,j〈ui, vj〉Ai,j =
1√
d
·
∑

j

Yjσj

∑

i

yi,j
Yj

hi,k(j)Ai,j =
1√
d
·
∑

j

Yj |
〈
hk(j), Aj

〉

pj
| ≥ 1

d1.5

As for the converse direction, we get the following result:

Lemma 12 For every A ∈ Rm×n and ℓ(m,n) := 32 ln(4mn):

CSQdim(A) ≤
⌈
ℓ(m,n) ·mc(A)2

⌉

Proof: Consider an arrangement A that maximizes γ := mini,j γi,j(A|A) so that mc(A) = 1/γ. It
is well-known4 that A can be transformed into another arrangement A′ = (u1, . . . , um; v1, . . . , vn)
that is d-dimensional for d := ⌈ℓ(m,n)/γ2⌉ and still satisfies mini,j γi,j(A|A′) ≥ γ/2. For every
k ∈ {1, . . . , d}, let ui,k denote the i-th component of uk. We will show that h1, . . . , hd given by

hk = (u1,k, . . . , um,k)

is universally correlated with A. To this end, let p be an arbitrary but fixed m-dimensional proba-
bility vector, and let v′j = ‖vj‖−1

1 · vj so that

‖v′j‖1 =
d∑

k=1

|v′j,k| = 1 . (19)

4This is a typical application of random projections (see Johnson and Lindenstrauss, 1984, Arriaga and
Vempala, 1999). E.g., apply Corollary 19 in the paper by Ben-David et al. (2002).
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Note that ‖vj‖1 ≤
√
d since A′ is a d-dimensional arrangement. It follows that

min
i,j

〈
ui, v

′
j

〉
Ai,j ≥

γ

2
√
d

,

and the following holds for every j ∈ {1, . . . , n}:

γ

2
√
d

≤
∑

i

pi
〈
ui, v

′
j

〉
Ai,j =

∑

i

piAi,j

d∑

k=1

|v′j,k| sign(vj,k)ui,k

=

d∑

k=1

|v′j,k|
∑

i

pi sign(vj,k)ui,kAi,j =

d∑

k=1

|v′j,k|〈sign(vj,k)hk, Aj〉p

The latter sum is a convex combination of inner products because of (19), and, as the above calcula-

tion shows, the inner products achieve a value of at least γ/(2
√
d) on the average. By the pigeon-hole

principle, there exists k(j) ∈ {1, . . . , d} such that

sign(vj,k(j)) ·
〈
hk(j), Aj

〉

p
≥ γ

2
√
d

.

It is easily checked that γ/(2
√
d) ≥ 1/d (by solving this inequality for d and comparing with the

above definition of d). It follows that, as announced above, h1, . . . , hd is universally correlated
with A.

Conclusions: Looking back, we have seen a hierarchy of margin optimization problems, and the
dual versions of these problems nicely reflect why the optimal values become smaller when we go up
in the hierarchy. In the dual setting, we are always faced with a problem of maximizing the total
margin of a matrix of the form Y ◦ A (which is the Y -average margin of A). The crucial issues
are the structure of the the matrix Y and whether its choice is under control of “nature” or under
control of an “intelligent adversary”:

(a) The easiest problem from the perspective of the margin-maximizer results when Y is of the
form pq⊤ for fixed and “benign” p, q. Here “benign” means that the distribution p on the rows
of A (= instances of the domain) and the distribution q on the columns of A (= possible target
concepts) are resulting from a learning application (and not from settings within a worst-case
analysis). In this situation the goal of the margin-maximizer roughly corresponds to achieving
a reasonably large “soft margin” on the average.

(b) The problem becomes harder when q (Case 1) or both of p, q (Case 2) are under control
of an adversary so that maxq mcp,q(A) = mcp,MIN (A) in Case 1 and maxp,q mcp,q(A) =
maxp mcp,MIN (A) in Case 2 would be the appropriate complexity measures. Maximizing over
all choices of q means choosing the target concept in a worst-case fashion. Maximizing over
all choices of p (as in Case 2) means that the domain distribution is chosen in a worst-case
fashion although it is still fixed (because the chosen arrangement may depend on p). Because
of the polynomial relation between average margin complexity and the SQ-dimension, Case 1
corresponds to weak learning in the SQ model under a fixed distribution. A similar remark is
valid for Case 2 but here we have to cope with the hardest fixed distribution.

(c) The hardest problem results when an adversary controls Y , and Y is an arbitrary matrix with
non-negative entries summing up to 1 (as opposed to a matrix of the form pq⊤, which is the
special case where Y has rank 1). Now maxY mcY (A) = mc(A) is the appropriate complexity
measure, and the learning goal is to achieve a reasonably large hard margin for every possible
target concept. Because of the polynomial relation between mc(A) and the CSQ-dimension, the
learning goal can be achieved iff the concept class is distribution-independently weakly learnable
in the CSQ model.

Feldman (2008) has shown that there exist classes (e.g., Boolean decision lists) which are distribution
independently (weakly or strongly)5 learnable in the SQ model but not (not even weakly) in the
CSQ model. This also shows that maxp,q mcp,q(A) and maxY mcY (A) are not polynomially related.
(There is even an exponential gap.) Thus imposing the rank 1 constraint on Y makes much of a
difference.

5Because of the Boosting-result by Aslam and Decatur (1998) weak learners can be transformed into
strong learners in this model without much loss of efficiency.
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Open Problems: The level of distribution-independent SQ-learning is located somewhere between
(b) and (c). It would be interesting to find a combinatorial parameter (or another variant of margin
optimization?) that characterizes this level. A parameter of this kind must be lower-bounded by the
SQ-dimension and upper-bounded by the CSQ-dimension. It would furthermore be interesting to
find a concept class that separates distribution-independent SQ-learning from SQ-learning w.r.t. the
hardest fixed distribution.
The correspondence between maximization of the average margin and typical soft-margin optimiza-
tion problems would be more convincing if we replaced γi,j(A|A) by min{γi,j(A|A), γ} for some
γ > 0 so that few extremely large margin parameters cannot provide compensation for many small
or negative margin parameters.6 It would be interesting to know whether results similar to the ones
in this paper can be shown for this “average clipped margin”.
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A Proof of Theorem 3

We will prove the equivalent statement

max
A

min
j

∑

i

piγi,j(A|A) = min
q

γ∗
2 (pq

⊤ ◦A) . (20)

We know from the proof of Theorem 1 that γ∗
2 (pq

⊤ ◦A) coincides with (8) provided that Y = pq⊤.
Let us now discuss the left hand-side of (20). Setting M := P ·A, we obtain minj

∑

i piγi,j(A|A) =
minj

∑

i γi,j(M |A).7 Finding an arrangement A for M that maximizes minj

∑

i γi,j(M |A) can be
expressed as a standard SDP-problem (with slack variables sj) as follows:

min
X,µ,s

−µ s.t. ∀k : Xk,k = 1 , ∀j :
∑

i

Mi,j(Xi,m+j +Xm+j,i)− sj = 2µ , X � 0 , µ ≥ 0 , sj ≥ 0

The (m+ 2n+ 1)× (m+ 2n+ 1)-matrix of primal variables is then given by
[

X 0 0
0 diag(s1, . . . , sn) 0
0 0 µ

]

.

The dual variables are denoted yk and qj . The matrix induced by the equality-constraints equals






diag(y1, . . . , ym) M ·Q 0 0
(M ·Q)⊤ diag(ym+1, . . . , ym+n) 0 0

0 0 −Q 0
0 0 0 −2(q1 + · · ·+ qn)




 .

It is easy to see that condition SCQ is satisfied. Thus, we have strong duality. The dual problem
(with variables −yk/2 substituted for yk, qj/2 substituted for qj , and P ·A substituted for M) looks
as follows:

min
q,y

1

2

∑

k

yk s.t.
∑

j

qj = 1 , qj ≥ 0 ,

[
diag(y1, . . . , ym) −(P ·A ·Q)
−(P ·A ·Q)⊤ diag(ym+1, . . . , ym+n)

]

� 0 (21)

By strong duality, maxA minj
∑

i piγi,j(A|A) equals (21). As discussed above, γ∗
2(pq

⊤◦A) equals (8)
provided that Y = pq⊤ so that Y ◦ A = pq⊤ ◦ A = P · A · Q. A comparison of (21) and (8) shows
that (20) holds.

7We remind the reader to the convention P = diag(p) and Q = diag(q).
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