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Abstract

Valiant’s (2007) model of evolvability models the evolutionary process of acquiring useful func-
tionality as a restricted form of learning from random examples. Linear threshold functions and
their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning
theory and hence their evolvability has been the primary focus of research on Valiant’s framework
(2007). One of the main open problems regarding the model is whether conjunctions are evolv-
able distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative.
Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the
complexity of learning from correlations.
We contrast the lower bound with a proof that linear threshold functions having a non-negligible
margin on the data points are evolvable distribution-independently via a simple mutation algorithm.
Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of
0-1 loss in Valiant’s (2007) original definition. The proof of evolvability requires that the loss func-
tion satisfies several mild conditions that are, for example, satisfied by the quadratic loss function
studied in several other works (Michael, 2007; Feldman, 2009; P. Valiant, 2010). An important
property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability
without any decreases in performance. Previously, monotone evolvability was only shown for con-
junctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely
restricted (Michael, 2007; Feldman, 2009; Kanade et al. , 2010).

1 Introduction
Evolution is the source of the spectacularly complex organisms and behavior that we see around us. Yet
we know very little about the computational mechanisms that can lead to such complexity while respecting
the constraints of the Darwinian evolutionary process and using a plausible amount of resources. Recently
Valiant suggested that an appropriate framework for understanding the power of evolution to produce complex
behavior is that of computational learning theory [28] since both evolution and learning involve processes that
adapt their behavior on the basis of experience. Accordingly, in his model, evolvability of a certain useful
functionality is cast as a problem of learning the desired functionality through a process in which, at each step,
the most “fit” candidate function is chosen from a small pool of mutations of the current candidate. Limits on
the number of steps and the amount of computation performed at each step are imposed to make this process
naturally plausible. A class of functions C is considered evolvable if there exists a single representation
scheme R and a mutation algorithm M on R that, when guided by such selection, guarantees convergence to
the desired function for every function in C. Here the requirements closely follow those of the celebrated
PAC learning model [28]. In fact, every evolution algorithm (here and below in the sense defined in Valiant’s
model) can be simulated by an algorithm that is given random examples of the desired function. In addition,
many properties of learning algorithms such as distribution-independence, weakness and attribute-efficiency
apply equally to evolvability.

1.1 Prior Work
The constrained way in which evolution algorithms have to converge to the target function makes finding
such algorithms a substantially more involved task than designing PAC learning algorithms. Initially, only
the evolvability of monotone conjunctions of Boolean variables, and only when the distribution over the
domain is uniform, was demonstrated (if not specified otherwise, the domain is {0, 1}n) [29]. Subsequently



Distribution Concept class Loss Monotone References
Uniform monotone conjunctions Boolean yes [29, 14]
Uniform conjunctions Boolean yes [13, 14]
any spherically symmetric homogeneous LTFs Boolean yes [14]
any product normal homogeneous LTFs Boolean yes [14]
All Single points Boolean yes [5]
Any familyD any CSQ learnable overD Boolean no [4]
Fixed D any SQ learnable over D Boolean no [4]
Uniform decision lists quadratic yes [22]
All conjunctions quadratic yes [6]
Any familyD any SQ learnable overD quadratic no [5]
Fixed D any SQ learnable over D quadratic yes [6]

Table 1: Positive results on evolvability. For the distribution entry “All” refers to distribution-independent
evolvability. D refers to any fixed set of distribution (including “All”). All results for Boolean loss also apply
to all other loss functions.

this result was simplified [3] and strengthened to general conjunctions [13, 14]. Later Michael [22] described
an algorithm for evolving decision lists over the uniform distribution that used a larger space of hypotheses
and a different performance metric over hypotheses (specifically, quadratic loss). In our earlier work we
showed that evolvability is, at least within polynomial limits, equivalent to learning by a natural restriction
of well-studied statistical queries (SQ)[15], referred to as correlational statistical queries (CSQ) [4]. This
result gives distribution-specific algorithms for any SQ learnable class of functions. By characterizing weak
distribution-independent evolvability and using communication-complexity-based lower bounds [25, 2], we
also proved that general linear threshold functions (also referred to as halfspaces) and even decision lists are
not evolvable distribution-independently.

In another work [5] we examined the relative power of a number of variants of the model discussed in
Valiant’s and other works [29]. Among them we considered a generalization of the model to real-valued
hypotheses for which one needs to specify the loss function used to measure the loss in performance at every
point. We demonstrated that a number of variants of the model are all equivalent to learning by CSQs and
hence to the original model [5]. The only two properties which we found to influence the power of the model
are the choice of the loss function (with the original 0/1 loss being equivalent to evolving with the linear
loss) and monotonicity, or requirement that the performance of hypotheses does not decrease in the course of
evolution. Valiant’s original selection rule allows small decreases in performance1. This somewhat unnatural
property has been exploited in all the results showing equivalence to learning by CSQs2 and hence evolution
algorithms obtained through such general transformations are non-monotone. In a recent work Kanade et al.
[14] show that the equivalence to learning by CSQs still holds if the total allowed decrease in performance is
bounded by any non-negligible value chosen in advance (they refer to such algorithms as quasi-monotone).
The first general transformation that yields monotone algorithms was given in our subsequent work [6] where
we showed that every concept class SQ learnable over a fixed distribution D is evolvable monotonically
over D when using quadratic loss. By exploiting some of the techniques of the general transformation, we
also showed that conjunctions are evolvable distribution-independently when using quadratic loss [6]. We
summarize these results and several other known evolution algorithms in Table 1.

1.2 Our Results
As can be seen from Table 1, evolvability of even the most basic concept classes is still only partially under-
stood. Most notably, prior to this work it was unknown whether conjunctions are evolvable distribution-
independently with Boolean loss (even without requiring monotonicity) and this question was posed by
Valiant and the author as an open problem at COLT 2008 [7]. In our first result (Section 3) we show that
the answer is negative. Specifically, we prove that for any k = ω(1), monotone conjunctions of at most k
variables are not evolvable distribution-independently to any accuracy ε = o(1). Our technique is based on
a new combinatorial parameter of a concept class that, roughly, measures the maximum number of correla-
tional query functions required to distinguish every target function-distribution pair from a fixed function-
distribution pair. This general approach is based on our recent characterization of strong SQ learnability [6].
For a given size of conjunction k, we then come up with a construction of a set of conjunction-distribution
pairs {(tS ,DS ) | |S | = k} that cannot be distinguished from a constant function over the uniform distribution
using a polynomial number of queries. The distribution DS is designed in such a way that it hides all Fourier

1In this context we refer to empirical performance rather than true expected performance.
2The decreases in performance can be avoided if the evolution algorithm starts in a certain fixed state, i.e. is initialized.
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coefficients of the conjunction tS up to degree k/3. Simple facts from Fourier analysis of Boolean functions
then imply that distinguishing between a superpolynomial number of such conjunction-distribution pairs is
impossible using a polynomial number of queries.

We interpret this negative result as highlighting significant limitations of evolvability based on the Boolean
feedback only. We note that many functions in biological evolution are not Boolean. For example, for most
genes the amount of gene expression (that is the amount of protein produced) can vary in a certain range
continuously (up to, of course, the granularity of a single molecule). Therefore it is natural to assume that
when evolving the optimal regulation of gene expression (described by a Boolean function), intermediate
amounts of the protein will be produced. The intermediate values are likely to cause intermediate values of
loss relative to the optimal 0 or 1 value. It is therefore important to understand evolvability with other loss
functions. Toward this goal in Section 4 we show that linear threshold functions are evolvable monotonically
and distribution-independently for quadratic loss function and all other loss functions satisfying a set of mild
conditions. We refer to loss functions that satisfy the required conditions as well-behaved. The amount of
resources required by our algorithm depends quadratically on 1/γ where γ is the margin of the target halfs-
pace on the data points. Therefore, like the famous Perceptron and Winnow algorithms [23, 21], it is efficient
only when the margin is non-negligible or lower bounded by the inverse of a polynomial in n. In the Support
Vector Machine (SVM) literature this condition is usually referred to as having a large margin. Further, the
representation used by our evolution algorithm is similar to linear thresholds and the mutation algorithm is
fairly simple and natural. The only operations it requires are adding the function α · xi to the the current
function for a real α and bounding the value of the function to be in [−1, 1].

A very popular and powerful approach to learning when data points are not linearly separable is to embed
the data points in a different (often higher dimensional) Euclidean space where the examples become linearly
separable and then use a halfspace learning algorithm such as Perceptron or SVM to produce a classifier.
Such approach also works in the context of evolvability and implies monotone evolvability of any concept
class that can be efficiently embedded into large-margin halfspaces over some Euclidean space (efficiency of
the embedding also bounds the dimension of the space). Therefore our second result approaches some of
the most important and strongest results for PAC learning while also being a natural algorithm in Valiant’s
framework of evolvability.

We note that a similar mutation algorithm was used in our result for conjunctions [6]. However our
analysis here is new and differs conceptually from the analysis for conjunctions which cannot be extended
to halfspaces. It also gives substantially stronger bounds. For example, it improves the dependence of the
improvement in each step on ε from ε6 to ε2. The key to this result for the quadratic loss function is a simple
proof that for every distribution D, halfspace f and any real-valued function φ with the range in [−1, 1], there
exists a variable xi that is correlated with the gradient of the loss function at point φ. The absolute value of
the correlation is lower-bounded by the inverse of a polynomial in n, 1/ε and 1/γ and therefore is sufficient
to imply that a small step in the direction of xi (or −xi) will reduce the loss.

A recent work by P. Valiant [30] examines the extension of the model of evolvability to real-valued
target functions. His results paint a picture quite similar to what we know about the evolvability of Boolean
functions. In particular, his simple algorithm for evolving linear functions when using the quadratic loss can
be seen as the counterpart of our algorithm for halfspaces.

2 Preliminaries
For a positive integer `, let [`] denote the set {1, 2, . . . , `} and for i ≤ ` let [i..`] denote the set {i, i + 1, . . . , `}.
We denote the domain of our learning problems by X. As usual it is parameterized by an (implicit) dimension
n. A concept class over X is a set of {−1, 1}-valued functions over X referred to as concepts. Let F ∞1 denote
the set of all functions from X to [−1, 1] (that is all the functions with L∞ norm bounded by 1). It will be
convenient to view a distribution D over X as defining the product 〈φ, ψ〉D = Ex∼D[φ(x) · ψ(x)] over the space
of real-valued functions on X. It is easy to see that this is simply a non-negatively weighted version of the
standard dot product over RX and hence is a positive semi-inner product over RX . The corresponding norm is
defined as ‖φ‖D =

√
ED[φ2(x)] =

√
〈φ, φ〉D.

Let Bn = {x | ‖xi‖ ≤ 1} be the ball or radius 1 in Rn, X be a subset of Bn, and f = sign(
∑
wixi − θ) be

a linear threshold function (halfspace). We define the margin γ of f on X as γ = infx∈X{|
∑
wixi − θ|}. For

convenience we use x0 to refer to the constant function 1.

2.1 PAC Learning
The models we consider are based on the well-known PAC learning model introduced by Valiant [28]. Let
C be a concept class over X. In the basic PAC model a learning algorithm is given examples of an unknown
function f from C on points randomly chosen from some unknown distribution D over X and should produce
a hypothesis h that approximates f . Formally, an example oracle EX( f ,D) is an oracle that upon being
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invoked returns an example 〈x, f (x)〉, where x is chosen randomly with respect to D, independently of any
previous examples.

An algorithm is said to PAC learn C in time t if for every ε > 0, f ∈ C, and distribution D over X, the
algorithm given ε and access to EX( f ,D) outputs, in time t and with probability at least 2/3, a hypothesis h
that is evaluatable in time t and satisfies PrD[ f (x) , h(x)] ≤ ε. We say that an algorithm efficiently learns C
when t is upper bounded by a polynomial in n, 1/ε.

The basic PAC model is also referred to as distribution-independent learning to distinguish it from
distribution-specific PAC learning in which the learning algorithm is required to learn only with respect
to a single distribution D known in advance. More generally, following Kearns et al. [17], one can analo-
gously define the learnability of a set of distribution-function pairs over the same domain X. Namely, a set of
distribution-function pairs Z is PAC learnable if there exists a learning algorithm that learns f over D (as in
the definition above) for every (D, f ) ∈ Z.

A weak learning algorithm [16] is a learning algorithm that produces a hypothesis whose disagreement
with the target concept is noticeably less than 1/2 (and not necessarily any ε > 0). More precisely, a weak
learning algorithm produces a Boolean hypothesis h such that PrD[ f (x) , h(x)] ≤ 1/2 − 1/p(n) for some
fixed polynomial p.

2.2 The Statistical Query Learning Model
In the statistical query model of Kearns [15] the learning algorithm is given access to STAT( f ,D) – a statisti-
cal query oracle for target concept f with respect to distribution D instead of EX( f ,D). A query to this oracle
is a function ψ : X × {−1, 1} → {−1, 1}. The oracle may respond to the query with any value v satisfying
|ED[ψ(x, f (x))]− v| ≤ τ where τ ∈ [0, 1] is a real number called the tolerance of the query. An algorithmA is
said to learn C in time t from statistical queries of tolerance τ if A PAC learns C using STAT( f ,D) in place
of the example oracle. In addition, each query ψ made byA has tolerance τ and can be evaluated in time t.

The algorithm is said to (efficiently) SQ learn C if t is polynomial in n and 1/ε, and τ is lower-bounded
by the inverse of a polynomial in n and 1/ε.

A correlational statistical query is a statistical query for a correlation of a function over X with the target
[1]. Namely the query function ψ(x, `) ≡ φ(x) · ` for a function φ ∈ F ∞1 . A concept class is said to be CSQ
learnable if it is learnable by a SQ algorithm that uses only CSQ queries.

2.3 Evolvability
We start by presenting a brief overview of the model. For a detailed description and intuition behind the
various choices made in model the reader is referred to [29, 5]. The goal of the model is to specify how
organisms can acquire complex mechanisms via a resource-efficient process based on random mutations
and guided by performance-based selection. The mechanisms are described in terms of the multi argument
functions they implement. The performance of such a mechanism is measured by evaluating the agreement
of the mechanism with some “ideal” behavior function. The value of the “ideal” function on some input
describes the most beneficial behavior for the condition represented by the input. The evaluation of the
agreement with the “ideal” function is derived by evaluating the function on a moderate number of inputs
drawn from a probability distribution over the conditions that arise. These evaluations correspond to the
experiences of one or more organisms that embody the mechanism.

Random variation is modeled by the existence of an explicit algorithm that acts on some fixed representa-
tion of mechanisms and for each representation of a mechanism produces representations of mutated versions
of the mechanism. The model requires that the mutation algorithm be efficiently implementable. Selection
is modeled by an explicit rule that determines the probabilities with which each of the mutations of a mech-
anism will be chosen to “survive” based on the performance of all the mutations of the mechanism and the
probabilities with which each of the mutations is produced by the mutation algorithm.

As can be seen from the above description, a performance landscape (given by a specific “ideal” function
and a distribution over the domain), a mutation algorithm, and a selection rule jointly determine how each
step of an evolutionary process is performed. A class of functions C is considered evolvable if there exist
a representation of mechanisms R and a mutation algorithm M such that for every “ideal” function f ∈
C, a sequence of evolutionary steps starting from any representation in R and performed according to the
description above “converges” in a polynomial number of steps to f . This process is essentially PAC learning
of C with the selection rule (rather than explicit examples) providing the only target-specific feedback. We
now define the model formally using the notation from [5].

2.4 Definition of Evolvability
The description of an evolution algorithmA consists of the definition of the representation class R of possibly
randomized hypotheses in F ∞1 and the description of polynomial time mutation algorithm that for every r ∈ R
and ε > 0 outputs a random mutation of r.
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Definition 1 A evolution algorithmA is defined by a pair (R,M) where

• R is a representation class of functions over X with range in [−1, 1].

• M is a randomized polynomial time algorithm that, given r ∈ R and ε as input, outputs a representation
r1 ∈ R with probability PrA(r, r1). The set of representations that can be output by M(r, ε) is referred to
as the neighborhood of r for ε and denoted by NeighA(r, ε).

A loss function L on a set of values Y is a non-negative mapping L : Y × Y → R+. L(y, y′) measures
the “distance” between the desired value y and the predicted value y′. In the context of learning Boolean
functions using hypotheses with values in [−1, 1] we only consider functions L : {−1, 1} × [−1, 1] → R+.
Valiant’s original model only considers Boolean hypotheses and hence only the disagreement loss (or 0-1
loss) which is equal to L∆(y, y′) = y · y′. It was shown in our earlier work [5] that such loss is equivalent to
the linear loss L1(y, y′) = |y′ − y| over hypotheses with the range in [−1, 1]. The other loss function we use
here is the quadratic loss LQ(y, y′) = (y′ − y)2 function. For a function φ ∈ F ∞1 its performance relative to
loss function L, distribution D over the domain and target function f is defined as

LPerf f (φ,D) = 1 − 2 · ED[L( f (x), φ(x))]/L(−1, 1) .

For an integer s, functions φ, f ∈ F ∞1 over X, distribution D over X and loss function L, the empirical fitness
LPerf f (φ,D, s) of φ is a random variable that equals 1 − 1

s
2

L(−1,1)
∑

i∈[s] L( f (zi), φ(zi)) for z1, z2, . . . , zs ∈ X
chosen randomly and independently according to D.

A number of natural ways of modeling selection were discussed in prior work [29, 5]. For concreteness
here we describe the selection rule used in Valiant’s main definition in a slightly generalized version from
[5]. In selection rule SelNB[L, t, p, s] p candidate mutations are sampled using the mutation algorithm. Then
beneficial and neutral mutations are defined on the basis of their empirical fitness LPerf in s experiments (or
examples) using tolerance t. If some beneficial mutations are available one is chosen randomly according to
their relative frequencies in the candidate pool. If none is available then one of the neutral mutations is output
randomly according to their relative frequencies. If neither neutral or beneficial mutations are available, ⊥ is
output to mean that no mutation “survived”.

Definition 2 For a loss function L, tolerance t, candidate pool size p, sample size s, selection rule SelNB[L, t, p, s]
is an algorithm that for any function f , distribution D, mutation algorithm A = (R,M), a representation
r ∈ R, accuracy ε, SelNB[L, t, p, s]( f ,D,A, r) outputs a random variable that takes a value r1 determined as
follows. First run M(r, ε) p times and let Z be the set of representations obtained. For r′ ∈ Z, let PrZ(r′) be the
relative frequency with which r′ was generated among the p observed representations. For each r′ ∈ Z ∪ {r},
compute an empirical value of fitness v(r′) = LPerf f (r′,D, s). Let Bene(Z) = {r′ | v(r′) ≥ v(r) + t} and
Neut(Z) = {r′ | |v(r′) − v(r)| < t}. Then

(i) if Bene(Z) , ∅ then output r1 ∈ Bene with probability PrZ(r1)/
∑

r′∈Bene(Z) PrZ(r′);

(ii) if Bene(Z) = ∅ and Neut(Z) , ∅ then output r1 ∈ Neut(Z) with probability PrZ(r1)/
∑

r′∈Neut(Z) PrZ(r′).

(iii) If Neut(Z) ∪ Bene(Z) = ∅ then output ⊥.

A concept class C is said to be evolvable by an evolution algorithm A guided by a selection rule Sel
over distribution D if for every target concept f ∈ C, mutation steps as defined byA and guided by Sel will
converge to f . For simplicity here we only consider the selection rule SelNB.

Definition 3 For concept class C over X, distribution D, mutation algorithm A, loss function L we say that
the class C is evolvable over D by A with L if there exist polynomials 1/t(n, 1/ε), s(n, 1/ε), p(n, 1/ε) and
g(n, 1/ε) such that for every n, f ∈ C, ε > 0, and every r0 ∈ R, with probability at least 1 − ε, a sequence
r0, r1, r2, . . ., where ri ← SelNB[L, t, p, s]( f ,D,A, ri−1) will have LPerf f (rg(n,1/ε),D) > 1 − ε.

As in PAC learning, we say that a concept class C is evolvable if it is evolvable over all distributions by a
single evolution algorithm (we emphasize this by saying distribution-independently evolvable). Similarly, we
say that a class of distribution-function pairs Z is evolvable if the evolution algorithm is successful for all
pairs (D, f ) ∈ Z.

We say that an evolution algorithmA evolves C over D monotonically if with probability at least 1−ε, for
every i ≤ g(n, 1/ε), LPerf f (ri,D) ≥ LPerf f (r0,D), where g(n, 1/ε) and r0, r1, r2, . . . are defined as above.
Note that since the evolution algorithm can be started in any representation, this is equivalent to requiring
that with probability at least 1 − ε, LPerf f (ri+1,D) ≥ LPerf f (ri,D) for every i.
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3 Lower Bounds on Distribution-Independent CSQ Learnability
In this section we demonstrate that conjunctions are not evolvable with Boolean loss (or the equivalent linear
loss). We obtain this result by exploiting the equivalence of evolvability with Boolean loss and efficient CSQ
learnability. Our technique is based on a combinatorial parameter of a concept class C, referred to CSQD that
lower bounds the complexity of distribution-independent CSQ learning of C. This parameter can be seen as
a generalization of the approximation-based strong statistical query dimension given in our earlier work [6]
to the distribution-independent setting.

Definition 4 For a concept class C, and ε, τ > 0 we define CSQD(C, ε, τ) as the smallest number d for which
it holds that for every distribution D and function ψ ∈ F ∞1 , there exists a set of d functions Gψ ⊂ F

∞
1 and a

Boolean function hψ such that for every f ∈ C and distribution D′, at least one of the following conditions
holds:

1. there exists g ∈ Gψ such that |〈 f , g〉D′ − 〈ψ, g〉D| ≥ τ or

2. PrD′ [ f (x) , hψ(x)] ≤ ε.

We now give a simple proof that CSQD(C, ε, τ) lower bounds the number of correlational statistical queries
of tolerance τ required to learn C distribution-independently to accuracy ε. Our proof is based on the proof
of the analogous result for the strong SQ dimension [6].

Theorem 5 If C is learnable by a deterministic CSQ algorithm that uses q(n, 1/ε) queries of tolerance
τ(n, 1/ε) then CSQD(C, ε, τ(n, 1/ε)) ≤ q(n, 1/ε).

Proof: Let A be the assumed CSQ learning algorithm for C. Let ψ ∈ F ∞1 be any function and D be any
distribution. The set Gψ and function hψ are constructed as follows. Simulate algorithm A and for every
correlational query (φi · `, τ) add φi to Gψ and respond with 〈ψ, φi〉D = ED[φi(x) ·ψ(x)] to the query. Continue
the simulation untilA outputs a hypothesis. Let hψ be the hypothesis output byA.

First, by the definition of Gψ, |Gψ| ≤ q(n, 1/ε). Now, let f be any function in C and D′ be a distribution.
If there does not exist g ∈ Gψ such that |〈 f , g〉D′ −〈ψ, g〉D| ≥ τ (the first condition) then for every correlational
query function φi ∈ Gψ, 〈ψ, φi〉D is within τ of 〈 f , φi〉D′ . Therefore the answers provided by our simulator are
valid for the execution of A when the target function is f and the distribution is D′. That is they could have
been returned by STAT( f ,D′) with tolerance τ. Therefore, by the definition ofA, the hypothesis hψ satisfies
PrD′ [ f (x) , hψ(x)] ≤ ε (the second condition).

3.1 Conjunctions are not CSQ Learnable Distribution-Independently
We now demonstrate that for a carefully constructed set of distributions and conjunctions, no polynomial-
size approximating set satisfying the conditions of Definition 4 exists. Let U be the uniform distribution over
X = {0, 1}n. For a set S ⊆ [n] we denote by tS (x) a conjunction of the variables with indices in S and by χS (x)
the parity function of the variables with indices in S . A well-known fact about the Fourier representation of
conjunctions (e.g. [12]) is that

tS (x) = −1 + 2−|S |+1
∑
I⊆S

χI(x) .

To obtain the desired lower bound we note that any pair (D, g) where g is a real-valued function over {0, 1}n
and D is a distribution can be viewed as a real-valued function g′(x) = g(x)D(x)/U(x) = 2n · g(x)D(x).
Here and below D(x) refers to the probability density function of D. By definition, for every x, g(x)D(x) =
g′(x)U(x) and therefore for any real-valued function h, 〈h, g〉D = 〈h, g′〉U . This simple transformation allows
us to view distribution-function pairs as functions over the uniform distribution and vice versa.

The basis of our constructions are functions whose Fourier transform equals to the Fourier transform
of tS (x) but with all the Fourier coefficients for non-empty sets of size at most k/3 removed (the Fourier
coefficient of the empty set is simply the constant term). We claim that these functions can be seen as
conjunctions over a close-to-uniform distribution.

Lemma 6 Let k ≥ 9 be an integer divisible by 3 and let S ⊂ [n] be any set of size k. There exists a function
θS (x) and distribution DS such that for every point x, DS (x)tS (x) = U(x)θS (x) and in addition

1. θS (x) = α
(
−1 + 2−|S |+1 + 2−|S |+1 ·

∑
I⊆S , |I|>k/3 χI(x)

)
for a constant α ∈ [2/3, 2].

2. for every x, DS (x)/U(x) ∈ [1/3, 3].
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Proof: Let φS (x) = −1 + 2−k+1 + 2−k+1 ·
∑

I⊆S , |I|>k/3 χI(x), in other words tS with all the parities for subsets
of size i ∈ [k/3] removed. Note that the total number of parities that were removed from tS (x) is

∑
i∈[k/3]

(
k
i

)
.

Note that 2−k ∑
i∈[k/3]

(
k
i

)
upper bounds the probability that in k flips of a fair coin at most k/3 coins will come

out as heads. As is well-known, this probability is a monotone decreasing function of k and for k = 9 is less
than 1/4. This implies that for k ≥ 9,

∑
i∈[k/3]

(
k
i

)
< 2k−2. Therefore for every x,

|tS (x) − φS (x)| ≤ 2−k+1

∣∣∣∣∣∣∣∣
∑

I⊆S , |I|∈[k/3]

χI(x)

∣∣∣∣∣∣∣∣ < 2−k+1 · 2k−2 = 1/2 .

This implies that for every x, sign(φS (x)) = sign(tS (x)) and L1(φS ) = EU[|φS (x)|] ∈ [1/2, 3/2]. Now
let DS (x) = U(x) · |φS (x)|/L1(φS ) and θS (x) = φS (x)/L1(φS ). This definition implies that

∑
x∈X DS (x) =

EU[|φS (x)|]/L1(φS ) = 1. Hence DS (x) is a valid probability density function over {0, 1}n. Further, DS (x)tS (x) =
U(x)θS (x). In other words the conjunction tS over the distribution DS can be viewed as the function θS (x)
over the uniform distribution. Finally, note that α = 1/L1(φS ) ∈ [2/3, 2] and DS (x)/U(x) = |φS (x)|/L1(φS ) ∈
[1/3, 3].

We now establish that the number of monotone conjunctions of k variables such any two conjunctions
share at most k/3 variables is large.

Lemma 7 For any integer k ∈ [9..n/2] divisible by 3, there exists a set Sk ⊆ 2[n], such that

• for every S ∈ Sk, |S | = k;
• for every distinct S ,T ∈ Sk, |S ∩ T | ≤ k/3;
• |Sk | ≥ (n/(8k))k/3 + 1.

Proof: There are
(

n
k

)
different size-k subsets of [n] and each subset of size k shares more than k/3 elements

with at most
(

k
k/3

)(
n−k/3
2k/3

)
other subsets of size k. Hence by greedily constructing Sk we will obtain at least(

n
k

)(
k

k/3

)(
n−k/3
2k/3

) =
1(
k

k/3

) · n! · (2k/3)!
(n − k/3)! · k!

>
1
2k ·

n · (n − 1) · · · (n − k/3 + 1)
k · (k − 1) · · · (2k/3 + 1)

≥ 2−k
(n

k

)k/3
=

( n
8k

)k/3

subsets.

We are now ready to show that conjunctions of superconstant size are not CSQ learnable to subconstant
accuracy. Let Ck denote the concept class of conjunctions of size at most k.

Theorem 8 If Ck is CSQ learnable to accuracy ε ≤ 2−k/6 by a deterministic algorithm that uses q queries of
tolerance τ then q/τ2 ≥ ( n

8k )k/3/16.

Proof: We apply Theorem 5 to the assumed CSQ algorithm for Ck and obtain that CSQD(Ck, ε, τ) ≤ q.
Let ψ(x) ≡ α

(
−1 + 2−k+1

)
and D be the uniform distribution. By the Definition 4, there exists a set G of q

functions and a Boolean function h such that for every f ∈ Ck and distribution D′ at least one of the following
conditions holds:

1. PrD′ [ f (x) , h(x)] ≤ ε or

2. there exists g ∈ G such that |〈 f , g〉D′ − 〈ψ, g〉U | ≥ τ.

Let Sk be the set given by Lemma 7 and S ∈ Sk. We apply these conditions to f = tS and distribution DS
defined in Lemma 6 to obtain that PrDS [tS (x) , h(x)] ≤ ε or there exists g ∈ G such that |〈tS , g〉DS −〈ψ, g〉U | ≥
τ. We first consider the implications of the first condition. By our assumption ε ≤ 2−k/6. For any two subsets
S ,T ∈ Sk, PrU[tS , tT ] > 2−k. This implies that if PrDS [tS , h] ≤ ε then

PrU[tS , h] =
∑

tS (x),h(x)

U(x) ≤(∗)
∑

tS (x),h(x)

3 · DS (x) = 3 · PrDS [tS , h] ≤ 3ε ≤ 2−k/2 , (1)

where (∗) is implied by property 2 in Lemma 6. Further, PrU[tT , h] ≥ PrU[tS , tT ] − PrU[tS , h] > 2−k/2
and hence, by the same argument as equation (1),

PrDT [tT , h] ≥ PrU[tT , h]/3 > (2−k/2)/3 = 2−k/6 ≥ ε .

In other words, h can be ε-close to at most one conjunction tS for S ∈ Sk.
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Now consider a subset S for which the second condition holds. By the definition of DS , 〈tS , g〉DS =
〈θS , g〉U and therefore the second condition is equivalent to

|〈θS − ψ, g〉U | ≥ τ .

We observe that θS − ψ = α2−k+1 ·
∑

I⊆S , |I|>k/3 χI and hence

τ ≤

∣∣∣∣∣∣∣∣〈α2−k+1 ·
∑

I⊆S , |I|>k/3

χI , g〉U

∣∣∣∣∣∣∣∣ ≤ α2−k+1 ·
∑

I⊆S , |I|>k/3

|〈χI , g〉U |. (2)

Equation (2) implies that there exists IS ⊆ S such that |IS | > k/3 and

|〈χIS , g〉U | ≥ τ · 2
k−1/(α2k) ≥ τ/(2 · α) ≥ τ/4 .

We now need two crucial observations:

1. For distinct S ,T ∈ Sk, IS , IT . This is true since IS is a subset of size at least k/3 + 1 of S and S shares
at most k/3 elements with T (of which IT is a subset).

2. For any function g ∈ F ∞1 , there exist at most 16/τ2 sets I such that |〈χI , g〉U | ≥ τ/4. This is true since
〈χI , g〉U is simply the Fourier coefficient of g with index I denoted by ĝ(I). Parseval’s identity states that∑

I⊆[n] ĝ(I)2 = ‖g‖2U ≤ 1 and therefore no more than 16/τ2 Fourier coefficients of g can be larger than
τ/4.

Combining these two observations gives that the number of subsets of Sk for which the second condition
holds is at most 16 · q/τ2. By combining this with the fact that the first condition can hold for at most one set
in Sk we obtain that 16 · q/τ2 ≥ |Sk | − 1 ≥ ( n

8k )k/3.

Remark 9 Theorem 8 also applies to CSQ learning by randomized algorithms since a randomized algorithm
for the set of conjunction-distribution pairs we consider can be converted to a non-uniform deterministic
algorithm via a standard transformation (e.g. [1]).

Corollary 10 For any k = ω(1) and ε = o(1), Ck is not evolvable (distribution-independently) to accuracy ε.

Interestingly, conjunctions are known to be weakly CSQ learnable (distribution-independently). There-
fore Corollary 10 also implies that traditional boosting algorithms [24, 10] cannot be adapted to CSQ learning
(and hence evolvability).

4 Evolvability of Halfspaces with Non-Linear Loss Functions
In this section we demonstrate that halfspaces are evolvable distribution-independently for a wide class of
loss functions using a polynomial in n, 1/ε and 1/γ amount of resources. Here γ is the margin of the
target halfspace on the domain X of the learning problem. For example, if we set X = {−1/

√
n, 1/

√
n}n

(or the Boolean hypercube scaled to fit in the unit ball Bn) then all functions that can be represented by
a halfspace with integer weights upper-bounded in absolute value by m, will have the margin of at least
1/(nm). Consequently, our result implies that such functions are evolvable distribution-independently over
the Boolean hypercube for any m upper-bounded by a polynomial in n. This class of functions includes
conjunctions, disjunctions, decision lists of length O(log n) and majority functions. The mutation algorithm
we use is very simple and natural for evolving halfspaces. The only operations it requires are adding α · xi to
the current function for a real α and “clipping” the values of the function outside of [−1, 1].

A more general way to describe this result is to take the domain to be Bn and define the margin relative
to the support of the target distribution. Specifically, let HSγ denote the set of distribution-function pairs over
Bn such that (D, f ) ∈ HSγ, if (and only if) f can be represented by a halfspace with margin γ on the support
of distribution D (for brevity we use “margin on D” to refer to the margin on the support of D). For X ⊆ Bn,
we denote by HSγ(X) the set of all functions that can be represented by a halfspace with margin γ on X.

Our proof of evolvability relies on the lemma which proves that for every current hypothesis φ ∈ F ∞1 ,
there exists an efficiently computable and small neighborhood N(φ) of φ such that for every target halfspace f
with margin γ on distribution D, if the fitness of φ is not ε-close to the optimum then there exist φ′ ∈ N whose
fitness is observably higher than the fitness of φ. Following Kanade et al. [14], we refer to such function N
as strictly beneficial neighborhood function. Strictly beneficial neighborhood function immediately implies
monotone evolvability from any starting function [6]. To see this observe that for a mutation algorithm that
produces a random member of the strictly beneficial neighborhood, every step of the evolution algorithm will
increase performance by an inverse-polynomial amount until it reaches 1 − ε. Further, as was observed by
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Kanade et al. [14], it also implies evolvability when the target function is allowed to change gradually, or
drift.

We first show the existence of a strictly beneficial neighborhood function for halfspaces with the quadratic
loss function and then examine the conditions on the loss function that allow a similar argument to go through.
For a ∈ R, define the “clipping” function

P1(a) ,
{

a |a| ≤ 1
sign(a) otherwise.

Theorem 11 For φ(x) ∈ F ∞1 , let

Nα(φ) =
{
P1(φ + α′ · xi) | i ∈ [0..n], |α′| = α

}
∪ {φ}.

For every halfspace f with margin γ on distribution D over Bn and every ε > 0, there exists φ′ ∈ Nα(φ) for
which

‖ f − φ′‖2D ≤ max
{
‖ f − φ‖2D − α

2, ε
}
,

where α =
εγ

3
√

n .

Proof: Let f = sign(
∑

i∈[n] wixi − θ) be the representation of f that has margin γ on D. Note that we can
assume that |θ| ≤ 1 since for every point x ∈ Bn,

∑
i∈[n] wixi ≤ ‖w‖

2 · ‖x‖2 ≤ 1. The claim holds if ‖ f −φ‖2D ≤ ε.
We can therefore assume that ‖ f − φ‖2D > ε. In particular, since for every a ∈ [−2, 2], |a| ≥ a2/2 we obtain
that ED[| f − φ|] ≥ ε/2.

For every x in the support of D, f (x) − φ(x) has the same sign as f (x) and therefore also the same sign as∑
i∈[n] wixi − θ. Therefore,

ED

( f − φ)

∑
i∈[n]

wixi − θ


 ≥ γED[| f − φ|] ≥ εγ/2. (3)

At the same time, using the Cauchy-Schwartz inequality we can obtain

ED

( f − φ)

∑
i∈[n]

wixi − θ


 ≤∑

i∈[n]

|wi| · |ED[( f − φ)xi]| + |θ| · |ED[( f − φ)]|

≤

√
θ2 +

∑
i∈[n]

w2
i ·

√ ∑
i∈[0..n]

ED[( f − φ)xi]2 ≤
√

2
√ ∑

i∈[0..n]

ED[( f − φ)xi]2. (4)

By combining equations (3) and (4) we obtain that∑
i∈[0..n]

ED[( f − φ)xi]2 ≥ (εγ)2/8 .

From here we can conclude that there exists j ∈ [0..n] such that

|ED[( f − φ)x j]| ≥ εγ/
√

8(n + 1) ≥ εγ/(3
√

n). (5)
Now we claim that a step in the direction of x j from φ will decrease the distance (in ‖ · ‖D norm) to f .

Formally,

Lemma 12 Let α′ = α · sign(ED[( f − φ)x j]), where α =
εγ

3
√

n (as defined in the statement of the theorem).
Then

‖ f − (φ + α′ · x j)‖2D ≤ ‖ f − φ‖
2
D − α

2 .

Proof:
‖ f − (φ + α′ · x j)‖2D = ‖ f − φ‖2D + α′2‖x j‖

2
D − 2〈 f − φ, α′ · x j〉D.

To obtain the claim it remains to observe that ‖x j‖
2
D ≤ 1 and that

2〈 f − φ, α′ · x j〉D = 2α′ED[( f − φ)x j] ≥ 2α′2 = 2α2 .

(Lem. 12)

Now let φ′ = P1(φ + α′ · x j). If for a point x, φ′(x) = φ(x) + α′ · x j then clearly f (x) − φ′(x) =
f (x) − (φ(x) + α′ · x j). Otherwise, if |φ(x) + α′ · x j| > 1 then φ′(x) = sign(φ(x) + α′ · x j) and for any value
f (x) ∈ {−1, 1}, | f (x) − φ′(x)| ≤ | f (x) − (φ(x) + α′ · x j)|. This implies that

‖( f − φ′)‖2D ≤ ‖ f − (φ + α′ · x j)‖2D ≤ ‖ f − φ‖
2
D − α

2.
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By definition, φ′ ∈ Nα(φ) and hence we obtain the claimed result.

We now demonstrate that a similar result can be obtained under several mild conditions on the loss
function. In essence, we require that the loss function can be well approximated by a linear function with a
slope that is not too close to 0. Formally,

Definition 13 For positive constants a, A and B we say that a loss function L : {−1, 1} × [−1, 1] → R+ is
well-behaved with bounds a, A, B if

1. L(−1,−1) = L(1, 1) = 0;
2. L(1,−1) = L(−1, 1) = 2;
3. for ` ∈ {−1, 1}, L(`, z) is twice differentiable in [-1,1] (the differentiation is always in the second vari-

able);
4. for ` ∈ {−1, 1}, L′(`, `) = 0 and −` · L′(`, `(1 − z)) ≥ A · L(`, `(1 − z))a;
5. for ` ∈ {−1, 1}, for every z ∈ [−1, 1], L′′(`, z) ≤ B.

We remark that condition (2) is for convenience only and can be achieved by scaling any loss function
satisfying the other conditions. Condition (4) ensures that the loss function is monotone (that is for all
y, y′ ∈ [−1, 1], if y ≤ y′ then L(−1, y) ≤ L(−1, y′) and L(1, y′) ≤ L(1, y)) and that it has a non-negligible
slope whenever the loss itself is non-negligible. Condition (5) ensures that the linear approximation to L
dominates the remainder term in the Taylor series. A simple example of a well-behaved loss function is
L(y, z) = |y − z|c/2c−1 for any constant c ≥ 2. It is also easy to see that any convex combination of well-
behaved loss functions is well-behaved. Note that the linear loss function is not twice differentiable on [−1, 1]
and also does not satisfy condition (4). Hence our result for linear threshold functions does not contradict the
lower bound for conjunctions. We now prove a generalization of Theorem 11 to well-behaved loss functions.

Theorem 14 Let L be a well-behaved loss function with bounds a, A and B. For φ(x) ∈ F ∞1 , let

Nα(φ) =
{
P1(φ + α′ · xi) | i ∈ [0..n], |α′| = α

}
∪ {φ}.

For every halfspace f with margin γ on distribution D over Bn and every ε > 0, there exists φ′ ∈ Nα(φ) for
which

ED[L( f , φ′)] ≤ max{ED[L( f , φ)] − α2 · B/2, ε} ,
where α = A · γ · εa+1/(B · 2a+3 √n).

Proof: As before, we can assume that ED[L( f , φ)] > ε. In particular, PrD[L( f , φ) ≥ ε/2] ≥ ε/4. Then, by
property (4) of well-behaved loss-functions, PrD[|L′( f , φ)| ≥ A(ε/2)a] ≥ ε/4. This implies that

ED[|L′( f , φ)|] ≥ ε/4 · A · (ε/2)a = A · εa+1/2a+2.

By monotonicity of L (or property (4)), for every x in the support of D, −L′( f (x), φ(x)) has the same sign
as f (x) and therefore also the same sign as

∑
i∈[n] wixi − θ. This gives

ED

−L′( f , φ)

∑
i∈[n]

wixi − θ


 ≥ γED[|L′( f , φ)|] ≥ A · γεa+1/2a+2. (6)

In addition, as in equation (4), we have

ED

−L′( f , φ)

∑
i∈[n]

wixi − θ


 ≤ √2

√ ∑
i∈[0..n]

ED[L′( f , φ) · xi]2. (7)

By combining equations (6) and (7) we obtain that∑
i∈[0..n]

ED[L′( f , φ)xi]2 ≥ A2 · γ2ε2a+2/22a+5 .

From here we can conclude that there exists j ∈ [0..n] such that

|ED[L′( f , φ)x j]| ≥ A · γ · εa+1/(2a+2
√

2n + 2) ≥ A · γ · εa+1/(2a+3 √n). (8)
We denote the right side of this inequality by ρ.

To finish the proof we prove an analogue of Lemma 12 saying that a step in the direction of x j from φ
will decrease the loss. Formally,
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Lemma 15 Let α′ = −α · sign(ED[L′( f , φ)x j]), and φ′ = P1(φ + α′ · x j), where α = ρ/B (as defined in the
statement of the theorem). Then

ED[L( f , φ′)] ≤ ED[L( f , φ)] − α2 · B/2 .

Proof: Let x ∈ X be any point. Assume that f (x) = −1. For convenience we extend the loss function L(−1, z)
to values z ∈ [−2,−1) by setting L(−1, z) = L(−1,−2 − z) (that is by making the loss symmetric around
−1). By the properties of the loss function, L(−1,−1) = 0, L′(−1,−1) = 0 and for z ∈ [−2,−1), L′′(−1, z) =
L′′(−1,−2− z). This implies that the extended L is twice differentiable in [−2, 1] and L′′(−1, z) ≤ B for every
z ∈ [−2, 1]. We first assume that φ + α′ · x j ∈ [−2, 1]. L is twice differentiable and therefore Taylor’s theorem
gives

L(−1, φ(x) + α′ · x j) − L(−1, φ(x)) = α′ · x j · L′(−1, φ(x)) + (α′ · x j)2 · L′′(−1, ζ)/2,
where ζ ∈ [φ(x), φ(x) +α′ · x j] ⊆ [−2, 1]. Also note that in this case, L(−1, φ(x) +α′ · x j) ≥ L(−1, φ′(x)). This
means that

L(−1, φ′(x)) − L(−1, φ(x)) ≤ α′ · x j · L′(−1, φ(x)) + α2 · B/2, (9)
Now if φ+α′ ·x j > 1 then φ′(x) = 1 and α′ ·x j > 1−φ(x) > 0. Then α′ ·x j ·L′(−1, φ(x)) ≥ (1−φ(x))·L′(−1, φ(x))
(as L′(−1, φ(x)) > 0). Hence,

L(−1, φ′(x))−L(−1, φ(x)) = (1−φ(x))·x j·L′(−1, φ(x))+((1−φ(x))·x j)2·L′′(−1, ζ)/2 ≤ α′·x j·L′(−1, φ(x))+α2·B/2,
(10)

where ζ ∈ [φ(x), 1]. By treating the case when f (x) = 1 symmetrically and combining equations (9) and (10)
we will obtain that for every x,

L( f (x), φ′(x)) − L( f (x), φ(x)) ≤ α′ · x j · L′( f (x), φ(x)) + α2 · B/2.

This immediately implies that

ED[L( f (x), φ′(x))] − ED[L( f (x), φ(x))] ≤ α′ED[x j · L′( f (x), φ(x))] + α2 · B/2 ≤ −αρ + α2 · B/2 = α2 · B/2 .

(Lem. 15)

To finish the proof we observe that φ′(x) ∈ Nα(φ).

As we have mentioned, a simple corollary of Theorem 14 is distribution-independent evolvability of large
margin halfspaces with any well-behaved loss function.

Theorem 16 For every well-behaved loss function L and γ ≥ 1/q(n) for some polynomial q(·), HSγ over Bn
is monotonically evolvable with L.

We make two remarks regarding these theorems.

Remark 17 In both Theorems 11 and 14 it is not necessary to know the exact value of α to create a
strictly beneficial neighborhood. It is easy to see from the analysis that the bound holds for every α0 <
max j∈[0..n]{|ED[L′( f , φ)x j]}|. Therefore by including in the neighborhood steps for all values of α0 = 2−t for
t ∈ [n], the neighborhood will include a function with at least 1/4 of the improvement that can be achieved
when a bound on α is known in advance.

Remark 18 Theorem 14 does not require the loss function to be the same for all x as long as for every point
x, the loss-function Lx is well-behaved with the same bounds a, A, B. Similarly the loss function does not need
to stay the same between generations and can change arbitrarily as long as it is well-behaved with the same
bounds a, A, B

A number of popular machine learning algorithms work by embedding the data points in a different Eu-
clidean space (most commonly by using a kernel) and then applying a learning algorithm for halfspaces, such
as SVM. This method is also used in a number of theoretical algorithms such as the DNF learning algo-
rithm based on the polynomial threshold function representation of Klivans and Servedio [18]. As expected,
this technique can be easily translated to the evolvability framework and then used together with our result.
Formally, let C and C′ be concept classes over the domains X and X′, respectively. The concept C over X
is said to be embeddable as C′ over X′ if there exists a function Φ : X → X′ such that for every f ∈ C,
there exists g ∈ C′ such that for every x ∈ X, g(Φ(x)) = f (x). We also say that the embedding is efficient
if Φ(x) is computable efficiently, that is in time polynomial in the dimension of x (or description length in
general). Embeddability of concept classes into large-margin halfspaces has been studied in a number of
works initiated by Forster [8] and Forster et al. [9] (see [20, 25, 19] for some recent results). The inverse
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of the optimal margin is referred to as the margin complexity of a concept class [20]. Besides its impor-
tance to machine learning, it has several connections to fundamental quantities in communication complexity
[11, 25, 19]. We cannot invoke this measure directly to upper-bound the complexity of using our evolution
algorithm since margin complexity disregards the computational complexity of the embedding function. But
given an efficient embedding function the application of our evolution algorithm becomes straightforward.

Corollary 19 Let C be a concept class over domain X, X′ ⊆ Bn and γ > 1/q(n) for some polynomial q(·).
If there exists an efficiently computable embedding of C over X to HSγ(X′) over X′, then C is evolvable
monotonically with any well-behaved loss function.

5 Conclusions and Open Problems
Our lower bound in Section 3 provides strong hardness results for learning that is limited to observing the
accuracy (or alternatively, Boolean loss performance) of hypotheses. In particular, it implies that evolvability
in Valiant’s original model is severely limited unless the distribution over the domain is strongly restricted. An
interesting direction for further work would be to find a complete characterization of distribution independent
CSQ learnability (as was recently achieved for SQ learnability [26, 6, 27]). A potentially simpler question
left open in this work is whether conjunction are CSQ learnable to constant accuracy (say 1/4).

At the same time results of Section 4 demonstrate that the limitation of Boolean loss can be overcome
by using a real-valued hypotheses with a non-linear loss function. The evolution algorithm we described is
based on the first mutation algorithm that is simple, general and robust enough to be a plausible candidate for
biological evolution. It would be interesting to know if similar result can be proved for other SQ learnable
concept classes (e.g. general linear threshold functions) and whether the result can be extended to more
general loss functions.

References
[1] N. Bshouty and V. Feldman. On using extended statistical queries to avoid membership queries. Journal

of Machine Learning Research, 2:359–395, 2002. ISSN 1533-7928.

[2] H. Buhrman, N. Vereshchagin, and R. de Wolf. On computation and communication with small bias.
In Proceedings of IEEE Conference on Computational Complexity, pages 24–32, 2007.

[3] D. Diochnos and G. Turán. On evolvability: The swapping algorithm, product distributions, and covari-
ance. In Proceedings of Stochastic Algorithms: Foundations and Applications (SAGA), pages 74–88,
2009.

[4] V. Feldman. Evolvability from learning algorithms. In Proceedings of STOC, pages 619–628, 2008.

[5] V. Feldman. Robustness of evolvability. In Proceedings of COLT, pages 277–292, 2009.

[6] V. Feldman. A complete characterization of statistical query learning with applications to evolvability.
In Proceedings of FOCS, pages 375–384, 2009.

[7] V. Feldman and L. G. Valiant. The learning power of evolution. In Proceedings of COLT, pages 513–
514, 2008.

[8] J. Forster. A linear lower bound on the unbounded error probabilistic communication complexity. Jour-
nal of Computer and System Sciences, 65(4):612–625, 2002.

[9] J. Forster, N. Schmitt, H.U. Simon, and T. Suttorp. Estimating the optimal margins of embeddings in
euclidean half spaces. Machine Learning, 51(3):263–281, 2003.

[10] Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):
256–285, 1995.

[11] M. Goldmann, J. Håstad, and A. Razborov. Majority gates vs. general weighted threshold gates. Com-
putational Complexity, 2:277–300, 1992.

[12] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform
distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

[13] B. Jacobson, 2007. Personal communication with L. Valiant.

[14] V. Kanade, L. G. Valiant, and J. Wortman Vaughan. Evolution with drifting targets. In Proceedings of
COLT, pages 155–167, 2010.

12



[15] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):983–
1006, 1998.

[16] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite automata.
Journal of the ACM, 41(1):67–95, 1994.

[17] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine Learning, 17(2-3):
115–141, 1994.

[18] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). Journal of Computer and System Sciences,
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