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Abstract

Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson
paradigm to deal with asymmetric errors in binary classification with a convex loss. Given
a finite collection of classifiers, we combine them and obtain a new classifier that satisfies
simultaneously the two following properties with high probability: (i), its probability of
type I error is below a pre-specified level and (ii), it has probability of type II error close
to the minimum possible. The proposed classifier is obtained by minimizing an empirical
objective subject to an empirical constraint. The novelty of the method is that the classifier
output by this problem is shown to satisfy the original constraint on type I error. This
strict enforcement of the constraint has interesting consequences on the control of the
type II error and we develop new techniques to handle this situation. Finally, connections
with chance constrained optimization are evident and are investigated.

keywords: binary classification, Neyman-Pearson paradigm, anomaly detection, empirical con-
straint, empirical risk minimization, chance constrained optimization.

1 Introduction

The Neyman-Pearson (NP) paradigm in statistical learning extends the objective of classical binary
classification in that, while the latter focuses on minimizing classification error that is a weighted
sum of type I and type II errors, where the weighting is proportional to the class priors , the former
minimizes type II error with an upper bound α on type I error. With slight abuse of language, in
verbal discussion we do not distinguish type I/II error from probability of type I/II error. Motivations
for the NP approach come from many practical problems, where the importance of type I error differs
from that of type II error. Typical examples include medical diagnosis or anomaly detection.

In the learning context, as true errors are inaccessible, we cannot enforce almost surely the
desired upper bound for type I error. The best we can hope is that a data dependent classifier has
type I error bounded with high probability. Henceforth, there are two goals in this project. The first

is to design a learning procedure so that type I error of the learned classifier f̂ is upper bounded

by a pre-specified level with pre-specified high probability; the second is to show that f̂ has good
performance bounds for excess type II error.

This paper is organized as follows. In Section 2, the classical setup for binary classification is
reviewed and the main notation is introduced. A parallel between binary classification and hypothesis
testing is drawn in Section 3 with emphasis on the NP paradigm in both frameworks. The main
propositions and theorems are stated in Section 4. Finally different extensions of the main results
to a different sampling scheme and to chance constrained optimization are presented in Section 5.
The proofs of the main results are gathered in Section 6.

In the rest of the paper, we denote by xj the j-th coordinate of a vector x ∈ IRd.

2 Binary classification

2.1 Classification risk and classifiers

Let (X,Y ) be a random couple where X ∈ X ⊂ IRd is a vector of covariates and Y ∈ {−1, 1} is a
label that indicates to which class X belongs. A classifier h is a mapping h : X → [−1, 1] whose sign



returns the predicted class given X . An error occurs when −h(X)Y ≥ 0 and it is therefore natural
to define the classification loss by 1I(−h(X)Y ≥ 0), where 1I(·) denotes the indicator function.

The expectation of the classification loss with respect to the joint distribution of (X,Y ) is called
(classification) risk and is defined by

R(h) = P (−h(X)Y ≥ 0) .

Clearly, the indicator function is not convex and for computation, a common practice is to replace
it by a convex surrogate (see, e.g. Bartlett et al., 2006, and references therein).

To this end, we rewrite the risk function as

R(h) = IE[ϕ(−h(X)Y )], (2.1)

where ϕ(z) = 1I (z ≥ 0). Convex relaxation can be achieved by simply replacing the indicator
function by a convex surrogate.

Definition 2.1 A function ϕ : [−1, 1] → R
+ is called a convex surrogate if it is non-decreasing,

continuous and convex and if ϕ(0) = 1.

Commonly used examples of convex surrogates are the hinge loss ϕ(x) = (1 + x)+, the logit loss
ϕ(x) = log2(1 + ex) and the exponential loss ϕ(x) = ex.

For a given choice of ϕ, define the ϕ-risk

Rϕ(h) = IE[ϕ(−Y h(X))] .

Hereafter, we assume that ϕ is fixed and refer to Rϕ as the risk. In our subsequent analysis, this
convex relaxation will also be the ground to analyze a stochastic convex optimization problem subject
to stochastic constraints. A general treatment of such problems can be found in subsection 5.2.

Because of overfitting, it is unreasonable to look for mappings minimizing empirical risk over
all classifiers. Indeed, one could have a small empirical risk but a large true risk. Hence, we
resort to regularization. There are in general two ways to proceed. The first is to restrict the
candidate classifiers to a specific class H, and the second is to change the objective function by, for
example, adding a penalty term. The two approaches can be combined, and sometimes are obviously
equivalent.

In this paper, we pursue the first idea by defining the class of candidate classifiers as follows.
Let h1, . . . , hM ,M ≥ 2 be a given collection of classifiers. In our setup, we allow M to be large.
In particular, our results remain asymptotically meaningful as long as M = o(en). Such classifiers
are usually called base classifiers and can be constructed in a very naive manner. Typical exam-
ples include decision stumps or small trees. While the hj ’s may have no satisfactory classifying
power individually, for over two decades, boosting type of algorithms have successfully exploited the
idea that a suitable weighted majority vote among these classifiers may result in low classification
risk (Schapire, 1990). Consequently, we restrict our search for classifiers to the set of functions
consisting of convex combinations of the hj ’s:

Hconv = {hλ =

M
∑

j=1

λjhj , λ ∈ Λ},

where Λ denotes the flat simplex of IRM and is defined by Λ = {λ ∈ IRM : λj ≥ 0,
∑M

j=1 λj = 1}.
In effect, classification rules given by the sign of h ∈ Hconv are exactly the set of rules produced by
the weighted majority votes among the base classifiers h1, . . . , hM .

By restricting our search to classifiers in Hconv, the best attainable ϕ-risk is called oracle risk
and is abusively denoted by Rϕ(Hconv). As a result, we have Rϕ(h) ≥ Rϕ(Hconv) for any h ∈ Hconv

and a natural measure of performance for a classifier h ∈ Hconv is given by its excess risk defined by
Rϕ(h)−Rϕ(Hconv).

The excess risk of a data driven classifier hn is a random quantity and we are interested in
bounding it with high probability. Formally, the statistical goal of binary classification is to construct
a classifier hn such that the oracle inequality

Rϕ(hn) ≤ Rϕ(hHconv) + ∆n(Hconv, δ) (2.2)

holds with probability 1− δ, where ∆n(·, ·) should be as small as possible.
In the scope of this paper, we focus on candidate classifiers in the class Hconv. Some of the

following results such as Theorem 4.1 can be extended to more general classes of classifiers with
known complexity such as classes with bounded VC-dimension, as for example in Cannon et al.
(2002). However, our main argument for bounding type II error relies on Proposition 4.1 which, in
turn, depends heavily on the convexity of the problem, and it is not clear how it can be extended
to more general classes of classifiers.
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2.2 The Neyman-Pearson paradigm

In classical binary classification, the risk function can be expressed as a convex combination of type I
error R−(h) = IP (−Y h(X) ≥ 0|Y = −1) and of type II error R+(h) = IP (−Y h(X) ≥ 0|Y = 1):

R(h) = IP(Y = −1)R−(h) + IP(Y = 1)R+(h).

More generally, we can define the ϕ-type I and ϕ-type II errors respectively by

R−

ϕ(h) = IE [ϕ(−Y h(X))|Y = −1] and R+

ϕ(h) = IE [ϕ(−Y h(X))|Y = 1] .

Following the NP paradigm, for a given class H of classifiers, we seek to solve the constrained
minimization problem:

min
h∈H

R−

ϕ (h)≤α

R+

ϕ(h), (2.3)

where α ∈ (0, 1), the significance level, is a constant specified by the user.
NP classification is closely related to the NP approach to statistical hypothesis testing. We

now recall a few key concepts about the latter. Many classical works have addressed the theory
of statistical hypothesis testing, in particular Lehmann and Romano (2005) provides a thorough
treatment of the subject.

Statistical hypothesis testing bears strong resemblance with binary classification if we assume
the following model. Let P− and P+ be two probability distributions on X ⊂ IRd. Let p ∈ (0, 1)
and assume that Y ∈ {−1, 1} takes value 1 with probability p and value −1 with probability 1− p.
Assume further that the conditional distribution of X given Y is given by P Y . Given such a model,
the goal of statistical hypothesis testing is to determine whether X was generated from P− or P+.
To that end, we construct a test φ : X → [0, 1] and the conclusion of the test based on φ is that
X is generated from P+ with probability φ(X) and from P− with probability 1− φ(X). Note that
randomness here comes from an exogenous randomization process such as flipping a biased coin.
Two kinds of errors arise: type I error occurs when rejecting P− when it is true, and type II error
occurs when accepting P− when it is false. The Neyman-Pearson paradigm in hypothesis testing
amounts to choosing φ that solves the following constrained optimization problem

maximize IE[φ(X)|Y = 1] ,
subject to IE[φ(X)|Y = −1] ≤ α ,

where α ∈ (0, 1) is the significance level of the test. In other words, we specify a significance level α
on type I error, and minimize type II error. We call a solution to this problem a most powerful test
of level α. The Neyman-Pearson Lemma gives mild sufficient conditions for the existence of such a
test.

Theorem 2.1 (Neyman-Pearson Lemma) Let P− and P+ be probability distributions possessing
densities p− and p+ respectively with respect to some measure µ. Let ϕk(x) = 1I (L(x) ≥ k), where the
likelihood ratio L(x) = p+(x)/p−(x) and k is such that P−(L(X) > k) ≤ α and P−(L(X) ≥ k) ≥ α.
Then,

• ϕk is a level α = IE [ϕk(X)|Y = −1] most powerful test.

• For a given level α, the most powerful test of level α is defined by

φ(X) =







1 if L(X) > k
0 if L(X) < k
α−P−(L(X)>k)
P−(L(X)=k) if L(X) = k .

Notice that in the learning framework, φ cannot be computed since it requires the knowledge of
the likelihood ratio and of the distributions P− and P+. Therefore, it remains merely a theoretical
propositions. Nevertheless, the result motivates the NP paradigm pursued here.

3 Neyman-Pearson classification via convex optimization

Recall that in NP classification with a convex surrogate ϕ, the goal is to solve the following opti-
mization problem

min
h∈H

R−

ϕ (h)≤α

R+

ϕ(h) . (3.1)
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This cannot be done directly as conditional distributions P− and P+, and hence R−

ϕ and R+
ϕ, are

unknown. In statistical applications, information about these distributions is available through two
i.i.d. samples X−

1 , . . . , X
−

n−
, n− ≥ 1 and X+

1 , . . . , X
+

n+ , n
+ ≥ 1, where X−

i ∼ P−, i = 1, . . . , n− and
X+

i ∼ P+, i = 1, . . . , n+. We do not assume that the two samples (X−

1 , . . . , X
−

n−
) and (X+

1 , . . . , X
+

n+)
are mutually independent. Presently the sample sizes n− and n+ are assumed to be deterministic
and will appear in the subsequent finite sample bounds. A different sampling scheme, where these
quantities are random, is investigated in subsection 5.1.

3.1 Previous results and new input

While the binary classification problem has been extensively studied, theoretical proposition on how
to implement the NP paradigm remains scarce. To the best of our knowledge, Cannon et al. (2002)
initiated the theoretical treatment of the NP classification paradigm and an early empirical study
can be found in Casasent and Chen (2003). The framework of Cannon et al. (2002) is the following.
Fix a constant ε0 > 0 and let H be a given set of classifiers with finite VC dimension. They study
a procedure that consists of solving the following relaxed empirical optimization problem

min
h∈H

R̂−(h)≤α+ε0/2

R̂+(h), (3.2)

where

R̂−(h) =
1

n−

n−

∑

i=1

1I(h(X−

i ) ≥ 0) , and R̂+(h) =
1

n+

n+
∑

i=1

1I(h(X−

i ) ≤ 0)

denote the empirical type I and empirical type II errors respectively. Let ĥ be a solution to (3.2).
Denote by h∗ a solution to the original Neyman-Pearson optimization problem:

h∗ ∈ argmin
h∈H

R−(h)≤α

R+(h) , (3.3)

The main result of Cannon et al. (2002) states that, simultaneously with high probability, the type II

error R+(ĥ) is bounded from above by R+(h∗) + ε1, for some ε1 > 0 and the type I error of ĥ is
bounded from above by α + ǫ0. In a later paper, Cannon et al. (2003) consider problem (3.2) for
a data-dependent family of classifiers H, and bound estimation errors accordingly. Several results
for traditional statistical learning such as PAC bounds or oracle inequalities have been studied in
Scott (2005) and Scott and Nowak (2005) in the same framework as the one laid down by Cannon
et al. (2002). A noteworthy departure from this setup is Scott (2007) where sensible performance
measures for NP classification that go beyond analyzing separately two kinds of errors are introduced.
Moreover, Corollary 1 in Scott (2007) provides an oracle inequality for the type II error of a classifier
that satisfies an strict constraint on the type I error. However, this result is not directly comparable
to the present paper since the rate at which the type II error decreases is not explicitly controlled.
This drawback is inherent to methods based on empirical risk minization as opposed to convexified
methods as discussed below. Finally, a related work is that of Blanchard et al. (2010) who develop a
general solution to semi-supervised novelty detection by reducing it to NP classification. Recently,
Han et al. (2008) transposed several results of Cannon et al. (2002) and Scott and Nowak (2005) to
NP classification with convex loss.

The present work departs from previous literature in our treatment of type I error. As a matter

of fact, the classifiers in all the papers mentioned above can only ensure that IP(R−(ĥ) > α + ε0)

is small, for some ǫ0 > 0. However, it is our primary interest to make sure that R−(ĥ) ≤ α with
high probability, following the original principle of the Neyman-Pearson paradigm that type I error

should be controlled by a pre-specified level α. As will be illustrated, to control IP(R−(ĥ) > α), it

is necessary to have ĥ be a solution to some program with a strengthened constraint on empirical
type I error. If our concern is only on type I error, we can just do so. However, we also want to
control excess type II error simultaneously.

The difficulty was foreseen in the seminal paper Cannon et al. (2002), where it is claimed without
justification that if we use α′ < α for the empirical program, “it seems unlikely that we can control

the estimation error R+(ĥ) − R+(h∗) in a distribution independent way”. We have analytically
confirmed this opinion, but due to limited space we refer the interested reader to the full version of
this paper (Rigollet and Tong, 2011).
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To overcome this dilemma, we resort to a continuous convex surrogate as our loss function. In
particular, we design a modified version of empirical risk minimization method such that the data-

driven classifier ĥ has type I error bounded by α with high probability. Moreover, we consider here
a class H that allows a different treatment of the empirical processes involved.

This new approach comes with new technical challenges which we summarize here. In the
approach of Cannon et al. (2002) and of Scott and Nowak (2005), the relaxed constraint on the

type I error is constructed such that the constraint R̂−(h) ≤ α + ε0/2 on type I error in (3.2) is
satisfied by h∗ with high probability, and that this classifier accommodates excess type II error
well. As a result, the control of type II error mainly follows as a standard exercise to control
suprema of empirical processes. This is not the case here; we have to develop methods to control the
optimum value of a convex optimization problem under a stochastic constraint. Such methods have
consequences not only in NP classification but also on chance constrained optimization as explained
in subsection 5.2.

3.2 Convexified NP classifier

To solve the problem of NP classification (2.3) where the distribution of the observations is unknown,
we resort to empirical risk minimization. In view of the arguments presented in the previous sub-
section, we cannot simply replace the unknown true risk functions by their empirical counterparts.
The treatment of the convex constraint should be done carefully and we proceed as follows.

For any classifier h and a given convex surrogate ϕ, define R̂−

ϕ and R̂+
ϕ to be the empirical

counterparts of R−

ϕ and R+
ϕ respectively by

R̂−

ϕ(h) =
1

n−

n−

∑

i=1

ϕ(h(X−

i )) , and R̂+

ϕ(h) =
1

n+

n+
∑

i=1

ϕ(−h(X+

i )) .

Moreover, for any a > 0, let Hϕ,a = {h ∈ Hconv : R−

ϕ(h) ≤ a} be the set of classifiers in Hconv

whose convexified type I errors are bounded from above by a, and let Hϕ,a
n−

= {h ∈ Hconv : R̂−

ϕ(h) ≤
a} be the set of classifiers in Hconv whose empirical convexified type I errors are bounded by a. To
make our analysis meaningful, we assume that Hϕ,α 6= ∅.

We are now in a position to construct a classifier in Hconv according to the Neyman-Pearson
paradigm. For any τ > 0 such that τ ≤ α

√
n−, define the convexified NP classifier h̃τ as any

classifier that solves the following optimization problem

min
h∈Hconv

R̂−

ϕ (h)≤α−τ/
√
n−

R̂+

ϕ(h) . (3.4)

Note that this problem consists of minimizing a convex function subject to a convex constraint and
can therefore be solved by standard algorithms such as (see, e.g., Boyd and Vandenberghe, 2004,
and references therein). In the next section, we present a series of results on type I and type II

errors of classifiers that include h̃τ .

4 Performance Bounds

4.1 Control of type I error

The first challenge is to identify classifiers h such that R−

ϕ(h) ≤ α with high probability. This is

done by enforcing its empirical counterpart R̂−

ϕ(h) be bounded from above by the quantity

ατ = α− τ/
√
n−,

for a proper choice of positive constant τ .

Theorem 4.1 Fix constants δ, α ∈ (0, 1), L > 0 and let ϕ : [−1, 1] → IR+ be a given L-Lipschitz
convex surrogate. Define

τ = 4
√
2L

√

log

(

2M

δ

)

. (4.1)

Then for any classifier h ∈ Hconv that satisfies R̂−

ϕ(h) ≤ ατ , we have

R−(h) ≤ R−

ϕ(h) ≤ α ,

with probability at least 1− δ. Equivalently

IP
[

Hϕ,ατ

n−
⊂ Hϕ,α

]

≥ 1− δ . (4.2)
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4.2 Simultaneous control of the two errors

Theorem 4.1 guarantees that any classifier that satisfies the strengthened constraint on the empirical
ϕ-type I error will have ϕ-type I error and true type I error bounded from above by α. We now
check that the constraint is not too strong so that the type II error is overly deteriorated. Indeed,
an extremely small ατ would certainly ensure a good control of type I error but would deteriorate
significantly the best achievable type II error. Below, we show not only that this is not the case
for our approach but also that the convexified NP classifier h̃τ defined in subsection 3.2 with τ
defined in (4.1) suffers only a small degradation of its type II error compared to the best achievable.
Analogues to classical binary classification, a desirable result is that with high probability,

R+

ϕ(h̃
ατ )− min

h∈Hϕ,α
R+

ϕ(h) ≤ ∆̃n(F), (4.3)

where ∆̃n(F) goes to 0 as n = n− + n+ → ∞.
The following proposition is pivotal to our argument.

Proposition 4.1 Fix constant α ∈ (0, 1) and let ϕ : [−1, 1] → IR+ be a given continuous con-
vex surrogate. Assume further that there exists ν0 > 0 such that the set of classifiers Hϕ,α−ν0 is
nonempty. Then, for any ν ∈ (0, ν0),

min
h∈Hϕ,α−ν

R+

ϕ(h)− min
h∈Hϕ,α

R+

ϕ(h) ≤ ϕ(1)
ν

ν0 − ν
.

This proposition ensures that if the convex surrogate ϕ is continuous, strengthening the constraint
on type I error does not deteriorate too much the optimal type II error. We should mention that
the proof does not use the Lipschitz property of ϕ, but only that it is uniformly bounded by ϕ(1) on
[−1, 1]. This proposition has direct consequences on chance constrained optimization as discussed
in subsection 5.2.

The next theorem shows that the NP classifier h̃τ defined in subsection 3.2 is a good candidate
to perform classification with the Neyman-Pearson paradigm. It relies on the following assumption
which is necessary to verify the condition of Proposition 4.1.

Assumption 1 There exists a positive constant ε < 1 such that the set of classifiers Hϕ,εα is
nonempty.

Note that this assumption can be tested using (4.2) for large enough n−. Indeed, it follows from
this inequality that with probability 1− δ,

Hϕ,εα−τ/
√
n−

n−
⊂ Hϕ,εα−τ/

√
n−+τ/

√
n−

= Hϕ,εα .

Thus, it is sufficient to check if Hϕ,εα−τ/
√
n−

n−
is nonempty for some ε > 0. Before stating our main

theorem, we need the following definition. Under Assumption 1, let ε̄ denote the smallest ε such
that Hϕ,εα 6= ∅ and let n0 be the smallest integer such that

n0 ≥
(

4τ

(1− ε̄)α

)2

. (4.4)

Theorem 4.2 Let ϕ, τ , δ and α be the same as in Theorem 4.1, and h̃τ denote any solution to (3.4).
Moreover, let Assumption 1 hold and assume that n− ≥ n0 where n0 is defined in (4.4). Then, the
following hold with probability 1− 2δ,

R−(h̃τ ) ≤ R−

ϕ(h̃
τ ) ≤ α (4.5)

and

R+

ϕ(h̃
τ )− min

h∈Hϕ,α
R+

ϕ(h) ≤
4ϕ(1)τ

(1− ε̄)α
√
n−

+
2τ√
n+

. (4.6)

In particular, there exits a constant C > 0 depending on α, ϕ(1) and ε̄ such that (4.6) yields

R+

ϕ(h̃
τ )− min

h∈Hϕ,α
R+

ϕ(h) ≤ C

(
√

log(2M/δ)

n−

+

√

log(2M/δ)

n+

)

Note here that Theorem 4.2 is not exactly of the type (4.3). The right hand side of (4.6) goes to
zero if both n− and n+ go to infinity. Moreover, inequality (4.6) conveys a message that accuracy of
the estimate depends on information from both classes of labeled data. This concern motivates us
to consider a different sampling scheme,under which parallel results to Theorem 4.5 and Theorem
4.6 are developed, and relegated to Section 6.
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5 Extensions

5.1 A Different Sampling Scheme

We now consider a model for observations that is more standard in statistical learning theory (De-
vroye et al., 1996, Boucheron et al., 2005, see, e.g.,).

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of the random couple (X,Y ) ∈ X × {−1, 1}.
Denote by PX the marginal distribution of X and by η(x) = IE[Y |X = x] the regression function of
Y onto X . Denote by p the probability of positive label and observe that

p = IP[Y = 1] = IE (IP[Y = 1|X ]) =
1 + IE[η(X)]

2
.

In what follows, we assume that PX(η(X) = −1) ∨ PX(η(X) = 1) < 1 so that p ∈ (0, 1).
LetN− = card{Yi : Yi = −1} be the random number of instances labeled −1 and N+ = n−N− =

card{Yi : Yi = 1}. In this setup, the NP classifier is defined as in subsection 3.2 where n− and n+

are replaced by N− and N+ respectively. To distinguish this classifier from h̃τ previously defined,
we denote the NP classifier obtained with this sampling scheme by h̃τ

n.
Let the event F be defined by

F = {R−

ϕ(h̃
τ
n) ≤ α} ∩ {R+

ϕ(h̃
τ
n)− min

h∈Hϕ,α
R+

ϕ(h) ≤
4ϕ(1)τ

(1− ε̄)α
√
N−

+
2τ√
N+

}.

Denote Bn− = {Y1 = · · · = Yn− = −1, Yn−+1 = · · · = Yn = 1}. Although the event Bn− is different
from the event {N− = n−}, symmetry leads to the following key observation:

IP(F|N− = n−) = IP(F|Bn−).

Therefore, under the conditions of Theorem 4.2, we find that for n− ≥ n0 the event F satisfies

IP(F|N− = n−) ≥ 1− 2δ . (5.1)

We obtain the following corollary of Theorem 4.2.

Corollary 5.1 Let ϕ, τ , δ and α be the same as in Theorem 4.1, and h̃τ
n be the NP classifier

obtained with the current sampling scheme. Then under Assumption 1, if n > 2n0/(1 − p), where

n0 is defined in (4.4), we have with probability (1 − 2δ)(1− e−
n(1−p)2

2 ),

R−(h̃τ
n) ≤ R−

ϕ(h̃
τ
n) ≤ α (5.2)

and

R+

ϕ(h̃
τ
n)− min

h∈Hϕ,α
R+

ϕ(h) ≤
4ϕ(1)τ

(1− ε̄)α
√
N−

+
2τ√
N+

. (5.3)

Moreover, with probability 1− 2δ − e−
n(1−p)2

2 − e−
np2

2 , we have simultaneously (5.2) and

R+

ϕ(h̃
τ
n)− min

h∈Hϕ,α
R+

ϕ(h) ≤
4
√
2ϕ(1)τ

(1− ε̄)α
√

n(1− p)
+

2
√
2τ√
np

. (5.4)

5.2 Chance constrained optimization

Implementing the Neyman-Pearson paradigm for the convexified binary classification bears strong
connections with chance constrained optimization. A recent account of such problems can be found
in Ben-Tal et al. (2009, Chapter 2) and we refer to this book for references and applications. A
chance constrained optimization problem is of the following form:

min
λ∈Λ

f(λ) s.t. IP{F (λ, ξ) ≤ 0} ≥ 1− α, (5.1)

where ξ is a random vector, Λ ⊂ R
M is convex, α is a small positive number and f is a deterministic

real valued convex function. For simplicity, we take F to be scalar valued but extensions to vector
valued functions and conic orders are considered in (see, e.g., Ben-Tal et al., 2009, Chapter 10).
Moreover, it is standard to assume that F (·, ξ) is convex almost surely.

Problem (5.1) may not be convex because the chance constraint {λ ∈ Λ, : IP{F (λ, ξ) ≤ 0} ≥
1 − α} is not convex in general and thus may not be tractable. To solve this problem, Prékopa
(1995) and Lagoa et al. (2005) have derived sufficient conditions on the distribution of ξ for the
chance constraint to be convex. On the other hand, Calafiore and Campi (2006) initiated a different
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treatment of the problem where no assumption on the distribution of ξ is made, in line with the
spirit of statistical learning. In that paper, they introduced the so-called scenario approach based
on a sample ξ1, . . . , ξn of independent copies of ξ. The scenario approach consists of solving

min
λ∈Λ

f(λ) s.t. F (λ, ξi) ≤ 0, i = 1, . . . , n. (5.2)

Calafiore and Campi (2006) showed that under certain conditions, if the sample size n is bigger than

some n(α, δ), then with probability 1− δ, the optimal solution λ̂sc of (5.2) is feasible for (5.1). The

authors did not address the control of the term f(λ̂sc)− f∗ where f∗ denotes the optimal objective
value in (5.1).

In an attempt to overcome this limitation, a new analytical approach was introduced by (Ne-
mirovski and Shapiro, 2006). It amounts to solving the following convex optimization problem

min
λ∈Λ,t∈Rs

f(λ) s.t. G(λ, t) ≤ 0, (5.3)

in which t is some additional instrumental variable and where G(·, t) is convex. The problem (5.3)
provides a conservative convex approximation to (5.1), in the sense that every λ feasible for (5.3) is
also feasible for (5.1). Nemirovski and Shapiro (2006) considered a particular class of conservative
convex approximation where the key step is to replace Pξ{F (λ, ξ) ≥ 0} by IEϕ(F (λ, ξ)) in (5.1),
where ϕ a nonnegative, nondecreasing, convex function that takes 1 at 0. Nemirovski and Shapiro
(2006) discuss several choices of ϕ including hinge loss and exponential loss, with a focus on the
latter that they name Bernstein Approximation.

The idea of a conservative convex approximation is also what we employ in our paper. Denote
by P− the conditional distribution of X given Y = −1. In a parallel form of (5.1), we cast our
target problem as

min
λ∈Λ

R+(hλ) s.t. P−{hλ(X) ≤ 0} ≥ 1− α, (5.4)

where Λ is the flat simplex of IRM .
The problem (5.4) differs from (5.1) in that R+(hλ) is not a convex function of λ. Replacing

R+(hλ) by R+
ϕ(hλ) turns (5.4) into a standard chance constrained optimization problem:

min
λ∈Λ

R+

ϕ(hλ) s.t. P−{hλ(X) ≤ 0} ≥ 1− α. (5.5)

However, there are two important differences in our setting, so that we cannot use directly Scenario
Approach or Bernstein Approximation or other analytical approaches to (5.1). First, R+

ϕ(fλ) is
an unknown function of λ. Second, we assume minimum knowledge about P−. On the other
hand, chance constrained optimization techniques in previous literature assume knowledge about
the distribution of the random vector ξ. For example, Nemirovski and Shapiro (2006) require
that the moment generating function of the random vector ξ is efficiently computable to study the
Bernstein Approximation.

Given a finite sample, it is not feasible to construct a strictly conservative approximation to the

constraint in (5.5). Instead, what possible is to ensure that if we learned f̂λ from the sample, this
constraint is satisfied with high probability 1 − δ, i.e., the classifier is approximately feasible for
(5.5). In retrospect, our approach to (5.5) is an innovative hybrid between the analytical approach
based on convex surrogates and the scenario approach.

We do have structural assumptions on the scope of the problem. Let gj , j ∈ {1, . . . ,M} be

arbitrary functions that take values in [−1, 1] and F (λ, ξ) =
∑N

j=1 λjgj(ξ). Consider a convexified

version of (5.1):

min
λ∈Λ

f(λ) s.t. IE[ϕ(F (λ, ξ))] ≤ α, (5.6)

where ϕ is a L-Lipschitz convex surrogate, L > 0. Suppose that we observe a sample (ξ1, . . . , ξn)
that are independent copies of ξ. Denote by f∗

ϕ the value of the objective at the optimum in (5.6).
We propose to approximately solve the above problem by

min
λ∈Λ

f(λ) s.t.
n
∑

i=1

ϕ(F (λ, ξi)) ≤ nα− τ
√
n ,

for some τ > 0 to be defined. Denote by λ̃ any solution to this problem. The following theorem
summarizes our contribution to chance constrained optimization.
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Theorem 5.1 Fix constants δ, α ∈ (0, 1), L > 0 and let ϕ : [−1, 1] → IR+ be a given L-Lipschitz
convex surrogate. Define

τ = 4
√
2L

√

log

(

2M

δ

)

.

Then, the following hold with probability at least 1− 2δ

(i) λ̃ is feasible for (5.1).

(ii) If there exists ε ∈ (0, 1) such that the constraint IE[ϕ(F (λ, ξ))] ≤ εα is feasible for some λ ∈ Λ,
then for

n ≥
(

4τ

(1 − ε)α

)2

,

we have

f(λ̃)− f∗
ϕ ≤ 4ϕ(1)τ

(1− ε)α
√
n
.

The proof essentially follows that of Theorem 4.2 and we omit it. The limitations of Theorem 5.1
include rigid structural assumptions on the function F and on the set Λ. Also, we did not address
the effect of replacing the indicator function by a convex surrogate; this investigation is beyond the
scope of this paper.

6 Proofs

6.1 Proof of Theorem 4.1

We begin with the following lemma, which is extensively used in the sequel. Its proof relies on
standard arguments to bound suprema of empirical processes. Recall that {h1, . . . , hM} is family of
M classifiers such that hj : X → [−1, 1] and that for any λ in the simplex Λ ⊂ RM , hλ denotes the
convex combination defined by

hλ =

N
∑

j=1

λjhj .

The following standard notation in empirical process theory will be used. Let X1, . . . , Xn ∈ X be n
i.i.d random variables with marginal distribution P . Then for any measurable function f : X → IR,
we write

Pn(f) =
1

n

n
∑

i=1

f(Xi) and P (f) = IEf(X) =

∫

fdP .

Moreover, the Rademacher average of f is defined as

Rn(f) =
1

n

n
∑

i=1

εif(Xi) ,

where ε1, . . . , εn are i.i.d. Rademacher random variables such that IP(εi = 1) = IP(εi = −1) = 1/2
for i = 1, . . . , n.

Lemma 6.1 Fix L > 0, δ ∈ (0, 1). Let X1, . . . , Xn be n i.i.d random variables on X with marginal
distribution P . Moreover, let ϕ : [−1, 1] → IR an L-Lipschitz function. Then, with probability at
least 1− δ, it holds

sup
λ∈Λ

|(Pn − P )(ϕ ◦ hλ)| ≤
4
√
2L√
n

√

log

(

2M

δ

)

.

Proof. Define ϕ̄(·) .
= ϕ(·) − ϕ(0), so that ϕ̄ is an L-Lipschitz function that satisfies ϕ̄(0) = 0.

Moreover, for any λ ∈ Λ, it holds

(Pn − P )(ϕ ◦ hλ) = (Pn − P )(ϕ̄ ◦ hλ) .
Let Φ : IR → IR+ be a given convex increasing function. Applying successively the symmetrization
and the contraction inequalities (see, e.g., Koltchinskii, 2008, Section 2), we find

IEΦ

(

sup
λ∈Λ

|(Pn − P )(ϕ̄ ◦ hλ)|
)

≤ IEΦ

(

2 sup
λ∈Λ

|Rn(ϕ̄ ◦ hλ)|
)

≤ IEΦ

(

4L sup
λ∈Λ

|Rn(hλ)|
)

.

9



Observe now that λ 7→ |Rn(hλ)| is a convex function and Theorem 32.2 in Rockafellar (1997) entails
that

sup
λ∈Λ

|Rn(hλ)| = max
1≤j≤M

|Rn(hj)| .

We now use a Chernoff bound to control this quantity. To that end, fix s, t > 0, and observe that

IP

(

sup
λ∈Λ

|(Pn − P )(ϕ ◦ hλ)| > t

)

≤ 1

Φ(st)
IEΦ

(

s sup
λ∈Λ

|(Pn − P )(ϕ̄ ◦ hλ)|
)

≤ 1

Φ(st)
IEΦ

(

4Ls max
1≤j≤M

|Rn(hj)|
)

. (6.7)

Moreover, since Φ is increasing,

IEΦ

(

4Ls max
1≤j≤M

|Rn(hj)|
)

= IE max
1≤j≤M

Φ (4Ls |Rn(hj)|)

≤
M
∑

j=1

IE [Φ (4LsRn(hj)) ∨ Φ (−4LsRn(hj))]

≤ 2
M
∑

j=1

IEΦ (4LsRn(hj)) . (6.8)

Now choose Φ(·) = exp(·), then

IEΦ (4LsRn(hj)) =

n
∏

i=1

IE cosh

(

4Lshj(Xi)

n

)

≤ exp

(

8L2s2

n

)

,

where cosh is the hyperbolic cosine function and where in the inequality, we used the fact that
|hj(Xi)| ≤ 1 for any i, j and cosh(x) ≤ exp(x2/2). Together with (6.7) and (6.8), it yields

IP

(

sup
λ∈Λ

|(Pn − P )(ϕ ◦ hλ)| > t

)

≤ 2M inf
s>0

exp

(

8L2s2

n
− st

)

≤ 2M exp

(

− nt2

32L2

)

.

Choosing

t =
4
√
2L√
n

√

log

(

2M

δ

)

,

completes the proof of the Lemma. �

We now proceed to the proof of Theorem 4.1. Note first that from the properties of ϕ, R−(h) ≤
R−

ϕ(h). Next, we have for any data-dependent classifier h ∈ Hconv such that R̂−

ϕ(h) ≤ ατ :

R−

ϕ(h) ≤ R̂−

ϕ(h) + sup
h∈Hconv

∣

∣

∣
R̂−

ϕ(h)−R−

ϕ(h)
∣

∣

∣
≤ α− τ√

n−

+ sup
h∈Hconv

∣

∣

∣
R̂−

ϕ(h)−R−

ϕ(h)
∣

∣

∣
.

Lemma 6.1 implies that, with probability 1− δ

sup
h∈Hconv

∣

∣

∣
R̂−

ϕ(h)−R−

ϕ(h)
∣

∣

∣
= sup

λ∈Λ

∣

∣(P−

n−
− P−)(ϕ ◦ hλ)

∣

∣ ≤ τ√
n−

.

The previous two displays imply that R−

ϕ(h) ≤ α with probability 1− δ, which completes the proof
of Theorem 4.1.

6.2 Proof of Proposition 4.1

The proof of this proposition builds upon the following lemma.

Lemma 6.2 Let γ(α) = infhλ∈Hϕ,α R+
ϕ(hλ), then γ is a non-increasing convex function on [0, 1].

Proof. First, it is clear that γ is a non-increasing function of α because for α′ > α, {hλ ∈ Hconv :
R−

ϕ(hλ) ≤ α} ⊂ {hλ ∈ Hconv : R−

ϕ(hλ) ≤ α′}.
We now show that γ is convex. To that end, observe first that since ϕ is continuous on [−1, 1],

the set {λ ∈ Λ : hλ ∈ Hϕ,α} is compact. Moreover, the function λ 7→ R+
ϕ(hλ) is convex. Therefore,

there exits λ∗ ∈ Λ such that

γ(α) = inf
hλ∈Hϕ,α

R+

ϕ(hλ) = min
hλ∈Hϕ,α

R+

ϕ(hλ) = R+

ϕ(hλ∗) .
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Now, fix α1, α2 ∈ [0, 1]. From the above considerations, there exits λ1, λ2 ∈ Λ such that γ(α1) =
R+

ϕ(hλ1) and γ(α2) = R+
ϕ(hλ2). For any θ ∈ (0, 1), define the convex combinations ᾱθ = θα1 + (1−

θ)α2 and λ̄θ = θλ1 + (1− θ)λ2. Since λ 7→ R−

ϕ(hλ) is convex, it holds

R−

ϕ(hλ̄θ
) ≤ θR−

ϕ(hλ1) + (1 − θ)R−

ϕ(hλ2) ≤ θα1 + (1 − θ)α2 = ᾱθ ,

so that hλ̄θ
∈ Hϕ,ᾱθ . Hence, γ(ᾱθ) ≤ R+

ϕ(hλ̄θ
). Together with the convexity of ϕ, it yields

γ(θα1 + (1− θ)α2) ≤ θR+

ϕ(hλ1) + (1 − θ)R+

ϕ(hλ2) = θγ(α1) + (1 − θ)γ(α2) .

�

We now complete the proof of Proposition 4.1. For any x ∈ [0, 1], let γ(x) = infh∈Hϕ,x R+
ϕ(h)

and observe that the statement of the proposition is equivalent to

γ(α− ν)− γ(α) ≤ ϕ(1)
ν

ν0 − ν
0 < ν < ν0 . (6.9)

Lemma 6.2 together with the assumption that Hϕ,α−ν0 6= ∅ imply that γ is a non-increasing convex
real-valued function on [α− ν0, 1] so that

γ(α− ν)− γ(α) ≤ ν sup
g∈∂γ(α−ν)

|g| ,

where ∂γ(α − ν) denotes the sub-differential of γ at α − ν. Moreover, since γ is a non-increasing
convex function on [α− ν0, α− ν], it holds

γ(α− ν0)− γ(α− ν) ≥ (ν − ν0) sup
g∈∂γ(α−ν)

|g| .

The previous two displays yield

γ(α− ν)− γ(α) ≤ ν
γ(α− ν0)− γ(α− ν)

ν − ν0
≤ ν

ϕ(1)

ν − ν0
.

6.3 Proof of Theorem 4.2

Define the events E− and E+ by

E− =
⋂

h∈Hconv

{|R̂−

ϕ(h)−R−

ϕ(h)| ≤
τ√
n−

} ,

E+ =
⋂

h∈Hconv

{|R̂+

ϕ(h)−R+

ϕ(h)| ≤
τ√
n+

} .

Lemma 6.1 implies
IP(E−) ∧ IP(E+) ≥ 1− δ . (6.10)

Note first Theorem 4.1 implies that (4.5) holds with probability 1 − δ. Observe now that the l.h.s
of (4.6) can be decomposed as

R+

ϕ(h̃
τ )− min

h∈Hϕ,α
R+

ϕ(h) = A1 +A1 +A3 ,

where

A1 =
(

R+

ϕ(h̃
τ )− R̂+

ϕ(h̃
τ )
)

+

(

R̂+

ϕ(h̃
τ )− min

h∈Hϕ,ατ

n−

R+

ϕ(h)

)

A2 = min
h∈Hϕ,ατ

n−

R+

ϕ(h)− min
h∈Hϕ,α2τ

R+

ϕ(h)

A3 = min
h∈Hϕ,α2τ

R+

ϕ(h)− min
h∈Hϕ,α

R+

ϕ(h)

To bound A1 from above, observe that

A1 ≤ sup
h∈Hϕ,ατ

n−

2|R̂+

ϕ(h)−R+

ϕ(h)| ≤ 2 sup
h∈Hconv

|R̂+

ϕ(h)−R+

ϕ(h)|, .

Therefore, on the event E+ it holds

A1 ≤ 2τ√
n+

.
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We now treat A2. Note that A2 ≤ 0 if Hϕ,α2τ ⊂ Hϕ,ατ

n−
and note that A2 ≤ 0 on this event. But

this event contains E− so that A2 ≤ 0 on the event E−.
Finally, to control A3, observe that under Assumption 1, Proposition 4.1 can be applied with

ν = 2τ/
√
n− and ν0 = (1 − ε̄)α. Indeed, the assumptions of the theorem imply that ν ≤ ν0/2. It

yields

A3 ≤ 4ϕ(1)τ

(1− ε̄)α
√
n−

.

Combining the bounds on A1, A2 and A3 obtained above, we find that (4.6) holds on the event
E− ∩ E+ that has probability at least 1− 2δ in view of (6.10).

The last statement of the theorem follows directly from the definition of τ .

6.4 Proof of Corollary 5.1

We will use the following Lemma to bound the left tail of a binomial distribution, whose proof we
omit for this short version.

Lemma 6.3 Let N be a binomial random variables with parameters n ≥ 1 and q ∈ (0, 1). Then,
for any t > 0 such that t ≤ nq/2, it holds

IP(N ≥ t) ≥ 1− e−
nq2

2 .

Now prove (5.3),

IP(F) =

n
∑

n−=0

IP(F|N− = n−)IP(N− = n−)

≥
n
∑

n−=n0

IP(F|N− = n−)IP(N− = n−)

≥ (1− 2δ)IP(N− ≥ n0) ,

where in the last inequality, we used (5.1). Applying now Lemma 6.3, we obtain

IP(N− ≥ n0) ≥ 1− e−
n(1−p)2

2 .

Therefore,

IP(F) ≥ (1 − 2δ)(1− e−
n(1−p)2

2 ) ,

which completes the proof of (5.3).
The proof of (5.4) follows by observing that

{

R+

ϕ(h̃
τ
n)− min

h∈Hϕ,α
R+

ϕ(h) >
4
√
2ϕ(1)τ

(1− ε̄)α
√

n(1− p)
+

2
√
2τ√
np

}

⊂ A1 ∪A2 ∪A3 = (A1 ∩Ac
2)∪A2 ∪A3 ,

where

A1 =

{

R+

ϕ(h̃
τ
n)− min

h∈Hϕ,α
R+

ϕ(h) >
4ϕ(1)τ

(1− ε̄)α
√
N−

+
2τ√
N+

}

⊂ Fc ,

A2 = {N− < n(1− p)/2} ,
A3 = {N+ < np/2} .

Since Ac
2 ⊂ {N− ≥ n0}, we find

IP(A1 ∩ Ac
2) ≤

∑

n−≥n0

IP(Fc|N− = n−)IP(N− = n−) ≤ 2δ .

Next, using Lemma 6.3, we get

IP(A2) ≤ e−
n(1−p)2

2 and IP(A3) ≤ e−
np2

2 .

Hence, we find

IP

{

R+

ϕ(h̃
τ
n)− min

h∈Hϕ,α
R+

ϕ(h) >
4
√
2ϕ(1)τ

(1 − ε̄)α
√

n(1− p)
+

2
√
2τ√
np

}

≤ 2δ + e−
n(1−p)2

2 + e−
np2

2 ,

which completes the proof of the corollary.
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