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Abstract

We explore a transfer learning setting, in which a finite seqe of target concepts are sampled
independently with an unknown distribution from a known figmWe study the total number of
labeled examples required to learn all targets to an arpigpecified expected accuracy, focusing
on the asymptotics in the number of tasks and the desiredaxycuOur primary interest is for-
mally understanding the fundamental benefits of transégniag, compared to learning each target
independently from the others. Our approach to the tragsteslem is general, in the sense that
it can be used with a variety of learning protocols. The kesight driving our approach is that
the distribution of the target concepts is identifiable frtra joint distribution over a number of
random labeled data points equal the Vapnik-Chervonenkigmasion of the concept space. This
is not necessarily the case for the joint distribution owgr smaller number of points. This work
has particularly interesting implications when appliedbtive learning methods.

1 Introduction

Transfer learning reuses knowledge from past related taskase the process of learning to perform a new
task. The goal of transfer learning is to leverage previeasiing and experience to more efficiently learn
novel, but related, concepts, compared to what would beilessithout this prior experience. The utility
of transfer learning is typically measured by a reductiorthie number of training examples required to
achieve a target performance on a sequence of relatedrigasroblems, compared to the number required
for unrelated problems: i.e., reduced sample complexitymhny real-life scenarios, just a few training
examples of a new concept or process is often sufficient famaam learner to grasp the new concept given
knowledge of related ones. For example, learning to drivarahecomes much easier a task if we have
already learned how to drive a car. Learning French is soraeedsier if we have already learned English
(vs Chinese), and learning Spanish is easier if we know Boese (vs German). We are therefore interested
in understanding the conditions that enable a learning madb leverage abstract knowledge obtained as a
by-product of learning past concepts, to improve its penfomce on future learning problems. Furthermore,
we are interested in how the magnitude of these improvengnotgs as the learning system gains more
experience from learning multiple related concepts.

The ability to transfer knowledge gained from previous sagkmake it easier to learn a new task can
potentially benefit a wide range of real-world applicatiansluding computer vision, natural language pro-
cessing, cognitive science (e.g., fMRI brain state clasgifin), and speech recognition, to name a few. As
an example, consider training a speech recognizer. Af&énitrg on a number of individuals, a learning
system can identify common patterns of speech, such astaawetialects, each of which requires a slightly
different speech recognizer; then, given a new person o &raecognizer for, it can quickly determine the
particular dialect from only a few well-chosen examples] are the previously-learned recognizer for that
particular dialect. In this case, we can think of the tramsfitknowledge as consisting of the common aspects
of each recognizer variant and more generallydtstribution of speech patterns existing in the population
these subjects are from. This same type of distributioateel knowledge transfer can be helpful in a host of
applications, including all those mentioned above.

Supposing these target concepts (e.g., speech patteensarapled independently from a fixed popula-
tion, having knowledge of the distribution of concepts im fiopulation may often be quite valuable. More
generally, we may consider a general scenario in which ttgetaoncepts are sampled i.i.d. according
to a fixed distribution. As we show below, the number of labedgamples required to learn a target con-
cept sampled according to this distribution may be draraliyiceduced if we have direct knowledge of the



distribution. However, since in many real-world learnirmgsarios, we do not have direct access to this dis-
tribution, it is desirable to be able to somehkarn the distribution, based on observations from a sequence
of learning problems with target concepts sampled accgrithat distribution. The hope is that an estimate
of the distribution so-obtained might be almost as usefudiesct access to the true distribution in reduc-
ing the number of labeled examples required to learn sulesgdarget concepts. The focus of this paper
is an approach to transfer learning based on estimatingistrébdtion of the target concepts. Whereas we
acknowledge that there are other important challengesister learning, such as exploring improvements
obtainable from transfer under various alternative natiohtask relatedness (Evgeniou and Pontil, 2004,
Ben-David and Schuller, 2003), or alternative reuses ofrkedge obtained from previous tasks (Thrun,
1996), we believe that learning the distribution of targeieepts is a central and crucial component in many
transfer learning scenarios, and can reduce the total sagopiplexity across tasks.

Note that it is not immediately obvious that the distributif targets can even be learned in this context,
since we do not have direct access to the target conceptdexhageording to it, but rather have only indirect
access via a finite number of labeled examples for each tasiignéicant part of the present work focuses
on establishing that as long as these finite labeled samp@darger than a certain size, they hold sufficient
information about the distribution over concepts for estilon to be possible. In particular, in contrast to
standard results on consistent density estimation, oumatirs are not directly based on the target concepts,
but rather are only indirectly dependent on these via thel$abf a finite number of data points from each
task. One desideratum we pay particular attention to ismmzing the number oéxtralabeled examples
needed for each task, beyond what is needed for learningdhn@étular target, so that the benefits of transfer
learning are obtained almost asg-productof learning the targets. Our technique is general, in that it
applies to any concept space with finite VC dimension; alsprocess of learning the target concepts is (in
some sense) decoupled from the mechanism of learning treepbdistribution, so that we may apply our
technique to a variety of learning protocols, includinggdes supervised learning, active supervised learning,
semi-supervised learning, and learning with certain gardata-dependent forms of interaction (Hanneke,
2009). For simplicity, we choose to formulate our transtarhing algorithms in the language of active
learning; as we explain below, this problem can benefit ficanitly from transfer. Formulations for other
learning protocols would follow along similar lines, withalogous theorems; only the results in Section 4.1
are specific to active learning.

Transfer learning is related at least in spirit to much eamiork on case-based and analogical learning
(Carbonell, 1983, 1986, Veloso and Carbonell, 1993, Kodod&d), 1993, Thrun, 1996), although that body
of work predated modern machine learning, and focused obsljoreuse of past problem solving solutions
rather than on current machine learning problems such asifitation, regression or structured learning.
More recently, transfer learning (and the closely relatemblem of multitasklearning) has been studied
in specific cases with interesting (though sometimes hiejriapproaches (Caruana, 1997, Silver, 2000,
Micchelli and Pontil, 2004, Baxter, 1997, Ben-David and @&y, 2003). This paper considers a general
theoretical framework for transfer learning, based on amiEoal Bayes perspective, and derives rigorous
theoretical results on the benefits of transfer. We disdusselation of this analysis to existing theoretical
work on transfer learning below.

1.1 Outline of the paper

The remainder of the paper is organized as follows. In Se&iwe introduce basic notation used throughout,
and survey some related work from the existing literatureSéction 3, we describe and analyze our pro-
posed method for estimating the distribution of target eps, the key ingrediant in our approach to transfer
learning, which we then present in Section 4. Finally, int®e&c4.1, we describe the particularly strong
implications of these results for active learning.

2 Definitions and Related Work

First, we state a few basic notational conventions. We @Not {1,2,...} andNy = NU {0}. For any
random variableX, we generally denote b x the distribution ofX (the induced probability measure on
the range ofX), and byP x|y the regular conditional distribution of givenY'. For any pair of probability
measuregi, 112 ON @ measurable spag@, F), we define

11 = pall = sup |pa(A) = p2(A)]-
AeF

Next we define the particular objects of interest to our prediscussion. Le® be an arbitrary set (called
the parameter spade (X, Bx) be a Borel space (Schervish, 1995) (whaiés called theinstance spade
andD be a fixed distribution ott’ (called thedata distributior). For instance@® could beR™ and X’ could
beR™, for somen, m € N, though more general scenarios are certainly possible ksinatuding infinite-
dimensional parameter spaces. Cdie a set of measurable classifiersX’ — {—1,+1} (called theconcept



spacg, and suppos€&€ has VC dimensionl < oo (Vapnik, 1982) (such a space is calle¥/@ clas3. C is
equipped with its Boreb-algebral3, induced by the pseudo-metri¢h, g) = D({z € X : h(x) # g(x)}).
Though all of our results can be formulated for gendpaih slightly more complex terms, for simplicity
throughout the discussion below we supppsge actually ametrig in that anyh, g € C with h # g have
p(h, g) > 0; this amounts to a topological assumption©®melative toD.

For eachd € ©, 7y is a distribution onC (called aprior). Our only (rather mild) assumption on this
family of prior distributions is thafry : ¢ € ©} be totally bounded, in the sense tiat > 0, 3 finite
0. COst Vi e 0,30, € O, with ||m1p — .|| < . See (Devroye and Lugosi, 2001) for examples of
categories of classes that satisfy this.

The general setup for the learning problem is that we hamgegparameter valué, € ©, and a collection
of C-valued random variable§:}, }.cn 0co, Where for a fixed € © the {h},},cn variables are i.i.d. with
distributionmy.

The learning problem is the following. For eagle O, there is a sequence

Zt(e) = {(thvytl(e))a (Xt27Yt2(9))a .- '}v

where{X; }; ey are i.i.d. D, and for each, i € N, Y3,(0) = h}y(Xy;). Fork € N we denote byZ,;,(0) =
{(Xe1, Y (0)), - .., (Xew, Yer(0)) ).

The algorithm receives valuesandT as input, and for each € {1,2,...,T} in increasing order, it
observes the sequenég;, X;, ..., and may then select an indéx receive label;;, (6, ), select another
indexi., receive label;;, (0,), etc. The algorithm proceeds in this fashion, sequentialipuesting labels,

until eventually it produces a classifigf. It then increments and repeats this process until it produces a
sequenceéy, hs, ..., hy, at which time it halts. To be callezbrrect the algorithm must have a guarantee that

Vo, € OVt <T E [p (fz, h’ge*)} < e. We will be interested in the expected number of label retgussces-

sary for a correct learning algorithm, averaged overftttasks, and in particular in how shared information
between tasks can help to reduce this quantity when direesadd, is not available to the algorithm.

2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical adeges of transfer learning for active learning,
the existing literature contains several analyses of tharadges of transfer learning for passive learning. In
his classic work, Baxter (1997) explores a similar setu@fgeneral form of passive learning, except fla
Bayesian setting (in contrast to our setting, often retetoeas “empirical Bayes,” which includes a constant
parameter), to be estimated from data). Essentially, Baxter (1997) gpta hierarchical Bayesian model,
in which (in our notationy, is a random variable with known distribution (hyper-pridout otherwise the
specialization of Baxter’s setting to the pattern recdgniproblem is essentially identical to our setup above.
This hyper-prior does make the problem slightly easier,darterally the results of Baxter (1997) are of a
different nature than our objectives here. SpecificallyxtBes results on learning from labeled examples
can be interpretted as indicating that transfer learnimgitwgorove certairconstant factorén the asymptotic
rate of convergence of the average of expected error ratessathe learning problems. That is, certain
constant complexity terms (for instance, related to theceptispace) can be reduced to (potentially much
smaller) values related toy, by transfer learning. Baxter argues that, as the numbers&gEtgrows large,
this effectively achieves close to the known results on e complexity of passive learning with direct
access td,. A similar claim is discussed by Ando and Zhang (2004) (thoingess detail and formality) for

a setting closer to that studied here, wherés an unknown parameter to be estimated.

There are also several results on transfer learning of atbliglifferent variety, in which, rather than
having a prior distribution for the target concept, the heauinitially has several potential concept spaces to
choose from, and the role of transfer is to help the learnecs&om among these concept spaces (Baxter,
2000, Ando and Zhang, 2004). In this case, the idea is thabbti®se concept spaces has the best average
minimum achievable error rate per learning problem, andotbjective of transfer learning is to perform
nearly as well as if we knew which of the spaces has this ptppén particular, if we assume the target
functions for each task all reside in one of the concept spaben the objective of transfer learning is to
perform nearly as well as if we knew which of the spaces costtie targets. Thus, transfer learning results
in a sample complexity related to the number of learning lemls, a complexity term for this best concept
space, and a complexity term related to the diversity of ephspaces we have to choose from. In particular,
as with Baxter (1997), these results can typically be imtdtpd as giving constant factor improvements from
transfer in a passive learning context, at best reducingdah®lexity constants, from those for the union over
the given concept spaces, down to the complexity constétie gingle best concept space.

In addition to the above works, there are several analyséaindfer learning and multitask learning of
an entirely different nature than our present discussiotthat the objectives of the analysis are somewhat
different. Specifically, there is a branch of the literatooacerned with taskelatednessnot in terms of the
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underlying process that generates the target conceptsathar directly in terms of relations between the
target concepts themselves. In this sense, several tatgksaldted target concepts should be much easier to
learn than tasks with unrelated target concepts. This diesduin the context of kernel methods by Micchelli
and Pontil (2004), Evgeniou and Pontil (2004), Evgeniow;d¥ielli, and Pontil (2005), and in a more general
theoretical framework by Ben-David and Schuller (2003) mentioned, our approach to transfer learning is
based on the idea of estimating the distribution of targatepts. As such, though interesting and important,
these notions of direct relatedness of target conceptsa@sirelevant to our present discussion.

As with Baxter (1997), the present work is interested in shgwhat as the number of tasks grows large,
we can effectively achieve a sample complexity close toalshteveable with direct accessfto However,
in contrast, we are interested in a general approach toféralemrning and the analysis thereof, leading
to concrete results for a variety of learning protocols sastactive learning and semi-supervised learning.
In particular, as we explain below, combining the resultshig work with a result of Yang, Hanneke, and
Carbonell (2010) reveals the interesting phenomenonith#tie context of active learning, transfer learning
can sometimes improve the asymptotic dependence oather than merely the constant factors as in the
analysis of Baxter (1997).

Additionally, unlike Baxter (1997), we study the benefitd¢mainsfer learning in terms of the asymptotics
as the number of learning problems grows lawighoutnecessarily requiring the number of labeled examples
per learning problem to also grow large. That is, our analysieals benefits from transfer learning even if
the number of labeled examples per learning probleooisided This is desirable for the following practical
reasons. In many settings where transfer learning may Helugds desirable that the number of labeled
examples we need to collect from each particular learnimiplpm never be significantly larger than the
number of such examples required to solve that particulalolpm (i.e., to learn that target concept to the
desired accuracy). For instance, this is the case when dneihg problems are not all solved by the same
individual (or company, etc.), but rather a coalition of pemating individuals (e.g., hospitals sharing data
on clinical trials); each individual may be willing to shatee data they used to learn their problem, in the
interest of making others’ learning problems easier; h@rughey may not be willing to collect significantly
moredata to advance this cause than they themselves need foottreiearning problem. Given a desired
error rates for each learning problem, the number of labeled exampbasred to learn each particular target
concept to this desired error rate is always bounded by-dependent value. Therefore, an analysis that
requires a growing number of examples per learning probksms undesirable in these scenarios, since for
some of the problems we would need to label a number of exanfipteoeyond what is needed to learn a
good classifier for that particular problem. We should tfaeebe particularly interested in studying transfer
as aby-productof the usual learning process; failing this, we are inte@#h the minimum possible number
of extralabeled examples per task to gain the benefits of transferitea To our knowledge, no result of this
type (bounded sample size per learning problem) has yet é&sablished at the level of generality studied
here.

3 Estimating the Prior

The advantage of transfer learning in this setting is thahéearning problem provides some information
aboutd,, so that after solving several of the learning problems, ighthope to be able testimate,. Then
with this estimate in hand, we can use the correspondingnatsd prior distribution in the learning algorithm
for subsequent learning problems, to help inform the leayprocess similarly to how direct knowledge of
6, might be helpful. However, the difficulty in approachinggis how to define such an estimator. Since we
do not have direct access to thevalues, but rather only indirect observations via a finitebar of example
labels, the standard results for density estimation fraoh isamples cannot be applied.

The idea we pursue below is to consider the distribution€giid,). These variableare directly ob-
servable, by requesting the labels of those examples. Tdnesny finitek € N, this distributionis estimable
from observable data. That s, using the i.i.d. valdgs(d.,), ..., Z:(6s), we can apply standard techniques
for density estimation to arrive at an estimatorlfof,, .. Then the question is whether the distribution
Pz, s,y uniquely characterizes the prior distribution, : that is, whetherr,, is identifiablefromPz,, 4, ).

As an example, consider the spacéaff-open intervatlassifiers orf0, 1]: C = {]l[jg p:0<a<b<

1}, Where]l[j; b) () = +1if a < 2 < band—1 otherwise. In this caser, is not necessarily identifiable
fromPz,, (4,); for instance, the distributionsy, andry, characterized bygl({ﬂf&l)}) = mp, ({]ljf}) =1/2

and7r92({]1[j5)1/2)}) = ”92({1?5/2,1)}) = 1/2 are not distinguished by these one-dimensional distobsti
However, it turns out that for this half-open intervals desh, 7y, is uniquely identifiable fronPz, g, ); for
instance, in thé; vs 6, scenario, the conditional probabiliByy,, s,),v;,(6,))| (X1, x.0) (F1, +1)[(1/4,3/4))
will distinguish 7y, from y,, and this can be calculated fraf:,, »,). The crucial element of the analysis
below is determining the appropriate valugkdb uniquely identifyry, fromPz,, (4, in general As we will
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seek = d is alwayssufficient, a key insight for the results that follow.

To be specific, in order to transfer knowledge from one tagkhémext, we use a few labeled data points
from each task to gain information abdyt For this, for each task we simply take the first data points in
the Z,(0,) sequence. That is, we request the labels

Ytl(a*)v )/tQ(o*)a cee 7Y;5d(9*)

and use the point§;,(6.) to update an estimate 6f.

The following result shows that this technique does proed®nsistent estimator afy,. Again, note
that this result is not a straightforward application of skendard approach to consistent estimation, since the
observations here are not thg, variables themselves, but rather a number ofth¢d, ) values. The key
insight in this result is thaty, is uniquely identifiedby the joint distributioriPz, , 4, ) over the firstd labeled
examples; later, we prove thisiet necessarily true foP z,, 4, for valuesk < d.

Theorem 1 There exists an estimatéiy, = 07 (Z14(0,), ..., Zrq(6,)), and functionsk : Ny x (0,1] —
[0,00) ando : Ny x (0,1] — [0, 1], such that for anyx > 0, hm R(T,a) = hm 0(T, ) = 0 and for any
T— 00

T € Ny andd, € ©,
P (”’/TéTe* — T

One important detail to note, for our purposes, is fRér, «) is independent fro,, so that the value of
R(T, ) can be calculated and used within a learning algorithm. Thefpf Theorem 1 will be established
via the following sequence of lemmas. Lemma 2 relates distin the space of priors to distances in
the space of distributions on the full data sets. In turn, iren8 relates these distances to distances in the
space of distributions on a finite number of examples frondita sets. Lemma 4 then relates the distances
between distributions on any finite number of examples ttadies between distributions drexamples.
Finally, Lemma 5 presents a standard result on the existeihaeonverging estimator, in this case for the
distribution ond examples, for totally bounded families of distributiongading these relations back, they
relate convergence of the estimator for the distributiod ekamples to convergence of the corresponding
estimator for the prior itself.

(T.0)) <8(T,0) <a

Lemma 2 Forany6,0’ € © andt € N,

o — mor || = IPz,0) — Pz.01-
Proof: Fix 0,0 € ©,t € N. LetX = { X1, Xy2,...}, Y(0) = {Y(0), Yi2(0), ...}, and fork € NletX, =
{ X1, Xur ) andYy (0) = {Y31(0), ..., Yk(0)}. Forh € C, letex(h) = {(Xu, h( X)), (Xi2, h(X42)),
h }Forh 19 € C, definepx(h,g) = lim 57 1[h(X) # g(Xe)] (if the limit exists), andp, (h, g) =

X)) # 9(Xu)] Note that sinceC has finite VC dimension, so does the collection of sets
f{x : h :r ) # g(x)} : h,g € C}, so that the uniform strong law of large numbers implies thih
probability oneVh, g € C, px(h,g) exists and hagx (h, g) = p(h, g) (Vapnik, 1982).
Consider any?, 0" € ©, and anyA € B. Then since3 is the Borelo-algebra induced by, anyh ¢ A
hasvVg € A, p(h,g) > 0. Thus, ifpx(h, g) = p(h, g) forall h, g € C, thenvh ¢ A,

Vg € A, px(h,g) = p(h,g) >0 = Vg € A, cx(h) # cx(9) = cx(h) ¢ cx(A).
This impliescy ' (ex(A)) = A. Under these conditions,
Pz, 0)x(cx(A)) = mo(cx ' (ex(A))) = m9(A),

and similarly fore’.
Any measurable set for the range ofZ,(0) can be expressed 85= {cz(h) : (h,z) € C'} for some
appropriate’ € B ® BY. LettingC. = {h : (h,z) € C'}, we have

Pz, (C) = /wg(cgl(ci(Cé)))]P’x(di) = /W@(C%)Px(d{f). = P(h:97X>(C’)'

Likewise, this reasoning holds féf. Then

IPz,0) = Pz, 00l = Pz, 50 — Paz, 30
— s / (w0(CL) — 10/ (CL)Px(dE)
C'eBRB |.
< / sup [70(A) — 70 (A)|Px(dZ) = |mp — mor]|
AeB



Since we also have

Imo — 7o |l = [Pz, 3 (- X A7) =P (- x X7
< Pnz, ) = Pez, 0l = 1Pz, 0) = Pz, 01,
this meand{Pz, 4) — Pz, o) | = 7o — 7o |- ]

Lemma 3 There exists a sequencg = o(1) such thatvt, k € N, V0,6’ € ©,
IPz..0) = Pzoionll < llmo — 7o || < [Pz, 0) = Pzwonll + -

Proof: The left inequality follows from Lemma 2 and the basic defamitof || - ||, sincePz,, )(-) =
Pz, o) (- x (X x {=1,+1})>), so that

IPz,.0) = Pz,.onll < IPz,0) — Pz, 0 = llmo — 7o/ |-

The remainder of this proof focuses on the right inequalfjx 6,0’ € ©, lety > 0, and letB C
(X x {—1,+1})*> be a measurable set such that

7o — mo: || = Pz, 0y — Pz, 0| <Pz, 0)(B) = Pz,0(B) + -

Let A be the collection of all measurable subset§dfx {—1,+1})°° representable in the ford’ x (X x
{~1,+1})*, for some measurabld’ C (X x {—1,+1})* and some: € N. In particular, since4 is an
algebra that generates the produealgebra, Cara#odory’s extention theorem (Schervish, 1995) implies
that there exist disjoint sefsA; };cn in A such thatB C  J,. 4; and

Pz,6)(B) = Pz,01(B) < Y _Pz,0)(Ai) = > Pz,n(A
€N i€eN

Additionally, as these sums are bounded, there mustexisN such that
ZPZ,,(G)(Ai) <~v+ Z]Pzt(e)(z‘h),
1€N i=1

so that

D Pz,0)(Ai) = > Pz on(Ai) < v+ sz, (0)(A Z]P’Zf(e/
€N ieN
—’Y+Pzt(9) (U > 7P2t(0’) (U A1> .
=1 i=1

As U, A; € A, there existsh’ € N and measurablel’ C (X x {—1,+1})¥ such thal Jl" , 4; =
A’ x (X x {—1,+1})*, and therefore

Pz, () (U Ai) Pz, (U A; ) 2,00)(A) =Pz, 6r)(A)
i=1

<Pz 0) = Pz o)l < Jim [Pz, ) = Pz, o)

In summary, we havéry — 7o || < limy_oo ||Pz,, 0y — Pz, 01 + 37. Since this is true for an arbitrary
~ > 0, taking the limit asy — 0 implies

[ = mo || < lim [Pz, 6) — Pz, (01

In particular, this implies there exists a sequeng®, §') = o(1) such that
Vk €N, |[mo — mor || < [P z,0) = Pzoiorll + (6, 67).

This would suffice to establish the upper bound if we werevatig r;, to depend on the particuldr
and 6’. However, to guarantee the same rates of convergence fpaiadl of parameters requires an ad-
ditional argument. Specifically, let > 0 and let®. denote a minimal subset & such thatVve < ©,



369, € ©, s.t. ||y — 7w || < ~: thatis, a minimak-cover. Sincel©,| < oo by assumption, defin-
ing ri(y) = maxggco. 7x(0,0'), we haver(y) = o(1). Furthermore, for any, ¢’ < ©, letting 0., =
argming. cg_ |[mo — mo- || @ando’, = argming.cq_ [|mor — o~ ||, we have (by triangle inequalities)
[mo — mer[| < llmo — o, || + 7o, — oz || + [ 7o: — 7o ||
<2y +715(7) + Pz,0,) — Pzior) Il
By triangle inequalities and the left inequality from thenima statement (established above), we also have

1Pz, 6,) — Pzoor)l

<Pz0,) = Pzl + IPzo0) — P20 | + IPz,0r) = Pziiorl
< |lmo, = mall + IPz,.0) — Pz(on) | + lImer — 7o ||

<27+ [Pz, 6) — Pz, 01]l-

Definingry, = inf, > (4y + ri (7)), we have the right inequality of the lemma statement, ancesip(y) =
o(1) for eachy > 0, we haver;, = o(1).

Lemma4 vtk € N,V0,60 € O,

IP200) = Pzion | < 4- 229K\ [P, ) — Pz, o0

Proof: Fix anyt € N, and letX = {X}1, X;o,...} andY(0) = {Y31(0),Y:2(0),...}, and fork € N let
X, = {.)(1517 ey th} andYk(e) = {Yt1(9), ey Y—tk(g)}
If k < d, thenPz,, (9)(-) = Pz,,(0)(- x (X x {=1,+1})?7*%), so that

IPz,.0) = Pz, 0l < IPz,400) = Pza00n)l;

and therefore the result trivially holds.

Now supposé > d. For a sequenceandl C N, we will use the notatioa; = {z; : i € I'}. Note that,
foranyk > d andz* € X%, there is a sequenggz®) € {—1,+1}* such that nd: € C hash(z*) = y(z*)
(i.e.,Vh € C, 3i < k s.t. h(zk) # 5:(z*)). Now supposé: > d and take as an inductive hypothesis that
there is a measurable sét C X’ of probability one with the property thatt € A*, for every finitel C N
with |I] > d, for everyg € {—1,+1}> with ||y; — g(Z1)|1/2 < k — 1,

Py, 0yx; (WrlEr) — Py, o0y, (G1]21)]

<2t e Py, @)%, (5°1ZD) = Py, 0%, (7°17D)] -

This clearly holds fol|y; — 4(Z1)||1/2 = 0, sincePy, (g%, (¥7|Zr) = 0 in this case, so this will serve as our
base case in the inductive proof. Next we inductively exténslto the value: > 0. Specifically, letd;
be theA* guaranteed to exist by the inductive hypothesis, and fixary A*, § € {—1,+1}°°, and finite
I ¢ Nwith |I| > d and||g;r — §(Zs)||1/2 = k. Leti € I be such thay; # 7:(Zr), and lety’ € {—1,+1}
havey; = y; for every;j # i, andy; = —y;. Then
Py, o), (U11%1) = Py, 0)%0 3 O 120\ 0y) — Pys oy, (07121),
and similarly for’. By the inductive hypothesis, this means
Py, 0y x, (Ur1Z1) — Py, 0y, (§11%1))]
= ’Pvzw}wnx,\m G lZngy) - ]P’Ynm(e’)lxz\m(?1\{1'}\9?1\{1'})‘
+ [Py, oy1x; (W11Z1) = Py, oryx, (07121)|

<2t omaxPrae (5'1E0) — Praex (7120)]

Therefore, by the principle of induction, this inequalitglths for all & > d, for everyz € A* ¢ €
{=1,+1}*, and finite C N, whereA* hasD>-probability one.



In particular, we have that fak, ¢’ € ©,
IPz,.0) = Pzl

<2'E P 7" [X5) — Py, oryx,, (77X
= Lke{@?ﬁuJ v (0))%, (71 Xk) v 005k (U] k)|]

< 2%k P §4Xp) — Py, o x, (53X
= [gde{—1,+1r}r{31)§e{1,...,k}d| v.4(0)1%4 (01X D) Ya(6r) % (T D)’

<22t M > B[Py, (571XD) — Pyygonx, §°1%X0)]|] -
gie{—1,41}¢ De{1,....k}?

Exchangeability implies this is at most
26> o E[|Pyu@x §71%a) — Py, (771%a)]]
gde{_1)+1}d DE{I,...JG}d

< 92ktdpd E [P §91Xa) — Py, 0%, (74Xa)|] -
< gjde{n—l?,):-l}d [| Ya(0)1x4 (U 1Xa) Ya(0n)xa (97 d)H

To complete the proof, we need only bound this value by anagpjate function of|Pz, ) — Pz, ) |l-
Toward this end, suppose

E [Py, )%, (571Xa) = Pyaonx, (571%a)|] > e,
for somej®. Then either
P (Py, o)1, (5 1Xa) — Py oy x, (571%a) > €/4) > ¢/4,
or
P (Py 015, (591Xa) — Py, (o), (54X4) > e/4) > /4.

For which ever is the case, lét. denote the corresponding measurable subsatiefof probability at least
e/4. Then

Pz,.0)(Ac x {§7}) — Pz, 01 (Ae x {§})|

HPth(@) - sz(e |
(e/4)Px, (Ac) > €2/16.

2
>

Therefore,

E [Py, 0) . (5°1Xa) — Py, (onpa (571Xa)|] < 4\/||]P’zm(e> — Pzl
which means

2k+dq.d ~d - ~d
2777 % gjde{n—l?,)i-l}dE [[Pva0)1xa (571%a) — Py, oryix, (591%a) ]

<4220 [Pz, o) — P00

The following lemma is a standard result on the existenceoaf/erging density estimators for totally
bounded families of distributions. For instance, $keletorestimates described by Yatracos (1985), Devroye
and Lugosi (2001) satisfy this; in fact, in many context®(thh certainly not all), even a simple maximum
likelihood estimator would suffice. The reader is refer@@atracos, 1985, Devroye and Lugosi, 2001) for
a proof of this lemma.

Lemma 5 (Yatracos, 1985, Devroye and Lugosi, 2001) Pet= {py : € € O} be a totally bounded fam-
ily of probability measures on a measurable spafe F), and let{W;(0)}:cnoco be Q-valued random

variables such thaf{W,(0)},cx are i.i.d. py for eachd € ©. Then there exists an estimatéy,, —
Or (W1 (0y), ..., Wr(0,)) and functionskp : Ny x (0, 1] — [0,00) anddp : Ny x (0,1] — [0, 1] such that
Va > 0,limp_o0 Rp (T, @) = limp_, o dp(T, ) = 0, andVve, € © andT' € Ny,

P (Ips,,, = po.| > Rp(T,a)) < dp(T,0) < a.



We are now ready for the proof of Theorem 1
Proof:[Theorem 1] Foe > 0, let®. C © be any finite subset such thét € 0, 36, € ©. with |7y, — || <
¢; this exists by the assumption thiat, : 6 € ©} is totally bounded. Then Lemma 3 implies thé#t € O,
36. € O, with [Pz, ,9.) — Pz, < [Imo. — 7ol < €, so that{Pz, . : 0 € O.} is a finitec-cover
of {Pz,,¢9) : 0 € ©}. Therefore,{Pz,,4 : 6 € O} is totally bounded. Lemma 5 then implies that

there exists an estimatéiy, = 07 (Z14(0,), ..., Zrq(6,)) and functionsk, : Ny x (0,1] — [0, 00) and
da : No x (0,1] — [0, 1] such thator > 0, limp_,oo R(T, ) = limyp_, o 94(T, @) = 0, andvl, € © and
T e N(),

P (HPZ(TJrl)d(éTe*)\éTe* - ]P)Z(TH)[J.(‘)*)H > Rd(T’ a)) = 5d(T’ a) < a (1)
Defining
R(T’ a) = rknellr\% <rk +4- 22k+dkd /Rd(T7 a)) ,

ando(T, «) = 64(T, o), and combining (1) with Lemmas 4 and 3, we have
P (||7rém — 7. || > R(T, a)) < §(T,a) < a.

Finally, note thatlim r;, = 0 and lim R4(7,«) = 0 imply that lim R(T,«) = 0. |
k—o0 T—o00 T—o0

3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumptianttie family of priors is totally bounded is re-
quired only to establish the estimability and bounded ragrantees. In particular, the implied identifiability
condition is, in factalwayssatisfied, as stated formally in the following corollary.

Corollary 6 For any priorsmy, mo onC, if hf ~ m;, Xy,..., X, are i.i.d. D independent front, and
Zd(l) = {(Xl, h;k(Xl))7 ceey (Xd, h;k(Xd))} fori e {]., 2}, then]P’Zd(l) = ]P)ZJ(Q) = T = T2.

Proof: The described scenario is a special case of our generaigettith © = {1,2}, in which case
P2,y =Pz, Thus, ifPy ) = Pz, (2), then Lemma 4 and Lemma 3 combine to imply that — || <
infkeN Tk = 0. |

It is natural to wonder whether this identifiability remainge for some smaller number of poirits< d,
so that we might hope to create an estimatorrfgr based on an estimator féz,, »,). However, one can
show thatd is actually theminimumpossible value for which this remains true for Aland all families of
priors. Formally, we have the following result, holding farery VC clas<.

Theorem 7 There exists a data distributioR and priorsmy, w5 on C such that, for any positive integér<
d,ifhf ~m;, Xq,..., Xy areii.d. Dindependent from}, andZy, (i) = {(X1, hj(X1)), ..., (X, b} (Xk))}
fori € {1,2}, thenPy, (1) = Pz, (o) butm, # mo.

Proof: Note that it suffices to show this is the case ko= d — 1, since any smallek is a marginal of
this case. Consider a shatterable set of patats= {z1,z2,...,24} C X, and letD be uniform onS.
Let C[S,] be any2? classifiers inC that shatterS,. Let m; be the uniform distribution or©[S]. Now
let Sq—1 = {x1,...,24-1} andC[S4_1] C C[S4] shatterS;_, with the property thavh € C[S;_1],
h(zq) = Hj;ll h(z;). Letmy be uniform onC[S,;_1]. Now for anyk < d and distinct indices,, ...t €
{1,...,d}, {hi(2e,), - .., hi(zy,)} is distributed uniformly in{—1,+1}* for bothi € {1,2}. This implies
Pz, vixi, Xa = Pzy @100 Xa 1 which |mpl|esIP’Z¢_1(1) = Pz, ,(2). However,m, is clearly
different from,, since even the sizes of the supports are different. |

4 Transfer Learning

In this section, we look at an application of the techniquesifthe previous section to transfer learning. Like
the previous section, the results in this section are gérierthat they are applicable to a variety of learning
protocols, including passive supervised learning, passni-supervised learning, active learning, and learn-
ing with certain general types of data-dependent intesadtianneke, 2009). For simplicity, we restrict our
discussion to the active learning formulation; the analmgesults for these other learning protocols follow
by similar reasoning.

The result of the previous section implies that an estimfitod, based ond-dimensional joint distri-
butions is consistent with a bounded rate of convergetic&herefore, for certain prior-dependent learning
algorithms, their behavior should be similar undg;e* to their behavior undery, .
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To make this concrete, we formalize this in the active leagrprotocol as follows. Aprior-dependent
active learning algorithm4 takes as inputs > 0, D, and a distributionr on C. It initially has ac-
cess toX1, Xo,... i.i.d. D; it then selects an indek to request the label for, receivés, = h*(X;,),
then selects another indéy, etc., until it eventually terminates and returns a classifDenote byZ =
{(X1,h*(X1)), (X2,h*(X2)),...}. To becorrect the algorithmA must guarantee that fér ~ 7, Ve > 0,
E[p(A(e,D, ), h*)] < e. We define the random variablé(A, f, e, D, ) as the number of label requests
A makes before terminating, when givenD, andr as inputs, and wheh* = f is the value of the target
function; we make the particular data sequegcene algorithm is run with implicit in this notation. We will
be interested in thexpected sample complexB8Y'(A,e, D, w) = E[N(A, h*, e, D, )].

We propose the following algorithml - for transfer learning, defined in terms of a given correcbipri
dependent active learning algorithd),. We discuss interesting specifications f#y in the next section, but
for now the only assumption we require is that for any- 0 andD, there is a valug. < oo such that
for everymr and f € C, N(A,, f,e,D,m) < s, this is a very mild requirement, and any active learning
algorithm can be converted into one that satisfies this witkmnificantly increasing its sample complexities
for the priors it is already good for (Balcan, Hanneke, andg¥ean, 2010). We denote by, = lg—d In (%)
andB(0,~) = {0 € O : ||mg — o || <~}

Algorithm 1 A, (T, ¢): an algorithm for transfer learning, specified in terms okaeyic subroutinel,,.
fort=1,2,...,7Tdo
Request label¥; (04), - . ., Yia(6y)
if R(t —1,¢/2) > ¢/8 then
Request label¥} (i 1)(0x), . - ., Yim. (04)
Takeh, as anyh € C s.t.Vi < m., h(Xy) = Yi(6,)

else
Let éw* €B (é(t_l)g*,R(t — 1,5/2)) be such that
SC’(AG,E/ZL,D,Trgw*) < min SC(Aq,e/4,D,mg) + 1/t

0€B(0(1—1ye, R(t—1,6/2))
RunA,(s/4,D, m;,, ) with data sequencg; (6,) and leth, be the classifier it returns

end if
end for

Theorem 8 The algorithmA, is correct. Furthermore, i57(¢) is the total number of label requests made
by A, (T,e), thenlim sup E[ST(E) < SC(Ag,e/4,D, g, ) + d.
T— o0

The remarkable implication of Theorem 8 is that, via trankfarning, it is possible to achieve almost the
samdong-run average sample complexity as would be achievétiie target’s prior distribution werdenown
to the learner. We will see in the next section that this isetimmes significantly better than the single-task
sample complexity.

The algorithmA.. is stated in a simple way here, but Theorem 8 can be improvédseme obvious
modifications ta4,. The extra “+d” in Theorem 8 is not actually necessary, since we could spufating
the estimatof,¢, (and the corresponding value) after some(7") number of rounds (e.gy/T), in which
case we would not need to requ&st(6,), . . ., Yia(0,) for ¢ larger than this, and the extiao(7") number of
labeled examples vanishes in the averadg as co. Additionally, thes /4 term can easily be improved to any
value arbitrarily close te (even(1 —o(1))e) by runningA, with argument —2R(t—1,¢/2) —6(t—1,£/2)
instead ofs/4, and using this value in th§C' calculations in the definition o@tg* as well. In fact, for
many aIgorithmsA (e.g., withSC(A,, e, D, my, ) continuous ire), combining the above two tricks yields
lim sup E[ST(E < SC(Aq,€,D,m,).

T—o0
Returning to our motivational remarks from Subsection @d can ask how margxtralabeled examples

are required from each learning problem to gain the bendfitapsfer learning. This question essentially
concerns the initial step of requesting the laliélgd, ), ..., Y:q(0,). Clearly this indicates that from each
learning problem, we need at maeséextra labeled examples to gain the benefits of transfer. Véhétlesel
label requests are indeedtradepends on the particular learning algorithtyp; that is, in some cases (e.g.,
certain passive learning algorithms),, may itself use these initial labels for learning, so that in these
cases the benefits of transfer learning are essentiallyedain aby-productof the learning processes, and
essentially no additional labeling effort need be experdeaghin these benefits. On the other hand, for some
active learning algorithms, we may expect that at least sointieese initiald labels would not be requested
by the algorithm, so that some extra labeling effort is exigehto gain the benefits of transfer in these cases.
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Proof:[Theorem 8] Recall that, to establish correctness, we mhavdhatvt < 7', E [p (ﬁt, hjg*ﬂ <e,
regardless of the value 6f € ©. Fix anyf, € © andt < T. If R(t — 1,¢/2) > ¢/8, then classic results
from passive learning indicate thﬁt[p (i}t,h;‘g )] < e (Vapnik, 1982). Otherwise, by Theorem 1, with
probability at least —e /2, we have| g, i1y, || < R(t—1,e/2). Onthisevent, iR(t—1,e/2) < &/8,
then by a triangle inequalityr;, , — 7, || < 2R(t — 1,e/2) < /4. Thus,

E [p (hu.hip, )| <E[E [p (b b, ) |fuo.] 1 [Ims,,, —mo.ll < /4] ] +2/2 @

For# € O, let hyy denote the classifier that would be returnedAy(e /4, D, m;, , ) when run with

data sequencé( X1, hjy (X)), (Xi2, hiy(Xi2)),...}. Note that for any) € ©, any measurable function
F:C—0,1] has

E [F(h}y,)] <E[F(hiy)] + |lme — 7, ]I (3
In particular, supposinfir; =~ — 7, || < /4, we have

E [P (iltv h:&) éte*} =E [P (ﬁte*vhfej éte*}
<E |p (g, 1ig,,. ) |00, ] +IIma,,, = mo.ll < e/a+e/a=e/2.

Combined with (2), this implie& [p (izt, h;,*)} <e.
We establish the sample complexity claim as follows. Figgerthat convergence &(t—1,</2) implies

thatlimp_, oo Zthl 1[R(t,e/2) > ¢/8] /T = 0, and that the number of labels used for a value wiith
R(t—1,e/2) > ¢/8 is bounded by a finite functiom. of . Therefore,

lim sup L[ST(g)]
T—o0 T

T
< d—i—hmsupZE {N Aq, hig,,€/4, D, g, )} 1[R(t—1,e/2) <e/8]/T

T—>oot1

< d—l—hmsupZE{ (Aa, hip, . €/4,D, 75, )} /T. 4

T—o0

By the definition ofR, § from Theorem 1, we have

lim —ZE[ (Aa By, £/4,D, w5, )1 [||7ré(t71)9* — .|| > R(t — 1,5/2)H

T—oo T
< lim_ Zs€/4IP’(|7T0({ A >R(t—1,5/2))

1
§85/4Th_r)r;of E d(t—1,e/2)=0.
t=1

Combined with (4), this implies
E[ST(¢)]
T

lim sup < d+

T—o0

lim sup — ZE[ (Aq, hig, ,6/47D,W9“t9*)]].|:

T—o0

175y, = 0.1l < Rt = 1,2/2)] .

Foranyt < T, on the evenfir;
inequality)

e, T || < R(t—1,e/2), we have (by the property (3) and a triangle

E [N(Au, Wiy, £/4, Dz, ) ‘éw*}
[ (Aa. iy, 1€/4.D, wéw*)’éw*} YOR(E—1,6/2)
. (Aa,€/4,D,7rét9*) FOR(t—1,6/2)

< SC(Aq,e/4,D,70,) + 1/t +2R(t — 1,/2),
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where the last inequality follows by definition 6f;_. Therefore,

lim sup w
T—o00 T

T
1
< d—f—limsupf E SC (Aq,e/4,D,mg,) + 1/t +2R(t — 1,¢/2)
t=1

T—o0

= d+ SC(Aa,e/4,D,70,).

4.1 Application to Self-Verifying Active Learning

Recent work of Yang, Hanneke, and Carbonell (2010) showsltbee exists a correct prior-dependent active

learning algorithmA such that, for any priot overC, SC(A, e, D, ) = o(1/¢). This is interesting, in that

it contrasts with established results for correct priateipendent active learning algorithms, where there are

known problemgC, D) for which any prior-independent active learning algorithththat is correct (in the

sense studied above) has some prifor which SC(A’, e, D, m) = Q(1/¢); for instance, the class of interval

classifiers orf0, 1] under a uniform distributio® satisfies this (Balcan, Hanneke, and Vaughan, 2010).
Combined with the results above for transfer learning, wieageimmediate corollary that, running,

with the active learning algorithrd having thiso(1/¢) sample complexity guarantee, we have

lim sup El5r(e)] =o(1/e).

T— 00 T
Thus, in the case of active learning, there are scenariosawttansfer learning (of the type studied here)
can provide significant improvements in the average exdesample complexity, including improvements to
the asymptotic dependence an

5 Conclusions

We have shown that when learning a sequence of i.i.d. tamatepts from a known VC class, with an
unknown distribution from a known totally bounded familgrisfer learning can lead to amortized expected
sample complexity close to that achievable by an algorithth direct knowledge of the the targets’ distri-
bution. Furthermore, the number of extra labeled exammesgsk, beyond what is needed for learning that
task, is bounded by the VC dimension of the class. The keglm$ading to this result is that the prior dis-
tribution is uniquely identifiable based on the joint distiion over the first VC dimension number of points.
This is not necessarily the case for the distribution ovgrrarmber of points less than the VC dimension. As
a particularly interesting application, we note that in tietext of active learning, transfer learning of this
type can even lead to improvements in the asymptotic depeedm the desired error rate guarantéethe
average expected sample complexity, and in particular oaregtee this averageds$l /¢).
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