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Abstract

We explore a transfer learning setting, in which a finite sequence of target concepts are sampled
independently with an unknown distribution from a known family. We study the total number of
labeled examples required to learn all targets to an arbitrary specified expected accuracy, focusing
on the asymptotics in the number of tasks and the desired accuracy. Our primary interest is for-
mally understanding the fundamental benefits of transfer learning, compared to learning each target
independently from the others. Our approach to the transferproblem is general, in the sense that
it can be used with a variety of learning protocols. The key insight driving our approach is that
the distribution of the target concepts is identifiable fromthe joint distribution over a number of
random labeled data points equal the Vapnik-Chervonenkis dimension of the concept space. This
is not necessarily the case for the joint distribution over any smaller number of points. This work
has particularly interesting implications when applied toactive learning methods.

1 Introduction
Transfer learning reuses knowledge from past related tasksto ease the process of learning to perform a new
task. The goal of transfer learning is to leverage previous learning and experience to more efficiently learn
novel, but related, concepts, compared to what would be possible without this prior experience. The utility
of transfer learning is typically measured by a reduction inthe number of training examples required to
achieve a target performance on a sequence of related learning problems, compared to the number required
for unrelated problems: i.e., reduced sample complexity. In many real-life scenarios, just a few training
examples of a new concept or process is often sufficient for a human learner to grasp the new concept given
knowledge of related ones. For example, learning to drive a van becomes much easier a task if we have
already learned how to drive a car. Learning French is somewhat easier if we have already learned English
(vs Chinese), and learning Spanish is easier if we know Portuguese (vs German). We are therefore interested
in understanding the conditions that enable a learning machine to leverage abstract knowledge obtained as a
by-product of learning past concepts, to improve its performance on future learning problems. Furthermore,
we are interested in how the magnitude of these improvementsgrows as the learning system gains more
experience from learning multiple related concepts.

The ability to transfer knowledge gained from previous tasks to make it easier to learn a new task can
potentially benefit a wide range of real-world applications, including computer vision, natural language pro-
cessing, cognitive science (e.g., fMRI brain state classification), and speech recognition, to name a few. As
an example, consider training a speech recognizer. After training on a number of individuals, a learning
system can identify common patterns of speech, such as accents or dialects, each of which requires a slightly
different speech recognizer; then, given a new person to train a recognizer for, it can quickly determine the
particular dialect from only a few well-chosen examples, and use the previously-learned recognizer for that
particular dialect. In this case, we can think of the transferred knowledge as consisting of the common aspects
of each recognizer variant and more generally thedistributionof speech patterns existing in the population
these subjects are from. This same type of distribution-related knowledge transfer can be helpful in a host of
applications, including all those mentioned above.

Supposing these target concepts (e.g., speech patterns) are sampled independently from a fixed popula-
tion, having knowledge of the distribution of concepts in the population may often be quite valuable. More
generally, we may consider a general scenario in which the target concepts are sampled i.i.d. according
to a fixed distribution. As we show below, the number of labeled examples required to learn a target con-
cept sampled according to this distribution may be dramatically reduced if we have direct knowledge of the



distribution. However, since in many real-world learning scenarios, we do not have direct access to this dis-
tribution, it is desirable to be able to somehowlearn the distribution, based on observations from a sequence
of learning problems with target concepts sampled according to that distribution. The hope is that an estimate
of the distribution so-obtained might be almost as useful asdirect access to the true distribution in reduc-
ing the number of labeled examples required to learn subsequent target concepts. The focus of this paper
is an approach to transfer learning based on estimating the distribution of the target concepts. Whereas we
acknowledge that there are other important challenges in transfer learning, such as exploring improvements
obtainable from transfer under various alternative notions of task relatedness (Evgeniou and Pontil, 2004,
Ben-David and Schuller, 2003), or alternative reuses of knowledge obtained from previous tasks (Thrun,
1996), we believe that learning the distribution of target concepts is a central and crucial component in many
transfer learning scenarios, and can reduce the total sample complexity across tasks.

Note that it is not immediately obvious that the distribution of targets can even be learned in this context,
since we do not have direct access to the target concepts sampled according to it, but rather have only indirect
access via a finite number of labeled examples for each task; asignificant part of the present work focuses
on establishing that as long as these finite labeled samples are larger than a certain size, they hold sufficient
information about the distribution over concepts for estimation to be possible. In particular, in contrast to
standard results on consistent density estimation, our estimators are not directly based on the target concepts,
but rather are only indirectly dependent on these via the labels of a finite number of data points from each
task. One desideratum we pay particular attention to is minimizing the number ofextra labeled examples
needed for each task, beyond what is needed for learning thatparticular target, so that the benefits of transfer
learning are obtained almost as aby-productof learning the targets. Our technique is general, in that it
applies to any concept space with finite VC dimension; also, the process of learning the target concepts is (in
some sense) decoupled from the mechanism of learning the concept distribution, so that we may apply our
technique to a variety of learning protocols, including passive supervised learning, active supervised learning,
semi-supervised learning, and learning with certain general data-dependent forms of interaction (Hanneke,
2009). For simplicity, we choose to formulate our transfer learning algorithms in the language of active
learning; as we explain below, this problem can benefit significantly from transfer. Formulations for other
learning protocols would follow along similar lines, with analogous theorems; only the results in Section 4.1
are specific to active learning.

Transfer learning is related at least in spirit to much earlier work on case-based and analogical learning
(Carbonell, 1983, 1986, Veloso and Carbonell, 1993, Kolodner (Ed), 1993, Thrun, 1996), although that body
of work predated modern machine learning, and focused on symbolic reuse of past problem solving solutions
rather than on current machine learning problems such as classification, regression or structured learning.
More recently, transfer learning (and the closely related problem of multitask learning) has been studied
in specific cases with interesting (though sometimes heuristic) approaches (Caruana, 1997, Silver, 2000,
Micchelli and Pontil, 2004, Baxter, 1997, Ben-David and Schuller, 2003). This paper considers a general
theoretical framework for transfer learning, based on an Empirical Bayes perspective, and derives rigorous
theoretical results on the benefits of transfer. We discuss the relation of this analysis to existing theoretical
work on transfer learning below.

1.1 Outline of the paper

The remainder of the paper is organized as follows. In Section 2 we introduce basic notation used throughout,
and survey some related work from the existing literature. In Section 3, we describe and analyze our pro-
posed method for estimating the distribution of target concepts, the key ingrediant in our approach to transfer
learning, which we then present in Section 4. Finally, in Section 4.1, we describe the particularly strong
implications of these results for active learning.

2 Definitions and Related Work

First, we state a few basic notational conventions. We denoteN = {1, 2, . . .} andN0 = N ∪ {0}. For any
random variableX, we generally denote byPX the distribution ofX (the induced probability measure on
the range ofX), and byPX|Y the regular conditional distribution ofX givenY . For any pair of probability
measuresµ1, µ2 on a measurable space(Ω,F), we define

‖µ1 − µ2‖ = sup
A∈F

|µ1(A)− µ2(A)|.

Next we define the particular objects of interest to our present discussion. LetΘ be an arbitrary set (called
theparameter space), (X ,BX ) be a Borel space (Schervish, 1995) (whereX is called theinstance space),
andD be a fixed distribution onX (called thedata distribution). For instance,Θ could beRn andX could
beRm, for somen,m ∈ N, though more general scenarios are certainly possible as well, including infinite-
dimensional parameter spaces. LetC be a set of measurable classifiersh : X → {−1,+1} (called theconcept
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space), and supposeC has VC dimensiond < ∞ (Vapnik, 1982) (such a space is called aVC class). C is
equipped with its Borelσ-algebraB, induced by the pseudo-metricρ(h, g) = D({x ∈ X : h(x) 6= g(x)}).
Though all of our results can be formulated for generalD in slightly more complex terms, for simplicity
throughout the discussion below we supposeρ is actually ametric, in that anyh, g ∈ C with h 6= g have
ρ(h, g) > 0; this amounts to a topological assumption onC relative toD.

For eachθ ∈ Θ, πθ is a distribution onC (called aprior). Our only (rather mild) assumption on this
family of prior distributions is that{πθ : θ ∈ Θ} be totally bounded, in the sense that∀ε > 0, ∃ finite
Θε ⊆ Θ s.t. ∀θ ∈ Θ, ∃θε ∈ Θε with ‖πθ − πθε‖ < ε. See (Devroye and Lugosi, 2001) for examples of
categories of classes that satisfy this.

The general setup for the learning problem is that we have atrueparameter valueθ⋆ ∈ Θ, and a collection
of C-valued random variables{h∗

tθ}t∈N,θ∈Θ, where for a fixedθ ∈ Θ the{h∗
tθ}t∈N variables are i.i.d. with

distributionπθ.
The learning problem is the following. For eachθ ∈ Θ, there is a sequence

Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},

where{Xti}t,i∈N are i.i.d.D, and for eacht, i ∈ N, Yti(θ) = h∗
tθ(Xti). Fork ∈ N we denote byZtk(θ) =

{(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))}.
The algorithm receives valuesε andT as input, and for eacht ∈ {1, 2, . . . , T} in increasing order, it

observes the sequenceXt1, Xt2, . . ., and may then select an indexi1, receive labelYti1(θ⋆), select another
index i2, receive labelYti2(θ⋆), etc. The algorithm proceeds in this fashion, sequentiallyrequesting labels,
until eventually it produces a classifierĥt. It then incrementst and repeats this process until it produces a
sequencêh1, ĥ2, . . . , ĥT , at which time it halts. To be calledcorrect, the algorithm must have a guarantee that

∀θ⋆ ∈ Θ, ∀t ≤ T,E
[

ρ
(

ĥ, h∗
tθ⋆

)]

≤ ε. We will be interested in the expected number of label requests neces-

sary for a correct learning algorithm, averaged over theT tasks, and in particular in how shared information
between tasks can help to reduce this quantity when direct access toθ⋆ is not available to the algorithm.

2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical advantages of transfer learning for active learning,
the existing literature contains several analyses of the advantages of transfer learning for passive learning. In
his classic work, Baxter (1997) explores a similar setup fora general form of passive learning, except in afull
Bayesian setting (in contrast to our setting, often referred to as “empirical Bayes,” which includes a constant
parameterθ⋆ to be estimated from data). Essentially, Baxter (1997) setsup a hierarchical Bayesian model,
in which (in our notation)θ⋆ is a random variable with known distribution (hyper-prior), but otherwise the
specialization of Baxter’s setting to the pattern recognition problem is essentially identical to our setup above.
This hyper-prior does make the problem slightly easier, butgenerally the results of Baxter (1997) are of a
different nature than our objectives here. Specifically, Baxter’s results on learning from labeled examples
can be interpretted as indicating that transfer learning can improve certainconstant factorsin the asymptotic
rate of convergence of the average of expected error rates across the learning problems. That is, certain
constant complexity terms (for instance, related to the concept space) can be reduced to (potentially much
smaller) values related toπθ⋆ by transfer learning. Baxter argues that, as the number of tasks grows large,
this effectively achieves close to the known results on the sample complexity of passive learning with direct
access toθ⋆. A similar claim is discussed by Ando and Zhang (2004) (though in less detail and formality) for
a setting closer to that studied here, whereθ⋆ is an unknown parameter to be estimated.

There are also several results on transfer learning of a slightly different variety, in which, rather than
having a prior distribution for the target concept, the learner initially has several potential concept spaces to
choose from, and the role of transfer is to help the learner select from among these concept spaces (Baxter,
2000, Ando and Zhang, 2004). In this case, the idea is that oneof these concept spaces has the best average
minimum achievable error rate per learning problem, and theobjective of transfer learning is to perform
nearly as well as if we knew which of the spaces has this property. In particular, if we assume the target
functions for each task all reside in one of the concept spaces, then the objective of transfer learning is to
perform nearly as well as if we knew which of the spaces contains the targets. Thus, transfer learning results
in a sample complexity related to the number of learning problems, a complexity term for this best concept
space, and a complexity term related to the diversity of concept spaces we have to choose from. In particular,
as with Baxter (1997), these results can typically be interpretted as giving constant factor improvements from
transfer in a passive learning context, at best reducing thecomplexity constants, from those for the union over
the given concept spaces, down to the complexity constants of the single best concept space.

In addition to the above works, there are several analyses oftransfer learning and multitask learning of
an entirely different nature than our present discussion, in that the objectives of the analysis are somewhat
different. Specifically, there is a branch of the literatureconcerned with taskrelatedness, not in terms of the
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underlying process that generates the target concepts, butrather directly in terms of relations between the
target concepts themselves. In this sense, several tasks with related target concepts should be much easier to
learn than tasks with unrelated target concepts. This is studied in the context of kernel methods by Micchelli
and Pontil (2004), Evgeniou and Pontil (2004), Evgeniou, Micchelli, and Pontil (2005), and in a more general
theoretical framework by Ben-David and Schuller (2003). Asmentioned, our approach to transfer learning is
based on the idea of estimating the distribution of target concepts. As such, though interesting and important,
these notions of direct relatedness of target concepts are not as relevant to our present discussion.

As with Baxter (1997), the present work is interested in showing that as the number of tasks grows large,
we can effectively achieve a sample complexity close to thatachieveable with direct access toθ⋆. However,
in contrast, we are interested in a general approach to transfer learning and the analysis thereof, leading
to concrete results for a variety of learning protocols suchas active learning and semi-supervised learning.
In particular, as we explain below, combining the results ofthis work with a result of Yang, Hanneke, and
Carbonell (2010) reveals the interesting phenomenon that,in the context of active learning, transfer learning
can sometimes improve the asymptotic dependence onε, rather than merely the constant factors as in the
analysis of Baxter (1997).

Additionally, unlike Baxter (1997), we study the benefits oftransfer learning in terms of the asymptotics
as the number of learning problems grows large,withoutnecessarily requiring the number of labeled examples
per learning problem to also grow large. That is, our analysis reveals benefits from transfer learning even if
the number of labeled examples per learning problem isbounded. This is desirable for the following practical
reasons. In many settings where transfer learning may be useful, it is desirable that the number of labeled
examples we need to collect from each particular learning problem never be significantly larger than the
number of such examples required to solve that particular problem (i.e., to learn that target concept to the
desired accuracy). For instance, this is the case when the learning problems are not all solved by the same
individual (or company, etc.), but rather a coalition of cooperating individuals (e.g., hospitals sharing data
on clinical trials); each individual may be willing to sharethe data they used to learn their problem, in the
interest of making others’ learning problems easier; however, they may not be willing to collect significantly
moredata to advance this cause than they themselves need for their own learning problem. Given a desired
error rateε for each learning problem, the number of labeled examples required to learn each particular target
concept to this desired error rate is always bounded by anε-dependent value. Therefore, an analysis that
requires a growing number of examples per learning problem seems undesirable in these scenarios, since for
some of the problems we would need to label a number of examples far beyond what is needed to learn a
good classifier for that particular problem. We should therefore be particularly interested in studying transfer
as aby-productof the usual learning process; failing this, we are interested in the minimum possible number
of extralabeled examples per task to gain the benefits of transfer learning. To our knowledge, no result of this
type (bounded sample size per learning problem) has yet beenestablished at the level of generality studied
here.

3 Estimating the Prior

The advantage of transfer learning in this setting is that each learning problem provides some information
aboutθ⋆, so that after solving several of the learning problems, we might hope to be able toestimateθ⋆. Then
with this estimate in hand, we can use the corresponding estimated prior distribution in the learning algorithm
for subsequent learning problems, to help inform the learning process similarly to how direct knowledge of
θ⋆ might be helpful. However, the difficulty in approaching this is how to define such an estimator. Since we
do not have direct access to theh∗

t values, but rather only indirect observations via a finite number of example
labels, the standard results for density estimation from i.i.d. samples cannot be applied.

The idea we pursue below is to consider the distributions onZtk(θ⋆). These variablesare directly ob-
servable, by requesting the labels of those examples. Thus,for any finitek ∈ N, this distributionis estimable
from observable data. That is, using the i.i.d. valuesZ1k(θ⋆), . . . ,Ztk(θ⋆), we can apply standard techniques
for density estimation to arrive at an estimator ofPZtk(θ⋆). Then the question is whether the distribution
PZtk(θ⋆) uniquely characterizes the prior distributionπθ⋆ : that is, whetherπθ⋆ is identifiablefrom PZtk(θ⋆).

As an example, consider the space ofhalf-open intervalclassifiers on[0, 1]: C = {1±
[a,b) : 0 ≤ a ≤ b ≤

1}, where1±
[a,b)(x) = +1 if a ≤ x < b and−1 otherwise. In this case,πθ⋆ is not necessarily identifiable

fromPZt1(θ⋆); for instance, the distributionsπθ1 andπθ2 characterized byπθ1({1±
[0,1)}) = πθ1({1±

∅ }) = 1/2

andπθ2({1±
[0,1/2)}) = πθ2({1±

[1/2,1)}) = 1/2 are not distinguished by these one-dimensional distributions.
However, it turns out that for this half-open intervals problem,πθ⋆ is uniquely identifiable fromPZt2(θ⋆); for
instance, in theθ1 vsθ2 scenario, the conditional probabilityP(Yt1(θi),Yt2(θi))|(Xt1,Xt2)((+1,+1)|(1/4, 3/4))
will distinguishπθ1 from πθ2 , and this can be calculated fromPZt2(θi). The crucial element of the analysis
below is determining the appropriate value ofk to uniquely identifyπθ⋆ fromPZtk(θ⋆) in general. As we will
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see,k = d is alwayssufficient, a key insight for the results that follow.
To be specific, in order to transfer knowledge from one task tothe next, we use a few labeled data points

from each task to gain information aboutθ⋆. For this, for each taskt, we simply take the firstd data points in
theZt(θ⋆) sequence. That is, we request the labels

Yt1(θ⋆), Yt2(θ⋆), . . . , Ytd(θ⋆)

and use the pointsZtd(θ⋆) to update an estimate ofθ⋆.
The following result shows that this technique does providea consistent estimator ofπθ⋆ . Again, note

that this result is not a straightforward application of thestandard approach to consistent estimation, since the
observations here are not theh∗

tθ⋆
variables themselves, but rather a number of theYti(θ⋆) values. The key

insight in this result is thatπθ⋆ is uniquely identifiedby the joint distributionPZtd(θ⋆) over the firstd labeled
examples; later, we prove this isnot necessarily true forPZtk(θ⋆) for valuesk < d.

Theorem 1 There exists an estimator̂θTθ⋆ = θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)), and functionsR : N0 × (0, 1] →
[0,∞) andδ : N0 × (0, 1] → [0, 1], such that for anyα > 0, lim

T→∞
R(T, α) = lim

T→∞
δ(T, α) = 0 and for any

T ∈ N0 andθ⋆ ∈ Θ,

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

One important detail to note, for our purposes, is thatR(T, α) is independent fromθ⋆, so that the value of
R(T, α) can be calculated and used within a learning algorithm. The proof of Theorem 1 will be established
via the following sequence of lemmas. Lemma 2 relates distances in the space of priors to distances in
the space of distributions on the full data sets. In turn, Lemma 3 relates these distances to distances in the
space of distributions on a finite number of examples from thedata sets. Lemma 4 then relates the distances
between distributions on any finite number of examples to distances between distributions ond examples.
Finally, Lemma 5 presents a standard result on the existenceof a converging estimator, in this case for the
distribution ond examples, for totally bounded families of distributions. Tracing these relations back, they
relate convergence of the estimator for the distribution ofd examples to convergence of the corresponding
estimator for the prior itself.

Lemma 2 For anyθ, θ′ ∈ Θ andt ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.

Proof: Fix θ, θ′ ∈ Θ, t ∈ N. LetX = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .}, and fork ∈ N letXk =
{Xt1, . . . , Xtk}. andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}. Forh ∈ C, letcX(h) = {(Xt1, h(Xt1)), (Xt2, h(Xt2)),
. . .}.

Forh, g ∈ C, defineρX(h, g) = lim
m→∞

1
m

∑m
i=1 1[h(Xti) 6= g(Xti)] (if the limit exists), andρXk

(h, g) =

1
k

∑k
i=1 1[h(Xti) 6= g(Xti)]. Note that sinceC has finite VC dimension, so does the collection of sets

{{x : h(x) 6= g(x)} : h, g ∈ C}, so that the uniform strong law of large numbers implies thatwith
probability one,∀h, g ∈ C, ρX(h, g) exists and hasρX(h, g) = ρ(h, g) (Vapnik, 1982).

Consider anyθ, θ′ ∈ Θ, and anyA ∈ B. Then sinceB is the Borelσ-algebra induced byρ, anyh /∈ A
has∀g ∈ A, ρ(h, g) > 0. Thus, ifρX(h, g) = ρ(h, g) for all h, g ∈ C, then∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒ ∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This impliesc−1
X

(cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c
−1
X

(cX(A))) = πθ(A),

and similarly forθ′.
Any measurable setC for the range ofZt(θ) can be expressed asC = {cx̄(h) : (h, x̄) ∈ C ′} for some

appropriateC ′ ∈ B ⊗ B∞
X . LettingC ′

x̄ = {h : (h, x̄) ∈ C ′}, we have

PZt(θ)(C) =

∫

πθ(c
−1
x̄ (cx̄(C

′
x̄)))PX(dx̄) =

∫

πθ(C
′
x̄)PX(dx̄). = P(h∗

tθ
,X)(C

′).

Likewise, this reasoning holds forθ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗
tθ
,X) − P(h∗

tθ′
,X)‖

= sup
C′∈B⊗B∞

X

∣

∣

∣

∣

∫

(πθ(C
′
x̄)− πθ′(C ′

x̄))PX(dx̄)

∣

∣

∣

∣

≤
∫

sup
A∈B

|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.
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Since we also have

‖πθ − πθ′‖ = ‖P(h∗
tθ
,X)(· × X∞)− P(h∗

tθ′
,X)(· × X∞)‖

≤ ‖P(h∗
tθ
,X) − P(h∗

tθ′
,X)‖ = ‖PZt(θ) − PZt(θ′)‖,

this means‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

Lemma 3 There exists a sequencerk = o(1) such that∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk.

Proof: The left inequality follows from Lemma 2 and the basic definition of ‖ · ‖, sincePZtk(θ)(·) =
PZt(θ)(· × (X × {−1,+1})∞), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

The remainder of this proof focuses on the right inequality.Fix θ, θ′ ∈ Θ, let γ > 0, and letB ⊆
(X × {−1,+1})∞ be a measurable set such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

LetA be the collection of all measurable subsets of(X × {−1,+1})∞ representable in the formA′ × (X ×
{−1,+1})∞, for some measurableA′ ⊆ (X × {−1,+1})k and somek ∈ N. In particular, sinceA is an
algebra that generates the productσ-algebra, Carath́eodory’s extention theorem (Schervish, 1995) implies
that there exist disjoint sets{Ai}i∈N in A such thatB ⊆ ⋃i∈N

Ai and

PZt(θ)(B)− PZt(θ′)(B) <
∑

i∈N

PZt(θ)(Ai)−
∑

i∈N

PZt(θ′)(Ai) + γ.

Additionally, as these sums are bounded, there must existn ∈ N such that

∑

i∈N

PZt(θ)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai),

so that

∑

i∈N

PZt(θ)(Ai)−
∑

i∈N

PZt(θ′)(Ai) < γ +
n
∑

i=1

PZt(θ)(Ai)−
n
∑

i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

.

As
⋃n

i=1 Ai ∈ A, there existsk′ ∈ N and measurableA′ ⊆ (X × {−1,+1})k′

such that
⋃n

i=1 Ai =
A′ × (X × {−1,+1})∞, and therefore

PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

= PZtk′ (θ)(A
′)− PZtk′ (θ′)(A

′)

≤ ‖PZtk′ (θ) − PZtk′ (θ′)‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

In summary, we have‖πθ − πθ′‖ ≤ limk→∞ ‖PZtk(θ) − PZtk(θ′)‖ + 3γ. Since this is true for an arbitrary
γ > 0, taking the limit asγ → 0 implies

‖πθ − πθ′‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

In particular, this implies there exists a sequencerk(θ, θ
′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk(θ, θ
′).

This would suffice to establish the upper bound if we were allowing rk to depend on the particularθ
and θ′. However, to guarantee the same rates of convergence for allpairs of parameters requires an ad-
ditional argument. Specifically, letγ > 0 and letΘγ denote a minimal subset ofΘ such that,∀θ ∈ Θ,
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∃θγ ∈ Θγ s.t. ‖πθ − πθγ‖ < γ: that is, a minimalγ-cover. Since|Θγ | < ∞ by assumption, defin-
ing rk(γ) = maxθ,θ′∈Θγ

rk(θ, θ
′), we haverk(γ) = o(1). Furthermore, for anyθ, θ′ ∈ Θ, letting θγ =

argminθ′′∈Θγ
‖πθ − πθ′′‖ andθ′γ = argminθ′′∈Θγ

‖πθ′ − πθ′′‖, we have (by triangle inequalities)

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′
γ
‖+ ‖πθ′

γ
− πθ′‖

< 2γ + rk(γ) + ‖PZtk(θγ) − PZtk(θ′
γ)
‖.

By triangle inequalities and the left inequality from the lemma statement (established above), we also have

‖PZtk(θγ) − PZtk(θ′
γ)
‖

≤ ‖PZtk(θγ) − PZtk(θ)‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖PZtk(θ′) − PZtk(θ′
γ)
‖

≤ ‖πθγ − πθ‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖πθ′ − πθ′
γ
‖

< 2γ + ‖PZtk(θ) − PZtk(θ′)‖.

Definingrk = infγ>0 (4γ + rk(γ)), we have the right inequality of the lemma statement, and sincerk(γ) =
o(1) for eachγ > 0, we haverk = o(1).

Lemma 4 ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ 4 · 22k+dkd
√

‖PZtd(θ) − PZtd(θ′)‖.

Proof: Fix any t ∈ N, and letX = {Xt1, Xt2, . . .} andY(θ) = {Yt1(θ), Yt2(θ), . . .}, and fork ∈ N let
Xk = {Xt1, . . . , Xtk} andYk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, thenPZtk(θ)(·) = PZtd(θ)(· × (X × {−1,+1})d−k), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖,

and therefore the result trivially holds.
Now supposek > d. For a sequencēz andI ⊆ N, we will use the notation̄zI = {z̄i : i ∈ I}. Note that,

for anyk > d andx̄k ∈ X k, there is a sequencēy(x̄k) ∈ {−1,+1}k such that noh ∈ C hash(x̄k) = ȳ(x̄k)
(i.e., ∀h ∈ C, ∃i ≤ k s.t. h(x̄k

i ) 6= ȳi(x̄
k)). Now supposek > d and take as an inductive hypothesis that

there is a measurable setA∗ ⊆ X∞ of probability one with the property that∀x̄ ∈ A∗, for every finiteI ⊂ N

with |I| > d, for everyȳ ∈ {−1,+1}∞ with ‖ȳI − ȳ(x̄I)‖1/2 ≤ k − 1,

∣

∣PYI(θ)|XI
(ȳI |x̄I)− PYI(θ′)|XI

(ȳI |x̄I)
∣

∣

≤ 2k−1 · max
ỹd∈{−1,+1}d,D∈Id

∣

∣PYd(θ)|Xd
(ỹd|x̄D)− PYd(θ′)|Xd

(ỹd|x̄D)
∣

∣ .

This clearly holds for‖ȳI − ȳ(x̄I)‖1/2 = 0, sincePYI(θ)|XI
(ȳI |x̄I) = 0 in this case, so this will serve as our

base case in the inductive proof. Next we inductively extendthis to the valuek > 0. Specifically, letA∗
k−1

be theA∗ guaranteed to exist by the inductive hypothesis, and fix anyx̄ ∈ A∗, ȳ ∈ {−1,+1}∞, and finite
I ⊂ N with |I| > d and‖ȳI − ȳ(x̄I)‖1/2 = k. Let i ∈ I be such that̄yi 6= ȳi(x̄I), and letȳ′ ∈ {−1,+1}
haveȳ′j = ȳj for everyj 6= i, andȳ′i = −ȳi. Then

PYI(θ)|XI
(ȳI |x̄I) = PYI\{i}(θ)|XI\{i}

(ȳI\{i}|x̄I\{i})− PYI(θ)|XI
(ȳ′I |x̄I),

and similarly forθ′. By the inductive hypothesis, this means
∣

∣PYI(θ)|XI
(ȳI |x̄I)− PYI(θ′)|XI

(ȳI |x̄I)
∣

∣

≤
∣

∣

∣
PYI\{i}(θ)|XI\{i}

(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}
(ȳI\{i}|x̄I\{i})

∣

∣

∣

+
∣

∣PYI(θ)|XI
(ȳ′I |x̄I)− PYI(θ′)|XI

(ȳ′I |x̄I)
∣

∣

≤ 2k · max
ỹd∈{−1,+1}d,D∈Id

∣

∣PYd(θ)|Xd
(ỹd|x̄D)− PYd(θ′)|Xd

(ỹd|x̄D)
∣

∣ .

Therefore, by the principle of induction, this inequality holds for all k > d, for every x̄ ∈ A∗, ȳ ∈
{−1,+1}∞, and finiteI ⊂ N, whereA∗ hasD∞-probability one.
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In particular, we have that forθ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖

≤ 2kE

[

max
ȳk∈{−1,+1}k

∣

∣PYk(θ)|Xk
(ȳk|Xk)− PYk(θ′)|Xk

(ȳk|Xk)
∣

∣

]

≤ 22kE

[

max
ỹd∈{−1,+1}d,D∈{1,...,k}d

∣

∣PYd(θ)|Xd
(ỹd|XD)− PYd(θ′)|Xd

(ỹd|XD)
∣

∣

]

≤ 22k
∑

ỹd∈{−1,+1}d

∑

D∈{1,...,k}d

E
[∣

∣PYd(θ)|Xd
(ỹd|XD)− PYd(θ′)|Xd

(ỹd|XD)
∣

∣

]

.

Exchangeability implies this is at most

22k
∑

ỹd∈{−1,+1}d

∑

D∈{1,...,k}d

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≤ 22k+dkd max
ỹd∈{−1,+1}d

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

.

To complete the proof, we need only bound this value by an appropriate function of‖PZtd(θ) − PZtd(θ′)‖.
Toward this end, suppose

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≥ ε,

for someỹd. Then either

P
(

PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd) ≥ ε/4
)

≥ ε/4,

or
P
(

PYd(θ′)|Xd
(ỹd|Xd)− PYd(θ)|Xd

(ỹd|Xd) ≥ ε/4
)

≥ ε/4.

For which ever is the case, letAε denote the corresponding measurable subset ofX d, of probability at least
ε/4. Then

‖PZtd(θ) − PZtd(θ′)‖ ≥
∣

∣PZtd(θ)(Aε × {ỹd})− PZtd(θ′)(Aε × {ỹd})
∣

∣

≥ (ε/4)PXd
(Aε) ≥ ε2/16.

Therefore,

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≤ 4
√

‖PZtd(θ) − PZtd(θ′)‖,

which means

22k+dkd max
ỹd∈{−1,+1}d

E
[∣

∣PYd(θ)|Xd
(ỹd|Xd)− PYd(θ′)|Xd

(ỹd|Xd)
∣

∣

]

≤ 4 · 22k+dkd
√

‖PZtd(θ) − PZtd(θ′)‖.

The following lemma is a standard result on the existence of converging density estimators for totally
bounded families of distributions. For instance, theskeletonestimates described by Yatracos (1985), Devroye
and Lugosi (2001) satisfy this; in fact, in many contexts (though certainly not all), even a simple maximum
likelihood estimator would suffice. The reader is referred to (Yatracos, 1985, Devroye and Lugosi, 2001) for
a proof of this lemma.

Lemma 5 (Yatracos, 1985, Devroye and Lugosi, 2001) LetP = {pθ : θ ∈ Θ} be a totally bounded fam-
ily of probability measures on a measurable space(Ω,F), and let{Wt(θ)}t∈N,θ∈Θ beΩ-valued random
variables such that{Wt(θ)}t∈N are i.i.d. pθ for eachθ ∈ Θ. Then there exists an estimatorθ̂Tθ⋆ =

θ̂T (W1(θ⋆), . . . ,WT (θ⋆)) and functionsRP : N0 × (0, 1] → [0,∞) andδP : N0 × (0, 1] → [0, 1] such that
∀α > 0, limT→∞ RP(T, α) = limT→∞ δP(T, α) = 0, and∀θ⋆ ∈ Θ andT ∈ N0,

P

(

‖pθ̂Tθ⋆
− pθ⋆‖ > RP(T, α)

)

≤ δP(T, α) ≤ α.
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We are now ready for the proof of Theorem 1
Proof:[Theorem 1] Forε > 0, letΘε ⊆ Θ be any finite subset such that∀θ ∈ Θ, ∃θε ∈ Θε with ‖πθε−πθ‖ <
ε; this exists by the assumption that{πθ : θ ∈ Θ} is totally bounded. Then Lemma 3 implies that∀θ ∈ Θ,
∃θε ∈ Θε with ‖PZtd(θε) − PZtd(θ)‖ ≤ ‖πθε − πθ‖ < ε, so that{PZtd(θε) : θε ∈ Θε} is a finiteε-cover
of {PZtd(θ) : θ ∈ Θ}. Therefore,{PZtd(θ) : θ ∈ Θ} is totally bounded. Lemma 5 then implies that

there exists an estimator̂θTθ⋆ = θ̂T (Z1d(θ⋆), . . . ,ZTd(θ⋆)) and functionsRd : N0 × (0, 1] → [0,∞) and
δd : N0 × (0, 1] → [0, 1] such that∀α > 0, limT→∞ Rd(T, α) = limT→∞ δd(T, α) = 0, and∀θ⋆ ∈ Θ and
T ∈ N0,

P

(

‖PZ(T+1)d(θ̂Tθ⋆ )|θ̂Tθ⋆
− PZ(T+1)d(θ⋆)‖ > Rd(T, α)

)

≤ δd(T, α) ≤ α. (1)

Defining

R(T, α) = min
k∈N

(

rk + 4 · 22k+dkd
√

Rd(T, α)
)

,

andδ(T, α) = δd(T, α), and combining (1) with Lemmas 4 and 3, we have

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

Finally, note that lim
k→∞

rk = 0 and lim
T→∞

Rd(T, α) = 0 imply that lim
T→∞

R(T, α) = 0.

3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumption that the family of priors is totally bounded is re-
quired only to establish the estimability and bounded rate guarantees. In particular, the implied identifiability
condition is, in fact,alwayssatisfied, as stated formally in the following corollary.

Corollary 6 For any priorsπ1, π2 on C, if h∗
i ∼ πi, X1, . . . , Xd are i.i.d. D independent fromh∗

i , and
Zd(i) = {(X1, h

∗
i (X1)), . . . , (Xd, h

∗
i (Xd))} for i ∈ {1, 2}, thenPZd(1) = PZd(2) =⇒ π1 = π2.

Proof: The described scenario is a special case of our general setting, with Θ = {1, 2}, in which case
PZd(i) = PZ1d(i). Thus, ifPZd(1) = PZd(2), then Lemma 4 and Lemma 3 combine to imply that‖π1−π2‖ ≤
infk∈N rk = 0.

It is natural to wonder whether this identifiability remainstrue for some smaller number of pointsk < d,
so that we might hope to create an estimator forπθ⋆ based on an estimator forPZtk(θ⋆). However, one can
show thatd is actually theminimumpossible value for which this remains true for allD and all families of
priors. Formally, we have the following result, holding forevery VC classC.

Theorem 7 There exists a data distributionD and priorsπ1, π2 onC such that, for any positive integerk <
d, if h∗

i ∼ πi,X1, . . . , Xk are i.i.d.D independent fromh∗
i , andZk(i) = {(X1, h

∗
i (X1)), . . . , (Xk, h

∗
i (Xk))}

for i ∈ {1, 2}, thenPZk(1) = PZk(2) butπ1 6= π2.

Proof: Note that it suffices to show this is the case fork = d − 1, since any smallerk is a marginal of
this case. Consider a shatterable set of pointsSd = {x1, x2, . . . , xd} ⊆ X , and letD be uniform onSd.
Let C[Sd] be any2d classifiers inC that shatterSd. Let π1 be the uniform distribution onC[S]. Now
let Sd−1 = {x1, . . . , xd−1} andC[Sd−1] ⊆ C[Sd] shatterSd−1 with the property that∀h ∈ C[Sd−1],
h(xd) =

∏d−1
j=1 h(xj). Let π2 be uniform onC[Sd−1]. Now for anyk < d and distinct indicest1, . . . , tk ∈

{1, . . . , d}, {h∗
i (xt1), . . . , h

∗
i (xtk)} is distributed uniformly in{−1,+1}k for both i ∈ {1, 2}. This implies

PZd−1(1)|X1,...,Xd−1
= PZd−1(2)|X1,...,Xd−1

, which impliesPZd−1(1) = PZd−1(2). However,π1 is clearly
different fromπ2, since even the sizes of the supports are different.

4 Transfer Learning

In this section, we look at an application of the techniques from the previous section to transfer learning. Like
the previous section, the results in this section are general, in that they are applicable to a variety of learning
protocols, including passive supervised learning, passive semi-supervised learning, active learning, and learn-
ing with certain general types of data-dependent interaction (Hanneke, 2009). For simplicity, we restrict our
discussion to the active learning formulation; the analogous results for these other learning protocols follow
by similar reasoning.

The result of the previous section implies that an estimatorfor θ⋆ based ond-dimensional joint distri-
butions is consistent with a bounded rate of convergenceR. Therefore, for certain prior-dependent learning
algorithms, their behavior should be similar underπθ̂Tθ⋆

to their behavior underπθ⋆ .
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To make this concrete, we formalize this in the active learning protocol as follows. Aprior-dependent
active learning algorithmA takes as inputsε > 0, D, and a distributionπ on C. It initially has ac-
cess toX1, X2, . . . i.i.d. D; it then selects an indexi1 to request the label for, receivesYi1 = h∗(Xi1),
then selects another indexi2, etc., until it eventually terminates and returns a classifier. Denote byZ =
{(X1, h

∗(X1)), (X2, h
∗(X2)), . . .}. To becorrect, the algorithmA must guarantee that forh∗ ∼ π, ∀ε > 0,

E [ρ(A(ε,D, π), h∗)] ≤ ε. We define the random variableN(A, f, ε,D, π) as the number of label requests
A makes before terminating, when givenε, D, andπ as inputs, and whenh∗ = f is the value of the target
function; we make the particular data sequenceZ the algorithm is run with implicit in this notation. We will
be interested in theexpected sample complexitySC(A, ε,D, π) = E [N(A, h∗, ε,D, π)].

We propose the following algorithmAτ for transfer learning, defined in terms of a given correct prior-
dependent active learning algorithmAa. We discuss interesting specifications forAa in the next section, but
for now the only assumption we require is that for anyε > 0 andD, there is a valuesε < ∞ such that
for everyπ andf ∈ C, N(Aa, f, ε,D, π) ≤ sε; this is a very mild requirement, and any active learning
algorithm can be converted into one that satisfies this without significantly increasing its sample complexities
for the priors it is already good for (Balcan, Hanneke, and Vaughan, 2010). We denote bymε =

16d
ε ln

(

24
ε

)

,
andB(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.

Algorithm 1 Aτ (T, ε): an algorithm for transfer learning, specified in terms of a generic subroutineAa.
for t = 1, 2, . . . , T do

Request labelsYt1(θ⋆), . . . , Ytd(θ⋆)
if R(t− 1, ε/2) > ε/8 then

Request labelsYt(d+1)(θ⋆), . . . , Ytmε
(θ⋆)

Takeĥt as anyh ∈ C s.t.∀i ≤ mε, h(Xti) = Yti(θ⋆)
else

Let θ̌tθ⋆ ∈ B
(

θ̂(t−1)θ⋆ , R(t− 1, ε/2)
)

be such that

SC(Aa, ε/4,D, πθ̌tθ⋆
) ≤ min

θ∈B(θ̂(t−1)θ⋆ ,R(t−1,ε/2))
SC(Aa, ε/4,D, πθ) + 1/t

RunAa(ε/4,D, πθ̌tθ⋆
) with data sequenceZt(θ⋆) and letĥt be the classifier it returns

end if
end for

Theorem 8 The algorithmAτ is correct. Furthermore, ifST (ε) is the total number of label requests made
byAτ (T, ε), thenlim sup

T→∞

E[ST (ε)]
T ≤ SC(Aa, ε/4,D, πθ⋆) + d.

The remarkable implication of Theorem 8 is that, via transfer learning, it is possible to achieve almost the
samelong-run average sample complexity as would be achievable if the target’s prior distribution wereknown
to the learner. We will see in the next section that this is sometimes significantly better than the single-task
sample complexity.

The algorithmAτ is stated in a simple way here, but Theorem 8 can be improved with some obvious
modifications toAτ . The extra “+d” in Theorem 8 is not actually necessary, since we could stop updating
the estimatořθtθ⋆ (and the correspondingR value) after someo(T ) number of rounds (e.g.,

√
T ), in which

case we would not need to requestYt1(θ⋆), . . . , Ytd(θ⋆) for t larger than this, and the extrad ·o(T ) number of
labeled examples vanishes in the average asT → ∞. Additionally, theε/4 term can easily be improved to any
value arbitrarily close toε (even(1−o(1))ε) by runningAa with argumentε−2R(t−1, ε/2)−δ(t−1, ε/2)
instead ofε/4, and using this value in theSC calculations in the definition of̌θtθ⋆ as well. In fact, for
many algorithmsAa (e.g., withSC(Aa, ε,D, πθ⋆) continuous inε), combining the above two tricks yields
lim sup
T→∞

E[ST (ε)]
T ≤ SC(Aa, ε,D, πθ⋆).

Returning to our motivational remarks from Subsection 2.1,we can ask how manyextralabeled examples
are required from each learning problem to gain the benefits of transfer learning. This question essentially
concerns the initial step of requesting the labelsYt1(θ⋆), . . . , Ytd(θ⋆). Clearly this indicates that from each
learning problem, we need at mostd extra labeled examples to gain the benefits of transfer. Whether thesed
label requests are indeedextradepends on the particular learning algorithmAa; that is, in some cases (e.g.,
certain passive learning algorithms),Aa may itself use these initiald labels for learning, so that in these
cases the benefits of transfer learning are essentially gained as aby-productof the learning processes, and
essentially no additional labeling effort need be expendedto gain these benefits. On the other hand, for some
active learning algorithms, we may expect that at least someof these initiald labels would not be requested
by the algorithm, so that some extra labeling effort is expended to gain the benefits of transfer in these cases.
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Proof:[Theorem 8] Recall that, to establish correctness, we must show that∀t ≤ T , E
[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε,

regardless of the value ofθ⋆ ∈ Θ. Fix anyθ⋆ ∈ Θ andt ≤ T . If R(t − 1, ε/2) > ε/8, then classic results

from passive learning indicate thatE
[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε (Vapnik, 1982). Otherwise, by Theorem 1, with

probability at least1−ε/2, we have‖πθ⋆ −πθ̂(t−1)θ⋆
‖ ≤ R(t−1, ε/2). On this event, ifR(t−1, ε/2) ≤ ε/8,

then by a triangle inequality‖πθ̌tθ⋆
− πθ⋆‖ ≤ 2R(t− 1, ε/2) ≤ ε/4. Thus,

E

[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ E

[

E

[

ρ
(

ĥt, h
∗
tθ⋆

) ∣

∣

∣
θ̌tθ⋆

]

1
[

‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/4

]]

+ ε/2. (2)

For θ ∈ Θ, let ĥtθ denote the classifier that would be returned byAa(ε/4,D, πθ̌tθ⋆
) when run with

data sequence{(Xt1, h
∗
tθ(Xt1)), (Xt2, h

∗
tθ(Xt2)), . . .}. Note that for anyθ ∈ Θ, any measurable function

F : C → [0, 1] has
E
[

F (h∗
tθ⋆)
]

≤ E [F (h∗
tθ)] + ‖πθ − πθ⋆‖. (3)

In particular, supposing‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/4, we have

E

[

ρ
(

ĥt, h
∗
tθ⋆

)
∣

∣

∣
θ̌tθ⋆

]

= E

[

ρ
(

ĥtθ⋆ , h
∗
tθ⋆

)
∣

∣

∣
θ̌tθ⋆

]

≤ E

[

ρ
(

ĥtθ̌tθ⋆
, h∗

tθ̌tθ⋆

) ∣

∣

∣
θ̌tθ⋆

]

+ ‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/4 + ε/4 = ε/2.

Combined with (2), this impliesE
[

ρ
(

ĥt, h
∗
tθ⋆

)]

≤ ε.

We establish the sample complexity claim as follows. First note that convergence ofR(t−1, ε/2) implies
that limT→∞

∑T
t=1 1 [R(t, ε/2) > ε/8] /T = 0, and that the number of labels used for a value oft with

R(t− 1, ε/2) > ε/8 is bounded by a finite functionmε of ε. Therefore,

lim sup
T→∞

E[ST (ε)]

T

≤ d+ lim sup
T→∞

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆

)
]

1[R(t− 1, ε/2) ≤ ε/8]/T

≤ d+ lim sup
T→∞

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆

)
]

/T. (4)

By the definition ofR, δ from Theorem 1, we have

lim
T→∞

1

T

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆

)1
[

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

]]

≤ lim
T→∞

1

T

T
∑

t=1

sε/4P
(

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

)

≤ sε/4 lim
T→∞

1

T

T
∑

t=1

δ(t− 1, ε/2) = 0.

Combined with (4), this implies

lim sup
T→∞

E[ST (ε)]

T
≤ d+

lim sup
T→∞

1

T

T
∑

t=1

E

[

N(Aa, h
∗
tθ⋆ , ε/4,D, πθ̌tθ⋆

)1
[

‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)

]]

.

For anyt ≤ T , on the event‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t − 1, ε/2), we have (by the property (3) and a triangle

inequality)

E

[

N(Aa, h
∗
tθ⋆ ,ε/4,D, πθ̌tθ⋆

)
∣

∣

∣
θ̌tθ⋆

]

≤ E

[

N(Aa, h
∗
tθ̌tθ⋆

, ε/4,D, πθ̌tθ⋆
)
∣

∣

∣
θ̌tθ⋆

]

+ 2R(t− 1, ε/2)

= SC
(

Aa, ε/4,D, πθ̌tθ⋆

)

+ 2R(t− 1, ε/2)

≤ SC (Aa, ε/4,D, πθ⋆) + 1/t+ 2R(t− 1, ε/2),

11



where the last inequality follows by definition ofθ̌tθ⋆ . Therefore,

lim sup
T→∞

E[ST (ε)]

T

≤ d+ lim sup
T→∞

1

T

T
∑

t=1

SC (Aa, ε/4,D, πθ⋆) + 1/t+ 2R(t− 1, ε/2)

= d+ SC (Aa, ε/4,D, πθ⋆) .

4.1 Application to Self-Verifying Active Learning

Recent work of Yang, Hanneke, and Carbonell (2010) shows that there exists a correct prior-dependent active
learning algorithmA such that, for any priorπ overC, SC(A, ε,D, π) = o(1/ε). This is interesting, in that
it contrasts with established results for correct prior-independent active learning algorithms, where there are
known problems(C,D) for which any prior-independent active learning algorithmA′ that is correct (in the
sense studied above) has some priorπ for whichSC(A′, ε,D, π) = Ω(1/ε); for instance, the class of interval
classifiers on[0, 1] under a uniform distributionD satisfies this (Balcan, Hanneke, and Vaughan, 2010).

Combined with the results above for transfer learning, we get an immediate corollary that, runningAτ

with the active learning algorithmA having thiso(1/ε) sample complexity guarantee, we have

lim sup
T→∞

E[ST (ε)]

T
= o(1/ε).

Thus, in the case of active learning, there are scenarios where transfer learning (of the type studied here)
can provide significant improvements in the average expected sample complexity, including improvements to
the asymptotic dependence onε.

5 Conclusions

We have shown that when learning a sequence of i.i.d. target concepts from a known VC class, with an
unknown distribution from a known totally bounded family, transfer learning can lead to amortized expected
sample complexity close to that achievable by an algorithm with direct knowledge of the the targets’ distri-
bution. Furthermore, the number of extra labeled examples per task, beyond what is needed for learning that
task, is bounded by the VC dimension of the class. The key insight leading to this result is that the prior dis-
tribution is uniquely identifiable based on the joint distribution over the first VC dimension number of points.
This is not necessarily the case for the distribution over any number of points less than the VC dimension. As
a particularly interesting application, we note that in thecontext of active learning, transfer learning of this
type can even lead to improvements in the asymptotic dependence on the desired error rate guaranteeε in the
average expected sample complexity, and in particular can guarantee this average iso(1/ε).
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