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Abstract

We consider the celebrated Blackwell Approachability Theorem for two-player games with vector
payoffs. Blackwell himself previously showed that the theorem implies the existence of a “no-
regret” algorithm for a simple online learning problem. We show that this relationship is in fact
much stronger, that Blackwell’s result is equivalent to, in a very strong sense, the problem of regret
minimization for Online Linear Optimization. We show that any algorithm for one such problem
can be efficiently converted into an algorithm for the other. We provide one novel application of
this reduction: the first efficient algorithm for calibrated forecasting.

1 Introduction

Von Neumann’s minimax theorem (1928) establishes a central result in the theory of two-player zero-sum
games, essentially by providing a prescription to both players. This prescription is in the form of a pair of
optimal strategies, either of which attains the optimal worst-case value of the game even without knowledge
of the opponent’s strategy. However, the theorem fundamentally requires that both players have utility that
can be expressed as a scalar. In 1956, in response to von Neumann’s result, David Blackwell posed an
intriguing question: what guarantee can we hope to achieve when playing a two-player game with a vector-
valued payoff?

When our payoffs are non-scalar quantities, it does not make sense to ask “can we earn at least z?”. A
sensible generalization is, “can we guarantee that our vector payoff lies in some convex set S?7” In this case
the story is more difficult, and Blackwell observed that an oblivious strategy does not suffice—in short, we
do not achieve “minimax duality” for vector-payoff games as we can when the payoff is a scalar. Blackwell
was able to prove that this negative result applies only for one-shot games. In his celebrated Approachability
Theorem [3]], one can achieve a duality statment in the limit when the game is played repeatedly, and the
player may learn from his opponent’s prior actions. Blackwell constructed an algorithm (that is, an adaptive
strategy) that guarantees the average payoff vector “approaches” .S.

Blackwell’s Approachability Theorem has the flavor of learning in repeated games, a topic which has
received much interest. In particular, there are a wealth of recent results on so-called no-regret learning
algorithms for making repeated decisions given an arbitrary (and potentially adversarial) sequence of cost
functions. The first no-regret algorithm for a “discrete action” setting was given in a seminal paper by James
Hannan in 1956 [11]. That same year, David Blackwell pointed out [2] that his Approachability result leads,
as a special case, to an algorithm with essentially the same low-regret guarantee proven by Hannan.

Over the years several other problems have been reduced to Blackwell approachability, including asymp-
totic calibration [§], online learning with global cost functions [6] and more [15]. Indeed, it has been pre-
sumed that approachability, while establishing the existence of a no-regret algorithm, is strictly more pow-
erful than regret-minimization; hence its utility in such a wide range of problems. In the present paper we
prove, to the contrary, that Blackwell’s Approachability Theorem is equivalent, in a very strong sense, to
no-regret learning for the setting of Online Linear Optimization. This shows that the connection discovered
by Blackwell, between regret and approachability, is much stronger than originally supposed.

More specifically, we show how any no-regret algorithm can be converted into an algorithm for Ap-
proachability and vice versa. This algorithmic equivalence is achieved via the use of conic duality: an ap-
proachability problem over a convex cone K can be reduced to an online linear optimization instance where
we must “learn” within the polar cone K°. The reverse direction is similar. This equivalence provides a
range of benefits and one such is “asymptotic calibrated forecasting”. The calibration problem was reduced



to Blackwell’s Approachability Theorem by Foster [7], and a handful of other calibration techniques have
been proposed, yet none have provided any efficiency guarantees on the strategy. Using a similar reduc-
tion from calibration to approachability, and by carefully constructing the reduction from approachability to
online linear optimization, we achieve the first efficient calibration algorithm.

Related work There is by now vast literature on all three main topics of this paper: approachability, online
learning and calibration, see [4] for an excellent exposition.

Calibration is a fundamental notion in prediction theory and has found numerous applications in eco-
nomics and learning. Dawid [S] was the first to define calibration, with numerous algorithms later given by
Foster and Vohra [8]], Fudenberg and Levine [10], Hart and Mas-Colell [12] and more (see e.g. [20,118]]). Fos-
ter has given a calibration algorithm based on approachability [7]. There are numerous definitions (mostly
asymptotic) of calibration in the literature. In this paper we give precise finite-time rates of calibration.
Furthermore, we give the first efficient algorithm for calibration: attaining e-calibration (formally defined
later) required a running time of poly(%) for all previous algorithms, whereas our algorithm runs in time

proportional to log L.

2 Game Theory Preliminaries

2.1 Two-Player Games

Formally, a two-player normal-form game is defined by a pair of action sets [n] and [m], for natural numbers
n, m, and a pair of utility functions uy,us : [n] x [m] — R. When player 1 chooses action ¢ and player 2
chooses action j, player 1 and player 2 receive utilities u; (¢, j) and us(4, j) respectively. An important class
of two-player games are known as zero-sum, in that u; = —us. For zero-sum games we drop the subcripts
on uy, us and simply write (%, j) for player 1’s utility, and —u(4, j) for player 2’s utility. For the remainder
of this section, we shall be concerned entirely with zero-sum games, hence we will refer to player 1 as the
Player and player 2 as the Adversary.

It is natural to assume that the players in a game may include randomness in their choice of action; simple
games such as Rock-Paper-Scissors require randomness to achieve optimality. When the players choose their
actions randomly according to the distributions p € A,, and ¢ € A,,,, respectively, the expected utility for the
Playeris }, ; p(i)q(j)u(i, ). Von Neumann’s minimax theorem, widely considered the first key result in
game theory, tells us that both the Player and the Adversary have an “optimal” randomized strategy that can
be played without knowledge of the strategy of their respective opponent.

Theorem 1 (Von Neumann’s Minimax Theorem [17]) For any integers n, m > 0 and any utility function
u:[n] X [m] >R,

max min ;p(i)q(j)U(iJ) = min max ;p(i)q(j)U(iJ)

The statement of the minimax theorem is often referred to as duality as it swaps the min and max. This result
can be used to establish strong duality for linear programming. It was proven by Maurice Sion in the 1950’s
that von Neumann’s notion of duality can be extended further, for a much larger class of input spaces and a
more general class of functions.

Theorem 2 (Siorﬂ 1958 [22]) Given convex compact sets X C R™,Y C R™, and a function f : XxY — R
convex and concave in its first and second arguments respectively, we have

inf su X,y) = sup inf f(x,y).

Jnf sup fxy) sup inf fxy)

In the present work we shall not need anything quite so general, although we use this theorem to generalize
slightly the class of two-player zero-sum games. Rather than define the actions of our players as being drawn
randomly from discrete sets [n] and [m], let the players’ decision space be characterized by given compact
convex sets X C R™ and ) C R respectively. In addition, we shall assume that the utility is characterized
by a biaffine function v : X x Y — R; thatis, u(ax + (1 — a)x’,y) = au(x,y) + (1 — @)u(x’,y) and
u(x,ay + (1 — @)y’) = au(x,y) + (1 — a)u(x,y’) forevery 0 < o < 1, x,x' € X andy,y’ € ).
Following Sion’s theorem, we arrive at the following.

Corollary 3 For compact convex sets X C R™ and Y C R™ and any biaffine function u : X x Y — R, we
have

REF I Ooy) = play oY)



This alternative description of a zero-sum game has two advantages. First, we now assume that both
players are deterministic. That is, we have converted the notion of a randomized strategy on a discrete action
space to a deterministic strategy x inside of a convex set X. Rather than evaluate the expected utility of a
randomized action, this expectation is now incorporated via the linearity of u(-,-). Note, crucially, that the
assumptions that u is biaffine and X’ and ) are convex imply that neither player gains from randomness, as
ExEy u(x,y) = u(Exx, Eyy).

A second advantage of this framework is that it allows us to work with action spaces that might seem
prohibitively large. For example, we can imagine a game in which each player must select a route in a graph
G between two endpoints, and the utility is the amount of overlap of their paths. The set of paths in a graph
is exponential, and even counting the number of such paths is # P-hard. However, we may instead set X’
and ) to be the flow polytope of G. The flow polytope can be described by a polynomially-sized number of
constraints, and hence is much easier to work with.

2.2 Vector-Valued Games

Let us now turn our attention to Blackwell’s question: what can be guaranteed when the utility function
of the zero-sum game is vector-valued? Following the definition in the previous section, we can define a
vector-valued game in terms of some biaffine utility function u : X x )) — R? from a product of two convex
compact decision spaces X C R™ and Y C R™ to d-dimensional space. The biaffine property is defined in
the natural way.

Note that we may not apply our usual notions of utility maximization when dealing with vector-valued
games—what does it mean to “maximize” a vector? Furthermore, the concept of “zero-sum” is not immedi-
ately clear. Blackwell proposed the following framework: suppose that the Player, who selects x € X', would
like his vector payoff u(x,y) to land inside of a particular closed convex set S C R?, where S is fixed and
known to both players. We shall say that the Player wants to satisfy S. The Adversary, who selects y € ),
would like to prevent the Player from satisfying S.

Let us return our attention to the simple case of scalar-valued games discussed in Section[2.1} The duality
statement achieved in the Minimax Theorem, typically stated in terms of swapping the order of min and max,
can instead be formulated in terms of swapping quantifiers V and 3.

Proposition 1 For any convex compact sets X C R™ and Y C R™, and any biaffine utility function u :
X x Y — R, we have the following implication for any c € R:

VyeYIxeX: ux,y)E€c,0) = IxeAXVyel: ulx,y) € [co00).
This proposition is simply another way to state duality, in the following form:

;nelg max ux,y)>c = max ;neigu(x,y) > c.
Put another way, if the Player can earn ¢ by choosing his strategy with knowledge of the Adversary’s strategy,
then he can earn c obliviously as well.

Here we have simply taken the Minimax Theorem and stated it in terms of satisfying a set, namely the
set S = [c, 00) for some value c. This interpretation begs the question: can we achieve a similar “duality”
statement for vector-valued games? In other words, given a biaffine utility function u : X x ) — R% and
any convex set .S C R4, does the statement

VyeYVidxeX: ulx,y)eS = IxeXVye)l: ulxy)es

hold in general? The answer, unfortunately, is no! Consider the following easy example: X = Y := [0, 1],
the payoff is simply u(z,y) := (z,y) for z,y € [0, 1], and the set in question is S := {(z,z) Vz € [0,1]}.
Certainly the premise is true, since for every y there exists an x, namely x = y, such that u(z,y) € S. On
the other hand, there is no such single « for which u(z,y) € S for any y.

2.3 Blackwell Approachability

While we might hope that minimax duality, framed in terms of set satisfiability, would extend from scalar-
valued games to vector-valued games, the previous example appears to be a nail in the coffin. But in fact the
story is not quite so bad: the proposed example is difficult because it is a one-shot game. What Blackwell
observed, and led to the Approchability Theorem, is that if the game is played repeatedly then one can achieve
duality “in the limit.” To make this precise we introduce some definitions.

Definition 4 A Blackwell instance is a tuple (X,Y,u(-,-),S), with X C R™ and Y C R™ compact and
convex, u : X x Y — R biaffine, and S C R¢ convex and closed. For any instance (X,),u(-,-),S), we
say that

e Sissatisfiable if Ix € X Vy € YV : u(x,y) € S.



e S isresponse-satisfiable if Vy € Y Ix € X' : u(x,y) € S.
e S is halfspace-satisfiable if, for any halfspace H 2 S, H is satisfiable.

To recap, when our utility function u is scalar-valued, i.e. for zero-sum games where d = 1, then minimax
duality holds and, according to Proposition |1} this be rephrased as “If S := [¢, 00) is response-satisfiable
then .S is satisfiable.” On the other hand, for vector-valued games it is not the case in general that “S' is
response-satisfiable = .S is satisfiable” for arbitrary sets S. What Blackwell showed is that response-
satisfiability does lead to a weaker condition, termed approachability. Before we define this precisely, let
us use the notation dist(z,U) to denote the distance between a point z and some convex set U, that is
infxev ||z — x|

Definition 5 Given a Blackwell instance (X, Y, u(-,-),S), we say that S is approachable if there exists some
algorithm A which selects points in X such that, for any sequence y1,ya, ... € Y, we have

dist (3 X0, utx,yi).§) 20 a5 T,
where x; < A(y1, y2,--. ,Yt—1)~

Under this new notion, we now allow the Player to implement an adaptive strategy for a repeated version of
the game, and we require that the average utility vector becomes arbitrarily close to S. Intuitively, we may
think of approachability as “satisfiability in the limit”.

Theorem 6 (Blackwell’s Approachability Theorem [3]) For any Blackwell instance (X, Y, u(-,), S), S'is
approachable if and only if it is response-satisfiable.

The beauty of this theorem is that, while we may not be able to satisfy S in a one-shot version of the game,
we can satisfy the set “on average” if we may play the game indefinitely.

This version of the theorem, which appears in Evan-Dar et al. [6], is not the one usually attributed to
Blackwell. The original theorem uses the concept of halfspace satisfiability. It is not difficult to establish the
equivalence of the two statements via the following lemma, whose proof uses a nice application of minimax
duality.

Lemma 7 Forany Blackwell instance (X, Y, u(-,-), S), S is response-satisfiable if and only if it is halfspace-
satisfiable.

Proof: (=>) Assume that S is response-satisfiable. Hence, for any y there is an xy such that u(xy,y) € S.
Now take any halfspace H O S parameterized by 0, ¢, that is H = {z : (0,z) < c}. Then let us define a
scalar-valued game with utility u(x,y) = (6,u(x,y)). Notice that H D S implies that (8,z) < ¢ for all
z € S. Since S is response-satisfiable, for every y there is an xy such that u(xy,y) € S = u(xy,y) <c.
We then immediately see that

i < <ec.
maxminu(x,y) < maxu(xy,y) < c

It follows from Corollary (3| that minye y maxyey u(x,y) < c. Let x* € X be any minimizer of the latter
expression and notice that, for any y € ), we have that u(x*,y) < c¢. It follows immediately that H is
satisfiable.

(<) Assume that S is not response-satisfiable. Hence, there must exists some yy € ) such that
u(x,yo) ¢ S for every x € X. Consider the set U := {u(x,yo) forall x € X'} and notice that U is
convex since X is convex and u(,yo) is affine. Furthermore, because S is convex and S N U = () by as-
sumption, there must exist some halfspace H separating the two sets, that is S € H and H N U = (. By
construction, we see that for any x, u(x,yo) ¢ H and hence H is not satisfiable. It follows immediately that
S is not halfspace-satisfiable. u

Although it is not posed in this language, Blackwell’s original theorem uses the concept of a halfspace
oracle. Given a Blackwell instance (X, Y, u(,-),.S), define a halfspace oracle to be a function O that takes
as input any halfspace H D S and returns a point O(H) = xy € X, and we shall refer to a halfspace oracle
as valid if it satisfies that for each halfspace H D S, u(xpy,y) € H foranyy € V.

Theorem 8 For any Blackwell instance (X, Y,u(,-), S), the set S is approachable if and only if there exists
a valid halfspace oracle.



Notice that the existence of a valid halfspace oracle is equivalent to the halfspace-satisfiability condition.
Hence, via Lemma(7] this theorem is equivalent to Theorem [6]

To achieve approachability, following Definition [5] one must construct an algorithm A that maps the
observed subsequence yi,...,y:—1 € Y to a point x; € X. By the previous theorem, in order for the
set S to be approachable, there must be a valid halfspace oracle O, and hence A may make calls to O.
Blackwell actually provides such an algorithm, quite elegant for its simplicity, which can be found in his
original work [3]] as well as in the book of Cesa-Bianchi and Lugosi [4].

We note that, when an approachability algorithm A is adapted to a Blackwell instance (X, ), u(-,-),S),
and makes calls to a halfspace oracle O, we may write A%Mu’ g to make the dependence clear.

3 Online Linear Optimization

Online Convex Optimization (OCO) has become a popular topic within Machine Learning since it was in-
troduced by Zinkevich in 2003 [23]], and there has been much followup work [21} |19} [14} [1]]. It provides a
generic problem template and was shown to generalize several existing problems in the realm of online learn-
ing and repeated decision making. Among these are online pattern classification, the “experts” or “hedge”
setting, and sequential portfolio optimization [9, |[13]].

In the OCO setting, we imagine an online game between Player and Nature. Assume the Player is given
a convex decision set L C R? and must make a sequence of a decisions x;,Xs, ... € K. After committing
to x;, Nature reveals a convex loss function ¢;, and Player pays ¢;(x;). The performance of the Player is
typically measured by regret which we shall define below. In the present work we shall be concerned with
the more specific problem of Online Linear Optimization (OLO) where the loss functions are assumed to be
linear, /;(x) = (f;, x) for some f; € R

We define the Player’s adaptive strategy £, which we refer to as an OLO algorithm, as a function which

takes as input a subsequence of loss vectors f1, ..., f;_;1 and returns a point x; « L(fi,...,f;_1), where
x; € K.

Definition 9 Given an OLO algorithm L and a sequence of loss vectors fi,fs,... € R% et
Regret(L; f1.7) := Z;‘F:l<ft, X¢) — Milye i Zf:1<ft, x). When the sequence of loss vectors is clear, we

may simply write Regret,(L).

An important question is whether an OLO algorithm has a regret rate which scales sublinearly in T'. A
sublinear regret is key, for then our average performance, in the long run, is essentially no worse than the best
in hindsight. We use the term no-regret algorithm when it possesses this property.

Theorem 10 For any bounded decision set K C R? there exists an algorithm Ly such that Regret, (L) =
o(T) for any sequence of loss vectors {f;} with bounded norm.

Later in the paper we provide one such algorithm, known as Online Gradient Descent, proposed by Zinke-
vich [23].

Before proceeding, let us demonstrate the value of no-regret algorithms by proving an aforementioned
result. We shall sketch a proof of the minimax statement of Corollary [3] Assume we are given convex
and compact decision space X C R™ and Y C R™, and without loss of generality assume we have a
utility function u : X x ) — R of the form u(x,y) = x' My for some M € R"*™. Weak duality, i.e.
miny ¢y maXyex x' My > maxxey minycy x| My is trivial, and so we turn our attention to the reverse
inequality. We shall imagine our game is played repeatedly, where on round ¢ the first player chooses x;
and the second chooses y;, but where both players select their strategies according to a no-regret algorithm.
For every t we shall set x; + Ly (f1,...,f;—1) and y; < Ly(g1,-..,8t—1), Where we define the vectors
f, :== —My; and g/ := x[ M. By applying the definition of regret twice, we have

TZt 1%t Myt—mm( Zt 1Xt> MY-FRQ%T(LJ’) < maxmlnxTMy+°(T) (1)

xXEX yeY
1 T T _ T Regret(,CX) . T o(T)
= _x, My; = max X M( ) —=—=%) > minmaxx My — ==*. 2
thfl t MYt R Zt 1Yt = ey xex y T (2)

Combining these two statements gives minycy maxyey X' My < maxxey mingey x' My + @ of
course, we can let 7' — oo which immediately gives the desired inequality.

The previous example foreshadows a key result of this paper, which is that any no-regret learning al-
gorithm can be converted into an approachability strategy. If we interpret Blackwell Approachability as a
generalized form of Minimax Duality for vector-valued games then it may come as no surprise that regret-
minimizing algorithms would provide a tool in establishing both game-theoretic results. However, in a certain
sense regret-minimization is too heavy a hammer for proving Minimax Duality. For one, the above proof re-
quires that we imagine a repeated version of the game, whereas scalar-valued game duality holds even for



one-shot. Indeed, more standard proofs of von Neumann’s result do not rely on repeated play. Blackwell
Approachability, on the other hand, fundamentally involves repeated play, and in fact we shall show that
regret-minimization is the perfectly-sized hammer, as it is algorithmically equivalent to approachability.

4 Equivalence of Approachability and Regret Minimization

4.1 Convex Cones and Conic Duality

We shall define some basic notions and then state some simple lemmas. Henceforth we use the notation
Bs(r) to refer to the ¢2-norm ball of radius 7. The notation x’ @ x is the vector concatenation of x and x’.

Definition 11 A set X C R? is a cone if it is closed under multiplication by nonnegative scalars, and X
is a convex cone if it is also closed under element addition. Given any set K C RY, define the conic hull
cone(K) := {ax : a € Ry,x € K} which is also a cone in R%. Also, given any convex cone C' C R?, we
can define the polar cone of C' as

C%:={0cR?: (0,x) <0forallx € C}.
It is easily checked that if K is convex then cone(K) is also convex.

Lemma 12 If C is a convex cone then (1) (C°)° = C and (2) supporting hyperplanes in C° correspond to
points x € C, and vice versa. That is, given any supporting hyperplane H of C°, H can be written exactly
as {0 € R?: (0,x) = 0} for some vector x € C that is unique up to scaling.

The distance to a cone can conveniently be measure via a “dual formulation,” as we now show.

Lemma 13 For every convex cone C' in R¢

dist(x,C) = eec%lggz(l)(&x) 3)

Proof: We need two simple observations. Define 7o (x) as the projection of x onto C. Then clearly, for any
X,

dist(x,C) = ||x — mc(x)|| 4)
(x — mc(x),y) <0 Vy € C and hence x — 7¢(x) € C° %)
(x —mo(x),7c(x)) =0 (6)

Given any 0 € C° with ||@| < 1, since o (x) € C we have that
(0,x) < (0,x —mc(x)) < [0][[x = me (%) < [Ix = me(x)],
which immediately implies that maxgcco g<1(6,%) < dist(x,C). Furthermore, by selecting § =

% which has norm one and, by (@), is in C°, we see that
x — me (%) > < x — mo(x) >
max @,x)>( ———_ x)=(—" x—7c(x)) = ||x — 1c(x)]],
oc 85,00 2 (e = el X)) = I mmetl
which implies that maxgeco 9)<1(6, %) > dist(x, () and hence we are done. |

Our results require looking at convex cones rather than convex sets, hence we must consider the process of
converting a set into a cone. In order to not lose information about the underlying set  C R?, we shall embed
the set into a higher dimension, and instead look at cone({x} x K) C R¥t!, where x := max,cx ||x]| is
the diameter of IC. We prove that this process of “lifting” and conifying does not perturb distances by more
than a constant.

Lemma 14 Consider a compact convex set K C H in R% and x ¢ K. Let X := k ® x and K = {r} x K.
Then we have

dist(%,cone(K)) < dist(x,K) < 2dist(X,cone(K)) (7

Proof: Since dist (%, K) = dist(x,K) and K C cone(K), the first inequality follows immediately.

For notational convE:nience letw = & (¥) be the projection of y onto cone(K) and v = 7 (y)
be the projection onto /. Consider the plane determined by the three points x, w, v. Notice that the triangle
A(X, w, v) is similar to the triangle A(0, x @ 0, v), and hence by triangle similarity

IVl -l dist(xK)
k@0 [x—w[ dist(x,cone(K))
For a visual aid, we provide a picture of this triangle similarity in Figure |1} Since v € K we have vl <
IC]| < 2k. In addition ||x @ O|| = & and the result follows. |




Figure 1: A geometric interpretation of the proof of Lemma[T4]

4.2 Duality Theorems

In the previous sections we have presented two sequential decision problems, summarized in Figure [2| We
now show that these two decision problems are algorithmically equivalent: any strategy (algorithm) that
achieves approachability can be converted into an algorithm that achieves low-regret, and vice versa.

Blackwell Approachability Problem Online Linear Optimization Problem

Given a Blackwell instance (X,Y,u(,),S)
and a valid halfspace oracle O : H — xpg €
X, construct an algorithm A so that, for any
sequence y1,ya,... € Y,

dist(% ZtT:l u(xt,yt),S) =0

where x; < A(y1,...,¥yt-1)-

Given a compact convex set K C R? con-
struct a learning algorithm £ so that, for any
sequence of loss vectors f1,fy,... € R? we
have vanishing regret, that is

ZtT:1<ft7Xt> — MiNye Zz:1<ftvx> = o(T),

where x; <+ L(f1,...,f_1).

Figure 2: A summary of Blackwell Approachability and Online Linear Optimization

We present this equivalence as a pair of reductions. In Algorithm [T] we show how a learner, presented
with a OLO problem characterized by a decision set C and an arriving sequence of loss vectors f1, f5, . . ., can
minimize regret with only oracle access to some approachability algorithm A. In Algorithm 2 we show how
a player, presented with a Blackwell instance (X, ), u(,-),.S) and a valid halfspace oracle O, can achieve
approachability when only given oracle access to a no-regret OLO algorithm L. For the remainder of the
paper, for a given Blackwell instance (X', Y, u(,-), S) and approachability algorithm A, D(A;y1,...,yT)

shall refer to the rate of approachability dist (% Zthl u(xt,yt), S). We shall write D (A) when the

input sequence is clear. For the convex set IC, we shall let £ := maxxcx [|x||, the “norm” of the set K.

Algorithm 1 Conversion of Approachability Alg. A to Online Linear Optimization Alg. £

1: Input: compact convex decision set X C R?

Input: sequence of cost functions f;, 5, ..., fr € By(1)

Input: approachability oracle A

Set: Blackwell instance (X, Y, u(,-),S), where X := K, J := By(1), u(x,f) = % ¢ —f, and
S := cone({x} x K)°

Rl

5: Construct: valid halfspace oracle O /1 Existence established in Lemma T3]
6: fort=1,...,Tdo

7: Let: ,C(fl, ey ft—l) = 'Ag7y,u,S(f17 . 7ft—1)

8:  Receive: cost function f;

9: end for




In Algorithm |l we require the construction of a valid halfspace oracle. In the lemma below we give
one such oracle and prove that it is valid, but we note that this construction may not be the most efficient in
general; any particular scenario may give rise to a simpler and faster construction.

Lemma 15 There exists a valid halfspace oracle for the Blackwell instance in Algorithm|[I]

Proof: Assume we have some halfspace H which contains S = cone({x} x K)°. We can assume without
loss of generality that H is tangent to S and, since S is a cone, H meets the origin; that is, H = {60 :
(0,z5) < 0} for some zy € R?. Furthermore, H O cone({x} x K)® implies that zg € (cone({x} x
K)9)0 = cone({x} x K). Equivalently, zy = a(k @ xp) for some xz € K and some o > 0. With this in
mind, we construct our oracle by setting xy; <— O(H).
It remains to prove that this halfspace oracle is valid. We compute (u(xg, f),zg):
(u(xp,f),zg) = (v 1, xg) © —F,an ® axy) = olf, xy) + (—f,axy) = 0.

By definition, (u(xy,f),zy) < 0 implies that u(xy,f) € H for any f and we are done. |

Theorem 16 The reduction defined in Algorithm[l| for any input algorithm A, produces an OLO algorithm
L such that Re%m < 26Dp(A).

Proof: Applying Lemmas[13|and[12]to the definition of Dy (A) gives

T T
1 1
Dr(A)=dist <T g U(Xt;ft)75> = max () <T tEZI u(xy, f;), > (8)

=1 wEcone(kBK)
Notice that, 1n thls optimization, we can assume w.L.o.g. that ||w|| = 1, or w = 0. In the former case we can
write w = HF» 6BXH for some x € K, and we drop the latter case to obtain the inequality

H@x> L (St x) - X ()

1
Dr(A) > - ), - =
r(A) ek <T ;uxf Pk @ x| T xek Ik @ x||

T T *
S % (Zt:1<ftvxt> — (X >) < %RegretT(.A)
= Teax] S

)

. T
where we set x* := arg mingex Y, (£, ). |

We turn our attention to the second reduction.

Algorithm 2 Conversion of Online Linear Optimization Alg. £ to Approachability Alg. .4

Input: Blackwell instance (X', Y, u(-,-), S), with S a cone; and a valid halfspace oracle O
Input: Online Linear Optimization oracle £
Set: K = SN By(1)
fort=1,....,Tdo
Query L: 0; + L (fy, ..., fi_1), where s + —u(xs,ys)
Query O: x; + O(Hg,) where Hg, := {z : (64,2) <0}
Let: A(y1,...,yt-1) i= X¢
Receive: y; € Y
end for

VR RN RR

We now prove a similar rate for reverse direction. Here we assume that S is a cone, but we relax this
restriction next.

Theorem 17 The reduction in Algorithm[2} when S is a cone, leads to a rate of approachability of algorithm
Aof Dr(A;yrr) < Reeelxifun)

Proof: We state precisely the halfspace oracle guarantee from line 6. We know that u(x;,y) € Hpy, or
equivalently (0;,u(x¢,y)) < 0 for any y € Y. In particular, since u(xy,y:) = —fi, we have (0;,f;) > 0.



We bound D (.A) by applying Lemma to obtain:

T
) 1
Dr(A) =dist (T tzz:l u(xe, yt), S) max

1 (& a 1
< = <Z<ft,0t> — min Zl<ft,0>> = Regrety(4) ()

where the inequality follows by the halfspace oracle guarantee. ]
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For a Blackwell instance (X, ), u(-,-),S), even when S is not a cone we can still use Algonthm 2| by
lifting S: apply Algorithm 2]t the instance (X, Y, u'(-,-), "), where S’ := cone({x} x S) and U’ (x,y) :=
£ OuX,y).

Corollary 18 Given a Blackwell instance (X,Y,u(-,-),S) with compact S, and let its lifted instance be
(X, Y,u'(,),S") as described above. Then

T T
. 1 , 1 2
dist (T E u(xt,yt),S> <2.dist <T 221 u’(xt,yt),S'> < TRegretT(.A)

t=1
Proof: Apply Lemma(i4]to Theorem |

We include the compactness assumption only because Lemma [T4] requires it yet it is not necessary; the
size of S does not enter into the bound. For any Blackwell instance (X, Y, u(-,-),.S) with non-compact .S,
we may always consider a functionally equivalent instance (X, ), u(:,-), Sy), where So C S is compact.
Letting U := {u(x,y) : x € X,y € Y}, which is compact, we may simply let Sy be the convex hull of all
projections of points in U onto .S. Hence dist(z,S) = dist(z, Sp) forallz € U.

5 Efficient Calibration via Approachability and OLO

Imagine a sequence of binary outcomes, say ‘rain’ or ‘shine’ on a given day, and imagine a forecaster, say
the weatherman, that wants to predict the probability of this outcome on each day. A natural question to ask
is, on the days when the weatherman actually predicts “30% chance of rain”, does it actually rain (roughly)
30% of the time? This exactly the problem of calibrated forecasting which we now discuss.

There have been a range of definitions of calibration given throughout the literature, some equivalent
and some not, but from a computational viewpoint there are significant differences. We thus give a clean
definition of calibration, first introduced by Foster [7]], which is convenient to asses computationally.

We let 41,42, ... € {0,1} be a sequence of outcomes, and p1,ps, ... € [0,1] a sequence of probability
predictions by a forecaster. We define for every T and every probability interval [p — ¢/2,p + ¢/2) for
p € [0,1] and £ > 0, the quantities

ZtT:1 yellps € [p—€/2,p+¢/2)] _

nT(p,&?)

S et prlne) =

The quantity pr(p,e) should be interpreted as the empirical frequency of y; = 1, up to round 7', on only
those rounds where the forecaster’s prediction was within £/2 of p. The goal of calibration, of course, is
to have this empirical frequency pr(p,e) be close to the estimated frequency p in the limit. The standard
definition of a calibrated forecaster is one that satisfies

forallp € [0,1],e > 0: limsup|pr(p,e) —p| < O(e) unless np(p,e)=o(T). (10)
T—00
Requiring that np(p,€) does not grow too slowly is an important condition, as we can not expect the fore-

caster to be calibrated in regions on which he predicts only a small number of times. On the other hand, this
case-sensitive condition is somewhat awkward, and we instead use the following equivalent notion.

Definition 19 Let the ({1, €)-calibration rate for forecaster A be
le™!

C3(A) =max{ 0, > % lie — pric,e)| — =
=0

We say that a forecaster is ({1,¢)-calibrated if C5.(A) = o(1), or alternatively lim supy_, . C5(A) < 0.



The definition of asymptotic calibration considers the “total error”” over an e-grid, and it adjusts the normaliza-
tion for each term to . The benefit here is that we can ignore intervals in this grid for which ny(p, €) = o(T).
In addition, we subtract the constant £ /2 which is an artifact of the discretization by ; this is the smallest con-
stant which allows for lim sup;_, ., C5(.A) < 0. A standard reduction in the literature (see e.g. [4]) shows
that a fully-calibrated algorithm (i.e. one satisfying (I0)) can be constructed from and (¢y,€)-calibrated
algorithm. Henceforth we only consider the (¢;, ) condition.

As our goal is to minimize the calibration score C5.,, we can interpret this value instead as a distance to

the ¢;-norm ball. Define the calibration vector c; € R ') at time T as: cp(i) = %(zs — pr(ic, e)).

Claim 20 Whenever cr ¢ B1(e/2), we have
C% = disty(cr, B1(e/2)).

Proof: Notice that for any x: dist(x, Bi(¢/2)) := ming.|y|,<c/2 [X — y[[1 = max{0, —&/2 + |Ix][|1}.
The second equality follows by noting that an optimally chosen y will lie in the same quadrant as x. When
we set X = cr, it is clear that ||cr||; > €/2 given our assumption that c; ¢ Bi(e/2). |

The utility of this claim shall be to convert the problem of ({1, )-calibration to a problem of approachability;
that is, can we approach the set By (e/2) for a particular vector-valued game? In the following section we
describe this construction in detail.

5.1 Ecxistence of Calibrated Forecaster via Blackwell Approachability

A surprising fact is that it is possible to achieve calibration even when the outcome sequence {y; } is chosen
by an adversary, although this requires a randomized strategy of the forecaster. Algorithms for calibrated
forecasting under adversarial conditions have been given in Foster and Vohra [8]], Fudenberg and Levine [10],
and Hart and Mas-Colell [12]].

Interestingly, the calibration problem was reduced to Blackwell’s Approachability Theorem in a short
paper by Foster in 1999 [[7]. Foster’s reduction uses Blackwell’s original theorem, proving that a given set is
halfspace-satisfiable, in particular by providing a construction for each such halfspace. Here we provide a re-
duction to Blackwell Approachability using the response-satisfiability condition — that is by using Theorem 6]
— which is both significantly easier and more intuitive than Foster’s constructimﬂ We also show, using the
reduction to Online Linear Optimization from the previous section, how to achieve the most efficient known
algorithm for calibration by taking advantage of the Online Gradient Descent algorithm of Zinkevich [23]],
using the results of Section [4]

We now describe the construction that allows us to reduce calibration to approachability. For any € > 0
we will show how to construct an (¢7, ¢)-calibrated forecaster. Notice that from here, it is straightforward to
produce a well-calibrated forecaster [8]. For simplicity, assume ¢ = 1/m for some positive integer m. On
each round ¢, a forecaster will now randomly predict a probability p, € {0/m,1/m,2/m, ..., (m—1)/m,1},
according to the distribution wy, that is Pr(p; = i/m) = w¢(¢). We now define a vector-valued game. Let
the player choose w; € X := A, 1, and the adversary choose y; € ) := [0, 1], and the payoff vector will
be

m

atwi ) = (wi0) (1= 1) o) (= ) o owilm) e - 1)) an

Lemma 21 Consider the vector-valued game described above and let S := Bi(g/2). If we have a strategy

for choosing w; that guarantees approachability of S, that is % Zthl u(wy,y) — S, then a randomized
Sorecaster that selects p; according to wy is ({1, €)-calibrated with high probability.

The proof of this lemma is straightforward, and is similar to the construction in Foster [7]. The key fact is that

+ Zle u(wy, y:) = E[cr], where the expectation is taken over the algorithms draws of every p; according
to the distribution w;. Since each p; is drawn independently, by standard concentration arguments we can

see that if + ZtT:l u(wy, y¢) is close to the ¢1ball of radius /2, then the (¢1, €)-calibration vector is close to
the £/2 ball with high probability.
We can now apply Theorem 6] to prove the existence of a calibrated forecaster.

Theorem 22 For the vector-valued game defined in (T1)), the set By (g/2) is response-satisfiable and, hence,
approachable.

%A similar existence proof was discovered concurrently by Mannor and Stoltz [16]
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Proof: To show response-satisfiability, we need only show that, for every strategy y € [0, 1] played by the
adversary, there is a strategy w € A,,, for which u(w, y) € S. This can be achieved by simply setting 7 so as
to minimize |ie —y|, which can always be made smaller than /2. We then choose our distribution w € A, 11
to be a point mass on 4, that is we set w(i) = 1 and w(j) = 0 for all j # 4. Then u(w, y) is identically 0
everywhere except the ith coordinate, which has the value y—i/m. By construction, y—i/m € [—1/m,1/m],
and we are done. |

5.2 Efficient Algorithm for Calibration via Online Linear Optimization

We now show how the results in the previous Section lead to the first efficient algorithm for calibrated fore-
casting. The previous theorem provides a natural existence proof for Calibration, but it does not immediately
provide us with a simple and efficient algorithm. We proceed according to the reduction outlined in the
previous section to prove:

Theorem 23 There exists a ({1, €)-calibration algorithm that runs in time O(log 1) per iteration and satisfies
_ 1
G =0(4)

The reduction developed in Theorem [I7|has some flexibility, and we shall modify it for the purposes of
this problem. The objects we shall need, as well as the required conditions, are as follows:

1. A convex set IC

2. An efficient learning algorithm A which, for any sequence fi, fs, ..., can select a sequence of points
01,0, ... € K with the guarantee that ZtT:1 (f, 0;) —mingex Zthl (f;, 8) = o(T). For the reduction,
we shall set f; < —u(wy, y¢).

3. An efficient oracle that can select a particular w; € X for each 8; € K with the guarantee that

dist <; Zu(wt,yt),5> < % <Z<—U(Wt7yt),0t> — min <—11(Wtayt),9>> (12)

t=1 =1 t=1

where the function dist() can be with respect to any norm.
The Setup Let K = B..(1) = {6 € R? : |||/ < 1} be the unit cube. This is an appropriate choice
because we can write disty(x, By(e/2)) for x ¢ By(g/2)) as

disti(x,Bi1(¢/2)) := min X — =—€/2+4 ||x|]j1 = —¢/2— min
W By(e/2) = minx -yl = —e/2 4 [ = —e/2— ) min

(—x,0); 13)

The former equality was proved in Claim 20| Furthermore, we shall construct our oracle mapping 6 — w
with the following guarantee: (u(w,y),0) < £/2 for any y. Using this guarantee, and if we plug in x =

T Zthl u(wy, y:) (13), we arrive at:

disty <W731(5/Q)> = —¢/2— min <_ZZ_1U(Wt’yt),0>

6:]16| 0o <1 T

IN

% <Z<—U(Wt7yt)’9t> — min Z<_U(Wtayt)79>>

t=1 t=1
This is precisely the necessary guarantee (12)).

Constructing the Oracle We now turn our attention to designing the required oracle in an efficient manner.
In particular, given any 0 with ||0||.c < 1 we must construct w € A,,, 1 so that ({(w,y),0) < /2 for any
y. The details of this oracle are given in Algorithm |3} It is straightforward why, in the final else condition,
there must be such a pair of coordinates 7, ¢ + 1 satisfying the condition. We need not be concerned with the
case that 6(i + 1) = 0, where we can simply define = = 0 and 2 = 1 leading to w <~ ;1. It is also clear
that, with the binary search, this algorithm requires at most O(log m) = O(log 1/¢) computation.

In order to prove that this construction is valid we need to check the condition that, for any y € {0, 1},
(u(w,y),0) < /2; or more precisely, > ", 0(i)w(i) (y — £) < /2. Recalling that m = 1/e, this is

m

trivially checked for the case when 6(1) < 0 or 8(m) > 0. Otherwise, we have
. 0(i)~! i _ —0(i+1)71 i+1
9 = 6 ~ ) 106+t -
(w1 6) = 00) g gy (v ) + 00+ Dgrr gt (v
1 1 max(|0(2)],10(i + 1)|) €
= — < < -
0G) ' —0(i+1)‘m 2 = =3
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Algorithm 3 Efficient Oracle mapping O : w — 6

Input: @ such that ||0]|. <1
if 6(0) < 0 then

w < §p // Thatis, choose w to place all weight on the Oth coordinate
else if 6(m) > 0 then

W < d,, // That is, choose w to place all weight on the last coordinate
else

Binary search 0 to find coordinate 7 such that 8(i) > 0and 8(i + 1) <0

(i)~ ! —0(i+1)""
W O(i)*lig(i+1)*1 d; + 9(1:)*1(—0(1')-5-1)*1 Oit1
end if

Return w

The Learning Algorithm The final piece is to construct an efficient learning algorithm which leads to
vanishing regret. That is, we need to construct a sequence of ,’s in the unit cube (denoted B, (1)) so that

T T
Z<ut7 0t> — min <ut7 0> = O(T)7
e} 0c€Bo (1) e}
where u; := u(wy,y;). There are a range of possible no-regret algorithms available, but we use the one

given by Zinkevich known commonly as Online Gradient Descent [23]]. The details are given in Algorithm[4]
This algorithm can indeed be implemented efficiently, requiring only O(1) computation on each round and

Algorithm 4 Online Gradient Descent

Input: convex set K C R¢
Initialize: 6; = 0

Set Parameter: 7 = O(T~/2)
fort=1,...,Tdo

Receive u;

0,1 <+ 0, — nuy // Gradient Descent Step

041 < Projecty (0}, 1,K) // L2 Projection Step
end for

O(min{m, T'}) memory. The main advantage is that the vectors u; are generated via our oracle above, and
these vectors are sparse, having only at most two nonzero coordinates. Hence, the Gradient Descent Step
requires only O(1) computation. In addition, the Projection Step can also be performed in an efficient manner.
Since we assume that 8; € B, (1), the updated point 6, 1 can violate at most two of the £, constraints of the
ball Bo.(1). An ¢5 projection onto the cube requires simply rounding the violated coordinates into [—1, 1].
The number of non-zero elements in @ can increase by at most two every iteration, and storing 6 is the only
state that online gradient descent needs to store, hence the algorithm can be implemented with O (min{T’,m})
memory. We thus arrive at an efficient no-regret algorithm for choosing 6;.

Putting it all Together We can now fully specify our calibration algorithm given the subroutines defined
above. The precise description is in Algorithm [5] which makes queries to Algorithms[3|and 4]

Algorithm 5 Efficient Algorithm for Asymptotic Calibration

Input: € = 1/m for some natural number m
Initialize: 8; = 0, wi € A, 11 arbitrarily
fort=1,....,Tdo _

Sample i; ~ wy, predict p; = %, observe y; € {0,1}

m’

Set u; := u(wy, yr) /I Vector-valued game defined in (TT))
Query learning algorithm: ;1 < Update(0;|u;) // Subroutine from Algorithm M4
Query halfspace oracle: wy 1 + O(0y41) // Subroutine from Algorithm

end for

Proof:[ of Theorem 23] Here we have bounded the distance directly by the regret, using equation (12)), which
tells us that the calibration rate is bounded by the regret of the online learning algorithm. Online Gradient
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Descent guarantees the regret to be no more than DG VT, where D is the {5 diameter of the set, and G is the
lo-norm of the largest cost vector. For the ball B, (1), the diameter D = \/g , and we can bound the norm
of our loss vectors by G = v/2. Hence:

Ci = distlerBi(e/2) < g < L - oL (14)
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