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Abstract

The AdaBoost algorithm was designed to combine many “weak” hypotheses that perform slightly
better than random guessing into a “strong” hypothesis that has very low error. We study the rate at
which AdaBoost iteratively converges to the minimum of the “exponential loss.” Unlike previous
work, our proofs do not require a weak-learning assumption, nor do they require that minimizers
of the exponential loss are finite. Our first result shows that at iteration t, the exponential loss of
AdaBoost’s computed parameter vector will be at most ε more than that of any parameter vector
of `1-norm bounded by B in a number of rounds that is at most a polynomial in B and 1/ε. We
also provide lower bounds showing that a polynomial dependence on these parameters is necessary.
Our second result is that within C/ε iterations, AdaBoost achieves a value of the exponential loss
that is at most ε more than the best possible value, where C depends on the dataset. We show that
this dependence of the rate on ε is optimal up to constant factors, that is, at least Ω(1/ε) rounds are
necessary to achieve within ε of the optimal exponential loss.

1 Introduction
The AdaBoost algorithm of Freund and Schapire (1997) was designed to combine many “weak” hypotheses
that perform slightly better than random guessing into a “strong” hypothesis that has very low error. Despite
extensive theoretical and empirical study, basic properties of AdaBoost’s convergence are not fully under-
stood. In this work, we focus on one of those properties, namely, to find convergence rates that hold in the
absence of any simplifying assumptions. Such assumptions, relied upon in much of the preceding work, make
it easier to prove a fast convergence rate for AdaBoost, but often do not hold in the cases where AdaBoost is
commonly applied.

AdaBoost can be viewed as a coordinate descent (or functional gradient descent) algorithm that iteratively
minimizes an objective function L : Rn → R called the exponential loss (Breiman, 1999, Frean and Downs,
1998, Friedman et al., 2000, Friedman, 2001, Mason et al., 2000, Onoda et al., 1998, Rätsch et al., 2001,
Schapire and Singer, 1999). Given m labeled training examples (x1, y1), . . . , (xm, ym), where the xi’s are
in some domain X and yi ∈ {−1,+1}, and a finite (but typically very large) space of weak hypotheses
H = {~1, . . . , ~N}, where each ~j : X → {−1,+1}, the exponential loss is defined as

L(λ) M=
1
m

m∑
i=1

exp

− N∑
j=1

λjyi~j(xi)


where λ = 〈λ1, . . . , λN 〉 is a vector of weights or parameters. In each iteration, a coordinate descent al-
gorithm moves some distance along some coordinate direction λj . For AdaBoost, the coordinate directions
correspond to the individual weak hypotheses. Thus, on each round, AdaBoost chooses some weak hypo-
thesis and step length, and adds these to the current weighted combination of weak hypotheses, which is
equivalent to updating a single weight. The direction and step length are so chosen that the resulting vector
λt in iteration t yields a lower value of the exponential loss than in the previous iteration, L(λt) < L(λt−1).
This repeats until it reaches a minimizer if one exists. It was shown by Collins et al. (2002), and later by
Zhang and Yu (2005), that AdaBoost asymptotically converges to the minimum possible exponential loss.
That is,

lim
t→∞

L(λt) = inf
λ∈RN

L(λ).



However, that work did not address a convergence rate to the minimizer of the exponential loss.
Our work specifically addresses a recent conjecture of Schapire (2010) stating that there exists a positive

constant c and a polynomial poly() such that for all training sets and all finite sets of weak hypotheses, and
for all B > 0,

L(λt) ≤ min
λ:‖λ‖1≤B

L(λ) +
poly(logN,m,B)

tc
. (1)

In other words, the exponential loss of AdaBoost will be at most ε more than that of any other parameter
vector λ of `1-norm bounded by B in a number of rounds that is bounded by a polynomial in logN , m, B
and 1/ε. (We require logN rather than N since the number of weak hypotheses will typically be extremely
large.) Along with an upper bound that is polynomial in these parameters, we also provide lower bound
constructions showing some polynomial dependence on B and 1/ε is necessary. Without any additional
assumptions on the exponential loss L, and without altering AdaBoost’s minimization algorithm for L, the
best known convergence rate of AdaBoost prior to this work that we are aware of is that of Bickel et al. (2006)
who prove a bound on the rate of the form O(1/

√
log t).

We provide also a convergence rate of AdaBoost to the minimum value of the exponential loss. Namely,
within C/ε iterations, AdaBoost achieves a value of the exponential loss that is at most ε more than the best
possible value, where C depends on the dataset. This convergence rate is different from the one discussed
above in that it has better dependence on ε (in fact the dependence is optimal, as we show), and does not
depend on the best solution within a ball of size B. However, this second convergence rate cannot be used
to prove (1) since in certain worst case situations, we show the constant C may be larger than 2m (although
usually it will be much smaller).

Within the proof of the second convergence rate, we provide a lemma (called the decomposition lemma)
that shows that the training set can be split into two sets of examples: the “finite margin set,” and the “zero
loss set.” Examples in the finite margin set always make a positive contribution to the exponential loss, and
they never lie too far from the decision boundary. Examples in the zero loss set do not have these properties.
If we consider the exponential loss where the sum is only over the finite margin set (rather than over all
training examples), it is minimized by a finite λ. The fact that the training set can be decomposed into these
two classes is the key step in proving the second convergence rate.

This problem of determining the rate of convergence is relevant in the proof of the consistency of Ada-
Boost given by Bartlett and Traskin (2007), where it has a direct impact on the rate at which AdaBoost con-
verges to the Bayes optimal classifier (under suitable assumptions). It may also be relevant to practitioners
who wish to have a guarantee on the exponential loss value at iteration t (although, in general, minimization
of the exponential loss need not be perfectly correlated with test accuracy).

There have been several works that make additional assumptions on the exponential loss in order to attain
a better bound on the rate, but those assumptions are not true in general, and cases are known where each of
these assumptions are violated. For instance, better bounds are proved by Rätsch et al. (2002) using results
from Luo and Tseng (1992), but these appear to require that the exponential loss be minimized by a finite λ,
and also depend on quantities that are not easily measured. There are many cases where L does not have a
finite minimizer; in fact, one such case is provided by Schapire (2010). Shalev-Shwartz and Singer (2008)
have proven bounds for a variant of AdaBoost. Zhang and Yu (2005) also have given rates of convergence,
but their technique requires a bound on the change in the size of λt at each iteration that does not necessarily
hold for AdaBoost. Many classic results are known on the convergence of iterative algorithms generally
(see for instance Luenberger and Ye, 2008, Boyd and Vandenberghe, 2004); however, these typically start
by assuming that the minimum is attained at some finite point in the (usually compact) space of interest,
assumptions that do not generally hold in our setting. When the weak learning assumption holds, there is a
parameter γ > 0 that governs the improvement of the exponential loss at each iteration. Freund and Schapire
(1997) and Schapire and Singer (1999) showed that the exponential loss is at most e−2tγ2

after t rounds, so
AdaBoost rapidly converges to the minimum possible loss under this assumption.

In Section 2 we summarize the coordinate descent view of AdaBoost. Section 3 contains the proof of the
conjecture, with associated lower bounds proved in Section 4. Section 5 provides the C/ε convergence rate.
The proof of the decomposition lemma is given in Section 6.

2 Coordinate Descent View of AdaBoost
From the examples (x1, y1), . . . , (xm, ym) and hypotheses H = {~1, . . . , ~N}, AdaBoost iteratively com-
putes the function F : X → R, where sign(F (x)) can be used as a classifier for a new instance x. The
function F is a linear combination of the hypotheses. At each iteration t, AdaBoost chooses one of the weak
hypotheses ht from the set H, and adjusts its coefficient by a specified value αt. Then F is constructed
after T iterations as: F (x) =

∑T
t=1 αtht(x). Figure 1 shows the AdaBoost algorithm (Freund and Schapire,

1997).
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Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
setH = {~1, . . . , ~N} of weak hypotheses ~j : X → {−1,+1}.

Initialize: D1(i) = 1/m for i = 1, . . . ,m.
For t = 1, . . . , T :
• Train weak learner using distribution Dt; that is, find weak hypothesis ht ∈ H whose correlation rt

M=
Ei∼Dt [yiht(xi)] has maximum magnitude |rt|.
• Choose αt = 1

2 ln {(1 + rt) / (1− rt)}.
• Update, for i = 1, . . . ,m: Dt+1(i) = Dt(i) exp(−αtyiht(xi))/Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).
Output the final hypothesis: F (x) = sign

(∑T
t=1 αtht(x)

)
.

Figure 1: The boosting algorithm AdaBoost.

Since each ht is equal to ~jt for some jt, F can also be written F (x) =
∑N
j=1 λj~j(x) for a vector

of values λ = 〈λ1, . . . λN 〉 (such vectors will sometimes also be referred to as combinations, since they
represent combinations of weak hypotheses). In different notation, we can write AdaBoost as a coordinate
descent algorithm on vector λ. We define the feature matrix M elementwise by Mij = yi~j(xi), so that this
matrix contains all of the inputs to AdaBoost (the training examples and hypotheses). Then the exponential
loss can be written more compactly as:

L(λ) =
1
m

m∑
i=1

e−(Mλ)i

where (Mλ)i, the ith coordinate of the vector Mλ, is the (unnormalized) margin achieved by vector λ on
training example i.

Coordinate descent algorithms choose a coordinate at each iteration where the directional derivative is
the steepest, and choose a step that maximally decreases the objective along that coordinate. To perform
coordinate descent on the exponential loss, we determine the coordinate jt at iteration t as follows, where ej
is a vector that is 1 in the jth position and 0 elsewhere:

jt ∈ argmax
j

∣∣∣∣(−dL(λt−1 + αej)
dα

∣∣∣
α=0

)∣∣∣∣ = argmax
j

1
m

∣∣∣∣∣
m∑
i=1

e−(Mλt−1)iMij

∣∣∣∣∣ . (2)

It can be shown (see for instance Mason et al., 2000) that the distribution Dt chosen by AdaBoost at each
round t puts weight Dt(i) proportional to e(−Mλt−1)i . Eq. (2) can now be rewritten as

jt ∈ argmax
j

∣∣∣∣∣∑
i

Dt(i)Mij

∣∣∣∣∣ = argmax
j

∣∣∣Ei∼Dt
[Mij ]

∣∣∣ = argmax
j

∣∣∣Ei∼Dt
[yihj(xi)]

∣∣∣,
which is exactly the way AdaBoost chooses a weak hypothesis in each round (see Figure 1). The correlation∑
iDt(i)Mijt will be denoted by rt and its absolute value |rt| denoted by δt. The quantity δt is commonly

called the edge for round t. The distance αt to travel along direction jt is chosen to minimize L(λt−1 +
αtejt), and can be shown to be equal to αt = 1

2 ln
(

1+rt

1−rt

)
(see for instance Mason et al., 2000), just as in

Figure 1. With this choice of step length, it can be shown (see for instance Freund and Schapire, 1997) that
the exponential loss drops by an amount depending on the edge: L(λt) = L(λt−1)

√
1− δ2

t .
Our rate bounds also hold when the weak-hypotheses are confidence-rated, that is, giving real-valued

predictions in [−1,+1], so that h : X → [−1,+1]. In that case, the criterion for picking a weak hypo-
thesis in each round remains the same, that is, at round t, an ~jt maximizing the absolute correlation

jt ∈ argmaxj
∣∣∣∑m

i=1 e
−(Mλt−1)iMij

∣∣∣, is chosen, where Mij may now be non-integral. An exact analyti-
cal line search is no longer possible, but if the step size is chosen in the same way,

αt =
1
2

ln
(

1 + rt
1− rt

)
, (3)

then Freund and Schapire (1997) and Schapire and Singer (1999) show that a similar drop in the loss is still
guaranteed:

L(λt) ≤ L(λt−1)
√

1− δ2. (4)
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With confidence rated hypotheses, other implementations may choose the step size in a different way. How-
ever, in this paper, by “AdaBoost” we will always mean the version in (Freund and Schapire, 1997, Schapire
and Singer, 1999) which chooses step sizes as in (3), and enjoys the loss guarantee as in (4). That said, all our
proofs work more generally, and are robust to numerical inaccuracies in the implementation. In other words,
even if the previous conditions are violated by a small amount, similar bounds continue to hold, although we
leave out explicit proofs of this fact to simplify the presentation.

3 Convergence to any target loss
In this section, we bound the number of rounds of AdaBoost required to get within ε of the loss attained by
any parameter vector λ∗ as a function of ε and the `1-norm ‖λ∗‖1. The vector λ∗ serves as a reference based
on which we define the target loss L(λ∗), and its `1-norm is a measure of the difficulty of attaining the target
loss. We prove a bound polynomial in 1/ε, ‖λ∗‖1 and the number of examplesm, showing (1) holds, thereby
resolving affirmatively the open problem posed in (Schapire, 2010). Later in the section we provide lower
bounds showing how a polynomial dependence on both parameters is necessary.

Theorem 1 For any λ∗ ∈ RN , AdaBoost achieves loss at most L(λ∗) + ε in at most 13‖λ∗‖61ε−5 rounds.

The high level idea behind the proof of the theorem is as follows. To show a fast rate, we require a large edge
in each round, as indicated by (4). A large edge is guaranteed if the size of the current solution of AdaBoost
is small. Therefore AdaBoost makes good progress if the size of its solution does not grow too fast. On the
other hand, the increase in size of its solution is given by the step length, which in turn is proportional to the
edge achieved in that round. Therefore, if the solution size grows fast, the loss also drops fast. Either way the
algorithm makes good progress. In the rest of the section we make these ideas concrete through a sequence
of lemmas.

We provide some more notation. Throughout, λ∗ is fixed, and its `1-norm is denoted by B (matching the
notation in Schapire, 2010). One key parameter is the suboptimality Rt of AdaBoost’s solution measured via
the logarithm of the exponential loss:

Rt
M= lnL(λt)− lnL(λ∗).

Another key parameter is the `1-distance St of AdaBoost’s solution from the closest combination that achieves
the target loss:

St
M= inf

λ

{
‖λ− λt‖1 : L(λ) ≤ L(λ∗)

}
.

We will also be interested in how they change as captured by

∆Rt
M= Rt−1 −Rt, ∆St

M= St − St−1.

Notice that ∆Rt is always non-negative since AdaBoost decreases the loss, and hence the suboptimality, in
each round. Let T0 be the bound on the number of rounds in Theorem 1. We assume without loss of generality
that R0, . . . , RT0 and S0, . . . , ST0 are all strictly positive, since otherwise the theorem holds trivially. Also,
in the rest of the section, we restrict our attention entirely to the first T0 rounds of boosting. We first show
that a poly(B, ε−1) rate of convergence follows if the edge is always polynomially large compared to the
suboptimality.

Lemma 2 If for some constants c1, c2, where c2 > 1/2, the edge satisfies δt ≥ B−c1Rc2t−1 in each round t,
then AdaBoost achieves at most L(λ∗) + ε loss after 2B2c1(ε ln 2)1−2c2 rounds.

Proof: From the definition of Rt and (4) we have

∆Rt = lnL(λt−1)− lnL(λt) ≥ −1
2

ln(1− δ2
t ). (5)

Combining the above with the inequality ex ≥ 1 + x, and the assumption on the edge

∆Rt ≥ −
1
2

ln(1− δ2
t ) ≥ 1

2
δ2
t ≥

1
2
B−2c1R2c2

t−1.

Let T = d2B2c1(ε ln 2)1−2c2e be the bound on the number of rounds in the lemma. If any of R0, . . . , RT
is negative, then by monotonicity RT < 0 and we are done. Otherwise, they are all non-negative. Then,
applying Lemma 18 from the Appendix to the sequence R0, . . . , RT , and using c2 > 1/2 we get

R1−2c2
T ≥ R1−2c2

0 + c2B
−2c1T > (1/2)B−2c1T ≥ (ε ln 2)1−2c2 =⇒ RT < ε ln 2.
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If either ε or L(λ∗) is greater than 1, then the lemma follows since L(λT ) ≤ L(λ0) = 1 < L(λ∗) + ε.
Otherwise,

L(λT ) < L(λ∗)eε ln 2 ≤ L(λ∗)(1 + ε) ≤ L(λ∗) + ε,

where the second inequality uses ex ≤ 1 + (1/ ln 2)x for x ∈ [0, ln 2].

We next show that large edges are achieved provided St is small compared to Rt.

Lemma 3 In each round t, the edge satisfies δt ≥ Rt−1/St−1.

Proof: For any combination λ, define pλ as the distribution on examples {1, . . . ,m} that puts weight propor-
tional to the lossDλ(i) = e−(Mλ)i/(mL(λ)). Choose any λ suffering at most the target loss L(λ) ≤ L(λ∗).
By non-negativity of relative entropy we get

0 ≤ RE(Dλt−1 ‖ Dλ) =
m∑
i=1

Dλt−1 ln

(
1
me
−(Mλt−1)i/L(λt−1)
1
me
−(Mλ)i/L(λ)

)

= −Rt−1 +
m∑
i=1

Dλt−1(i)
(
Mλ−Mλt−1

)
i
. (6)

Note that Dλt−1 is the distribution Dt that AdaBoost creates in round t. The above summation can be
rewritten as

m∑
i=1

Dλt−1(i)
N∑
j=1

(
λj − λt−1

j

)
Mij =

N∑
j=1

(
λj − λt−1

j

) m∑
i=1

Dt(i)Mij

≤

 N∑
j=1

∣∣λj − λt−1
j

∣∣max
j

∣∣∣∣∣
m∑
i=1

Dt(i)Mij

∣∣∣∣∣ = δt‖λ− λt−1‖1.(7)

Since the previous holds for any λ suffering less than the target loss, the last expression is at most δtSt−1.
Combining this with (7) completes the proof.

To complete the proof of Theorem 1, we show St is small compared toRt in rounds t ≤ T0 (during which
we have assumed St, Rt are all positive). In fact we prove:

Lemma 4 For any t ≤ T0, St ≤ B3R−2
t .

This, along with Lemmas 2 and 3, immediately proves Theorem 1. The bound on St in Lemma 4 can be
proven if we can first show St grows slowly compared to the rate at which the suboptimality Rt falls. Intu-
itively this holds since growth in St is caused by a large step, which in turn will drive down the suboptimality.
In fact we can prove the following.

Lemma 5 In any round t ≤ T0, we have 2∆Rt

Rt−1
≥ ∆St

St−1
.

Proof: Firstly, it follows from the definition of St that ∆St ≤ ‖λt − λt−1‖1 = |αt|. Next, using (5) and (3)
we may write ∆Rt ≥ Υ(δt) |αt|, where the function Υ has been defined in (Rätsch and Warmuth, 2005) as

Υ(x) =
− ln(1− x2)

ln
(

1+x
1−x

) .

It is known (Rätsch and Warmuth, 2005, Rudin et al., 2007) that Υ(x) ≥ x/2 for x ∈ [0, 1]. Combining and
using Lemma 3,

∆Rt ≥ δt∆St/2 ≥ Rt−1 (∆St/2St−1) .

Rearranging completes the proof.

Using this we may prove Lemma 4.
Proof: We first show S0 ≤ B3R−2

0 . Note, S0 ≤ ‖λ∗ − λ0‖1 = B, and by definition the quantity R0 =
− ln

(
1
m

∑
i e
−(Mλ∗)i

)
. The quantity (Mλ∗)i is the inner product of row i of matrix M with the vector λ∗.

Since the entries of M lie in [−1,+1], this is at most ‖λ∗‖1 = B. Therefore R0 ≤ − ln
(

1
m

∑
i e
−B) = B,

which is what we needed.
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To complete the proof, we show that R2
tSt is non-increasing. It suffices to show for any t the inequality

R2
tSt ≤ R2

t−1St−1. This holds by the following chain:

R2
tSt = (Rt−1 −∆Rt)

2 (St−1 + ∆St) = R2
t−1St−1

(
1− ∆Rt

Rt−1

)2(
1 +

∆St
St−1

)
≤ R2

t−1St−1 exp
(
−2∆Rt
Rt−1

+
∆St
St−1

)
≤ R2

t−1St−1,

where the first inequality follows from ex ≥ 1 + x, and the second one from Lemma 5.

Although we achieve a rate polynomial inB and ε−1 as conjectured by Schapire (2010), the exponents are
rather large, and (we believe) not tight. As evidence supporting this belief, we note that a minor modification
to AdaBoost can converge much faster. This variant, which we call AdaBoost.S, is the same as AdaBoost
except that at the end of each round, the current combination of weak hypotheses is scaled back, that is,
multiplied by a scalar in [0, 1] if doing so will reduce the exponential loss further (and in particular, choosing
that scalar which causes the greatest decrease in the loss). With only this modification, the rate of AdaBoost.S
can be bounded by B2/ε using similar techniques to those given above. (Details omitted for lack of space.)
As shown in the next section on rate lower bounds, this is nearly the best possible.

4 Lower bounds
Here we show that the dependence of the rate in Theorem 1 on the norm ‖λ∗‖1 of a solution achieving target
accuracy is necessary for a wide class of datasets. Although we prove our results for exponential loss, the
arguments in this section hold more generally for any coordinate descent algorithm based on a loss function
of the form L(λ) = (1/m)

∑
i φ((Mλ)i), where φ : R→ R is any non-negative non-increasing function.

The first lemma connects the size of a competing solution to the required number of rounds of boosting,
and shows that for a wide variety of datasets the convergence rate to a target loss can be lower bounded by
the `1-norm of the smallest solution achieving that loss.

Lemma 6 Suppose the feature matrix M corresponding to a dataset has two rows with {−1,+1} entries
that are complements of each other, that is, there are two examples on which any hypothesis gets one wrong
and one correct prediction. Then the number of rounds required to achieve a target loss L∗ is at least
inf {‖λ‖1 : L(λ) ≤ L∗} /(2 lnm).

Proof: We first show that the two examples corresponding to the complementary rows in M both satisfy a
certain margin boundedness property. Since each hypothesis predicts oppositely on these, in any round t their
margins will be of equal magnitude and opposite sign. Unless both margins lie in [− lnm, lnm], one of them
will be smaller than − lnm. But then the exponential loss L(λt) = (1/m)

∑
j e
−(Mλt)j in that round will

exceed 1, a contradiction since the losses are non-increasing through rounds, and the loss at the start was 1.
Thus, assigning one of these examples the index i, we have the absolute margin |(Mλt)i| is bounded by lnm
in any round t. Letting M(i) denote the ith row of M, the step length αt in round t therefore satisfies

|αt| = |Mijtαt| = |〈M(i), αtejt〉| =
∣∣(Mλt)i − (Mλt−1)i

∣∣ ≤ ∣∣(Mλt)i
∣∣+
∣∣(Mλt−1)i

∣∣ ≤ 2 lnm,

and the statement of the lemma directly follows.

The next theorem constructs a feature matrix satisfying the properties of Lemma 6 and where additionally
the smallest size of a solution achieving L∗ + ε loss is at least Ω(2m) ln(1/ε), for some fixed L∗ and every
ε > 0. This implies that when ε is a small constant (say ε = 0.01), and λ∗ is some vector with loss
L∗ + ε/2, AdaBoost takes at least Ω(2m/ lnm) steps to get within ε/2 of the loss achieved by λ∗, that is,
to within L∗ + ε loss. Since m and ε are independent quantities, this shows that a polynomial dependence
of the convergence rate on the norm of the competing solution is unavoidable. Further this norm might be
exponential in the number of training examples and weak hypotheses in the worst case, and hence the bound
poly(‖λ∗‖1, 1/ε) in Theorem 1 cannot be replaced by poly(m,N, 1/ε).

Theorem 7 Consider the following matrix M with m rows (or examples) labeled 0, . . . ,m − 1 and m − 1
columns labeled 1, . . . ,m − 1 (assume m ≥ 3). The square sub-matrix ignoring row zero is an upper
triangular matrix, with 1’s on the diagonal, −1’s above the diagonal, and 0 below the diagonal. Therefore
row 1 is (+1,−1,−1, . . . ,−1). Row 0 is defined to be just the complement of row 1. Then, for any ε > 0, a
loss of 2/m+ ε is achievable on this dataset, but with large norms

inf {‖λ‖1 : L(λ) ≤ 2/m+ ε} ≥ (2m−2 − 1) ln(1/(3ε)).

Therefore, by Lemma 6, the minimum number of rounds required for reaching loss at most 2/m+ε is at least(
2m−2−1

2 lnm

)
ln(1/(3ε)).
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Proof: We first lower bound the norm of solutions achieving loss at most 2/m+ε. Observe that since rows 0
and 1 are complementary, any solution’s loss on just examples 0 and 1 will add up to at least 2/m. Therefore,
to get within 2/m + ε, the margins on examples 2, . . . ,m − 1 should be at least ln ((m− 2) / (mε)) ≥
ln(1/(3ε)) (for m ≥ 3). Now, the feature matrix is designed so that the margins due to a combination λ
satisfy the following recursive relationships:

(Mλ)m−1 = λm−1,

(Mλ)i = λi − (λi+1 + . . .+ λm−1) , for 1 ≤ i ≤ m− 2.

Therefore, the margin on example m − 1 is at least ln(1/(3ε)) implies λm−1 ≥ ln(1/(3ε)). Similarly,
λm−2 ≥ ln(1/(3ε)) + λm−1 ≥ 2 ln(1/(3ε)). Continuing this way,

λi ≥ ln
(

1
3ε

)
+ λi+1 + . . .+ λm−1 ≥ ln

(
1
3ε

){
1 + 2(m−1)−(i+1) + . . .+ 20

}
= ln

(
1
3ε

)
2m−1−i,

for i = m− 1, . . . , 2. Hence ‖λ‖1 ≥ ln(1/(3ε))(1 + 2 + . . .+ 2m−3) = (2m−2 − 1) ln(1/(3ε)).
We end by showing that a loss of at most 2/m + ε is achievable. The above argument implies that if

λi = 2m−1−i for i = 2, . . . ,m − 1, then examples 2, . . . ,m − 1 attain margin exactly 1. If we choose
λ1 = λ2 + . . .+ λm−1 = 2m−3 + . . .+ 1 = 2m−2− 1, then the recursive relationship implies a zero margin
on example 1 (and hence example 0). Therefore the combination ln(1/ε)(2m−2 − 1, 2m−3, 2m−4, . . . , 1)
achieves a loss (2 + (m− 2)ε)/m ≤ 2/m+ ε, for any ε > 0.

The above lower-bound examples use feature matrices with only integer entries, i.e., entries in {−1, 0,+1}.
The lower bounds can be much larger when the entries are real numbers in [−1,+1]. In fact, tiny perturba-
tions to a feature matrix with integer entries on which AdaBoost converges very fast can lead to a new matrix
with fractional entries that requires arbitrarily large convergence times. The proof of this fact is also based
on the norm of the competing solution (details omitted). In the next section we investigate the dependence of
the convergence rate on the other independent parameter ε, and show that Ω(1/ε) rounds are necessary.

5 Convergence to optimal loss
In the previous section, our rate bound depended on both the approximation parameter ε, as well as the size
of the smallest solution achieving the target loss. For many datasets, the optimal target loss infλ L(λ) cannot
be realized by any finite solution. In such cases, if we want to bound the number of rounds needed to achieve
within ε of the optimal loss, the only way to use Theorem 1 is to first decompose the accuracy parameter ε
into two parts ε = ε1 + ε2, find some finite solution λ∗ achieving within ε1 of the optimal loss, and then use
the bound poly(1/ε2, ‖λ∗‖1) to achieve at most L(λ∗) + ε2 = infλ L(λ) + ε loss. However, this introduces
implicit dependence on ε through ‖λ∗‖1 which may not be immediately clear. In this section, we show
bounds of the form C/ε, where the constant C depends only on the feature matrix M, and not on ε. A similar
approach to solving this problem was taken independently by Telgarsky (2011).

Theorem 8 AdaBoost reaches within ε of the optimal loss in at most C/ε rounds, where C only depends on
the feature matrix.

Additionally, we show that this dependence on ε is optimal in Lemma 17 of the Appendix, where Ω(1/ε)
rounds are shown to be necessary for converging to within ε of the optimal loss on a certain dataset. Finally,
we note that the lower bounds in the previous section indicate that C can be Ω(2m) in the worst case for
integer matrices (although it will typically be much smaller), and hence this bound, though stronger than that
of Theorem 1 with respect to ε, cannot be used to prove the conjecture in (Schapire, 2010), since the constant
is not polynomial in the number of examples m.

Our techniques build upon earlier work on the rate of convergence of AdaBoost, which have mainly
considered two particular cases. In the first case, the weak learning assumption holds, that is, the edge in
each round is at least some fixed constant. In this situation, Freund and Schapire (1997) and Schapire and
Singer (1999) show that the optimal loss is zero, that no solution with finite size can achieve this loss, but
AdaBoost achieves at most ε loss within O(ln(1/ε)) rounds. In the second case some finite combination of
the weak classifiers achieves the optimal loss, and Rätsch et al. (2002), using results from Luo and Tseng
(1992), show that AdaBoost achieves within ε of the optimal loss again within O(ln(1/ε)) rounds.

Here we consider the most general situation, where the weak learning assumption may fail to hold, and
yet no finite solution may achieve the optimal loss. The dataset used in Lemma 17 and shown in Figure 2
exemplifies this situation. Our main technical contribution shows that the examples in any dataset can be
partitioned into a zero-loss set and finite-margin set, such that a certain form of the weak learning assumption
holds within the zero-loss set, while the optimal loss considering only the finite-margin set can be obtained
by some finite solution. The two partitions provide different ways of making progress in every round, and
one of the two kinds of progress will always be sufficient for us to prove Theorem 8.
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We next state our decomposition result, illustrate it with an example, and then state several lemmas
quantifying the nature of the progress we can make in each round. Using these lemmas, we prove Theorem 8.

Lemma 9 (Decomposition Lemma) For any dataset, there exists a partition of the set of training examples
X into a (possibly empty) zero-loss set Z and a (possibly empty) finite-margin set F = Zc

M= X \ Z such
that the following hold simultaneously :

1. For some positive constant γ > 0, there exists some vector η† with unit `1-norm ‖η†‖1 = 1 that attains
at least γ margin on each example in Z, and exactly zero margin on each example in F

∀i ∈ Z : (Mη†)i ≥ γ, ∀i ∈ F : (Mη†)i = 0.

2. The optimal loss considering only examples within F is achieved by some finite combination η∗.

3. There is a constant µmax < ∞, such that for any combination η with bounded loss on the finite-
margin set,

∑
i∈F e

−(Mη)i ≤ m, the margin (Mη)i for any example i in F lies in the bounded interval
[− lnm,µmax].

A proof is deferred to the next section. The decomposition lemma immediately implies that the vector η∗ +
∞ · η†, which denotes

(
η∗ + cη†

)
in the limit c → ∞, is an optimal solution, achieving zero loss on the

zero-loss set, but only finite margins (and hence positive losses) on the finite-margin set (thereby justifying
the names).

~1 ~2

a + −
b − +
c + +

Figure 2: A dataset requiring
Ω(1/ε) rounds for convergence.

Before proceeding, we give an example dataset and indicate the zero-
loss set, finite-margin set, η∗ and η† to illustrate our definitions. Consider
a dataset with three examples {a, b, c} and two hypotheses {~1, ~2} and
the feature matrix M in Figure 2. Here + means correct (Mij = +1)
and − means wrong (Mij = −1). The optimal solution is∞ · (~1 + ~2)
with a loss of 2/3. The finite-margin set is {a, b}, the zero-loss set is
{c}, η† = (1/2, 1/2) and η∗ = (0, 0); for this dataset these are unique.
This dataset also serves as a lower-bound example in Lemma 17, where
we show that 2/(9ε) rounds are necessary for AdaBoost to achieve loss at
most (2/3) + ε.

Before providing proofs, we introduce some notation. By ‖·‖ we will mean `2-norm; every other norm
will have an appropriate subscript, such as ‖·‖1, ‖·‖∞, etc. The set of all training examples will be denoted
by X . By `λ(i) we mean the exp-loss e−(Mλ)i on example i. For any subset S ⊆ X of examples, `λ(S) =∑
i∈S `

λ(i) denotes the total exp-loss on the set S. Notice L(λ) = (1/m)`λ(X), and that Dt+1(i) =
`λ

t

(i)/`λ
t

(X), where λt is the combination found by AdaBoost at the end of round t. By δS(η; λ) we mean
the edge obtained on the set S by the vector η, when the weights over the examples are given by `λ(·)/`λ(S):

δS(η; λ) =

∣∣∣∣∣ 1
`λ(S)

∑
i∈S

`λ(i)(Mη)i

∣∣∣∣∣ .
In the rest of the section, by “loss” we mean the unnormalized loss `λ(X) = mL(λ) and show that in C/ε
rounds AdaBoost converges to within ε of the optimal unnormalized loss infλ `

λ(X), henceforth denoted by
K. Note that this means AdaBoost takes C/ε rounds to converge to within ε/m of the optimal normalized
loss, that is to loss at most infλ L(λ) + ε/m. Replacing ε by mε, it takes C/(mε) steps to attain normal-
ized loss at most infλ L(λ) + ε. Thus, whether we use normalized or unnormalized does not substantively
affect the result in Theorem 8. The progress due to the zero-loss set is now immediate from Item 1 of the
decomposition lemma:

Lemma 10 In any round t, the maximum edge δt is at least γ`λ
t−1

(Z)/`λ
t−1

(X), where γ is as in Item 1 of
the decomposition lemma.

Proof: Recall the distribution Dt created by AdaBoost in round t puts weight Dt(i) = `λ
t−1

(i)/`λ
t−1

(X)
on each example i. From Item 1 we get

δX(η†; λt−1) =

∣∣∣∣∣ 1
`λt−1(X)

∑
i∈X

`λ
t−1

(i)(Mη†)i

∣∣∣∣∣ =
1

`λt−1(X)

∑
i∈Z

γ`λ
t−1

(i) = γ

(
`λ

t−1
(Z)

`λt−1(X)

)
.
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Since (Mη†)i =
∑
j η
†
j (Mej)i, we may rewrite the edge δX(η†; λt−1) as follows:

δX(η†; λt−1) =

∣∣∣∣∣∣ 1
`λt−1(X)

∑
i∈X

`λ
t−1

(i)
∑
j

η†j (Mej)i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j

η†j
1

`λt−1(X)

∑
i∈X

`λ
t−1

(i)(Mej)i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j

η†jδX(ej ; λt−1)

∣∣∣∣∣∣ ≤
∑
j

∣∣∣η†j ∣∣∣ δX(ej ; λt−1).

Since the `1-norm of η† is 1, the weights
∣∣∣η†j ∣∣∣ form some distribution p over the columns 1, . . . , N . We may

therefore conclude

γ

(
`λ

t−1
(Z)

`λt−1(X)

)
= δX(η†; λt−1) ≤ Ej∼p

[
δX(ej ; λt−1)

]
≤ max

j
δX(ej ; λt−1) ≤ δt.

If the set F were empty, then Lemma 10 implies an edge of γ is available in each round. This in fact means
that the weak learning assumption holds, and using (4), we can show an O(ln(1/ε)γ−2) bound matching the
rate bounds of Freund and Schapire (1997) and Schapire and Singer (1999). So henceforth, we assume that
F is non-empty. Note that this implies that the optimal loss K is at least 1 (since any solution will get
non-positive margin on some example in F ), a fact we will use later in the proofs.

Lemma 10 says that the edge is large if the loss on the zero-loss set is large. On the other hand, when it
is small, Lemmas 11 and 12 together show how AdaBoost can make good progress using the finite margin
set. Lemma 11 uses second order methods to show how progress is made in the case where there is a finite
solution. Similar arguments, under additional assumptions, have earlier appeared in (Rätsch et al., 2002).

Lemma 11 Suppose λ is a combination such that m ≥ `λ(F ) ≥ K. Then in some coordinate direction the
edge is at least

√
C0 (`λ(F )−K) /`λ(F ), where C0 is a constant depending only on the feature matrix M.

Proof: Let MF ∈ R|F |×N be the matrix M restricted to only the rows corresponding to the examples in
F . Choose η such that λ + η = η∗ is an optimal solution over F . Without loss of generality assume
that η lies in the orthogonal subspace of the null-space {u : MFu = 0} of MF (since we can translate η∗

along the null space if necessary for this to hold). If η = 0, then `λ(F ) = K and we are done. Otherwise
‖MFη‖ ≥ λmin‖η‖, where λ2

min is the smallest positive eigenvalue of the symmetric matrix MT
FMF (exists

since MFη 6= 0). Now define f : [0, 1]→ R as the loss along the (rescaled) segment [η∗,λ]

f(x) M= `(η
∗−xη)(F ) =

∑
i∈F

`η
∗
(i)ex(Mη)i .

This implies that f(0) = K and f(1) = `λ(F ). Notice that the first and second derivatives of f(x) are given
by:

f ′(x) =
∑
i∈F

(MFη)i`(η
∗−xη)(i), f ′′(x) =

∑
i∈F

(MFη)2
i `

(η∗−xη)(i).

We next lower bound possible values of the second derivative as follows:

f ′′(x) =
∑
i′∈F

(MFη)2
i′`

(η∗−xη)(i′) ≥
∑
i′∈F

(MFη)2
i′ min

i
`(η
∗−xη)(i) ≥ ‖MFη‖2 min

i
`(η
∗−xη)(i).

Since both λ = η∗ − η, and η∗ suffer total loss at most m, by convexity, so does η∗ − xη for any x ∈ [0, 1].
Hence we may apply Item 3 of the decomposition lemma to the vector η∗−xη, for any x ∈ [0, 1], to conclude
that `(η

∗−xη)(i) = exp {−(MF (η∗ − xη))i} ≥ e−µmax on every example i. Therefore we have,

f ′′(x) ≥ ‖MFη‖2e−µmax ≥ λ2
mine

−µmax‖η‖2 (by choice of η) .

A standard second-order result is (see e.g. Boyd and Vandenberghe, 2004, eqn. (9.9))

|f ′(1)|2 ≥ 2
(

inf
x∈[0,1]

f ′′(x)
)

(f(1)− f(0)) .
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Collecting our results so far, we get∑
i∈F

`λ(i)(Mη)i = |f ′(1)| ≥ ‖η‖
√

2λ2
mine

−µmax (`λ(F )−K).

Next let η̃ = η/‖η‖1 be η rescaled to have unit `1 norm. Then we have∑
i∈F

`λ(i)(Mη̃)i =
1
‖η‖1

∑
i

`λ(i)(Mη)i ≥
‖η‖
‖η‖1

√
2λ2

mine
−µmax (`λ(F )−K).

Applying the Cauchy-Schwarz inequality, we may lower bound ‖η‖‖η‖1 by 1/
√
N (since η ∈ RN ). Along with

the fact `λ(F ) ≤ m, we may write

1
`λ(F )

∑
i∈F

`λ(i)(Mη̃)i ≥
√

2λ2
minN

−1m−1e−µmax

√
(`λ(F )−K) /`λ(F ).

If we define p to be a distribution on the columns {1, . . . , N} of MF which puts probability p(j) proportional
to |η̃j | on column j, then we have

1
`λ(F )

∑
i∈F

`λ(i)(Mη̃)i ≤ Ej∼p

∣∣∣∣∣ 1
`λ(F )

∑
i∈F

`λ(i)(Mej)i

∣∣∣∣∣ ≤ max
j

∣∣∣∣∣ 1
`λ(F )

∑
i∈F

`λ(i)(Mej)i

∣∣∣∣∣ .
Notice the quantity inside the max is precisely the edge δF (ej ; λ) in direction j. Combining everything, the
maximum possible edge is

max
j
δF (ej ; λ) ≥

√
C0 (`λ(F )−K) /`λ(F ),

where we define C0 = 2λ2
minN

−1m−1e−µmax .

Lemma 12 Suppose, at some stage of boosting, the combination found by AdaBoost is λ, and the loss is
K + θ. Let ∆θ denote the drop in the suboptimality θ after one more round; i.e., the loss after one more
round is K + θ −∆θ. Then there are constants C1, C2 depending only on the feature matrix (and not on θ),
such that if `λ(Z) < C1θ, then ∆θ ≥ C2θ.

Proof: Let λ be the current solution found by boosting. Using Lemma 11, pick a direction j in which the
edge δF (ej ; λ) restricted to the finite loss set is at least

√
2C0(`λ(F )−K)/`λ(F ). We can bound the edge

δX(ej ; λ) on the entire set of examples as follows:

δX(ej ; λ) =
1

`λ(X)

∣∣∣∣∣∑
i∈F

`λ(i)(Mej)i +
∑
i∈Z

`λ(i)(Mej)i

∣∣∣∣∣
≥ 1

`λ(X)

(∣∣`λ(F )δF (ej ; λ)
∣∣−∑

i∈Z
`λ(i)

)
(using the triangle inequality)

≥ 1
`λ(X)

(√
2C0(`λ(F )−K)`λ(F )− `λ(Z)

)
.

Now, `λ(Z) < C1θ, and `λ(F ) −K = θ − `λ(Z) ≥ (1 − C1)θ. Further, we will choose C1 < 1, so that
`λ(F ) ≥ K ≥ 1. Hence, the previous inequality implies

δX(ej ; λ) ≥ 1
K + θ

(√
2C0(1− C1)θ − C1θ

)
.

Set C1 = min
{

1/2, (1/4)
√
C0/(2m)

}
. Using θ ≤ K + θ = `λ(X) ≤ m, we can bound the square of the

term in brackets on the previous line as(√
2C0(1− C1)θ − C1θ

)2

≥ 2C0(1− C1)θ − 2C1θ
√

2C0(1− C1)θ

≥ 2C0(1− 1/2)θ − 2
(

(1/4)
√
C0/(2m)

)
θ
√

2C0(1− 0)m = C0θ/2.
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So, if δ is the maximum edge in any direction, then

δ ≥ δX(ej ; λ) ≥
√
C0θ/(2(K + θ)2) ≥

√
C0θ/(2m(K + θ)),

where, for the last inequality, we again used K + θ ≤ m. Therefore the loss after one more step is at most
(K + θ)

√
1− δ2 ≤ (K + θ)(1− δ2/2) ≤ K + θ − C0

4mθ. Setting C2 = C0/(4m) completes the proof.

Proof of Theorem 8. At any stage of boosting, let λ be the current combination, and K + θ be the current
loss. We show that the new loss is at most K + θ − ∆θ for ∆θ ≥ C3θ

2 for some constant C3 depending
only on the dataset (and not θ). To see this, either `λ(Z) < C1θ, in which case Lemma 12 applies, and ∆θ ≥
C2θ ≥ (C2/m)θ2 (since θ = `λ(X)−K ≤ m). Or `λ(Z) ≥ C1θ, in which case applying Lemma 10 yields
δ ≥ γC1θ/`

λ(X) ≥ (γC1/m)θ. By (4), ∆θ ≥ `λ(X)(1−
√

1− δ2) ≥ `λ(X)δ2/2 ≥ (K/2)(γC1/m)2θ2.
Using K ≥ 1 and choosing C3 appropriately gives the required condition.

IfK+θt denotes the loss in round t, then the above claim implies θt−θt+1 ≥ C3θ
2
t . Applying Lemma 18

to the sequence {θt} we have 1/θT − 1/θ0 ≥ C3T for any T . Since θ0 ≥ 0, we have T ≤ 1/(C3θT ). Hence
to achieve loss K + ε, C−1

3 /ε rounds suffice.
The hidden constant C in Theorem 8 depends on intrinsic properties of the feature matrix. When the

matrix has real entries, the discussion in the previous section implies that C may be arbitrarily large. When
the entries are restricted to {−1, 0,+1} we can upper bound C by just a function of the dimensions of the
matrix. These dimensions are the number of training examples and the number of weak hypotheses in the
dataset (details omitted).

6 Proof of the decomposition lemma
Throughout this section we only consider (unless otherwise stated) admissible combinations λ of weak classi-
fiers, which have loss `λ(X) bounded by m (since such are the ones found by boosting). We prove Lemma 9
in three steps. We begin with a simple lemma that rigorously defines the zero-loss and finite-margin sets.

Lemma 13 For any sequence η1,η2, . . . , of admissible combinations of weak classifiers, we can find a
subsequence η(1) = ηt1 ,η(2) = ηt2 , . . . , whose losses converge to zero on all examples in some fixed
(possibly empty) subset Z (the zero-loss set), and losses bounded away from zero in its complementX \Z(the
finite-margin set)

∀x ∈ Z : lim
t→∞

`η(t)(x) = 0, ∀x ∈ X \ Z : inf
i
`η(t)(x) > 0. (8)

Proof: We will build a zero-loss set and the final subsequence incrementally. Initially the set is empty. Pick
the first example. If the infimal loss ever attained on the example in the sequence is bounded away from
zero, then we do not add it to the set. Otherwise we add it, and consider only the subsequence whose tth
element attains loss less than 1/t on the example. Beginning with this subsequence, we now repeat with
other examples. The final sequence is the required subsequence, and the examples we have added form the
zero-loss set.

We apply Lemma 13 to some admissible sequence converging to the optimal loss (for instance, the one
found by AdaBoost). Let us call the resulting subsequence η∗(t), the obtained zero-loss set Z, and the finite-
margin set F = X \ Z. The next lemma shows how to extract a single combination out of the sequence η∗(t)
that satisfies the properties in Item 1 of the decomposition lemma.

Lemma 14 Suppose M is the feature matrix, Z is a subset of the examples, and η(1),η(2), . . . , is a sequence
of combinations of weak classifiers such that Z is its zero loss set, and X \ Z its finite loss set, that is, (8)
holds. Then there is a combination η† of weak classifiers that achieves positive margin on every example in
Z, and zero margin on every example in its complement X \ Z, that is:

(Mη†)i

{
> 0 if i ∈ Z,
= 0 if i ∈ X \ Z.

Proof: Since the η(t) achieve arbitrarily large positive margins on Z, ‖η(t)‖ will be unbounded, and it will be
hard to extract a useful single solution out of them. On the other hand, the rescaled combinations η(t)/‖η(t)‖
lie on a compact set, and therefore have a limit point, which might have useful properties. We formalize this
next.

We prove the statement of the lemma by induction on the total number of training examples |X|. If X is
empty, then the lemma holds vacuously for any η†. Assume inductively for all X of size less than m > 0,
and consider X of size m. Since translating a vector along the null space of M, ker M = {x : Mx = 0},
has no effect on the margins produced by the vector, assume without loss of generality that the η(t)’s are
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orthogonal to ker M. Also, since the margins produced on the zero loss set are unbounded, so are the norms
of η(t). Therefore assume (by picking a subsequence and relabeling if necessary) that ‖η(t)‖ > t. Let η′ be
a limit point of the sequence η(t)/‖η(t)‖, a unit vector that is also orthogonal to the null-space. Then firstly
η′ achieves non-negative margin on every example; otherwise by continuity for some extremely large t, the
margin of η(t)/‖η(t)‖ on that example is also negative and bounded away from zero, and therefore η(t)’s loss
is more than m, a contradiction to admissibility. Secondly, the margin of η′ on each example in X \ Z is
zero; otherwise, by continuity, for arbitrarily large t the margin of η(t)/‖η(t)‖ on an example in X \ Z is
positive and bounded away from zero, and hence that example attains arbitrarily small loss in the sequence,
a contradiction to (8). Finally, if η′ achieves zero margin everywhere in Z, then η′, being orthogonal to the
null-space, must be 0, a contradiction since η′ is a unit vector. Therefore η′ must achieve positive margin on
some non-empty subset S of Z, and zero margins on every other example.

Next we use induction on the reduced set of examples X ′ = X \ S. Since S is non-empty, |X ′| < m.
Further, using the same sequence η(t), the zero-loss and finite-loss sets, restricted to X ′, are Z ′ = Z \ S and
(X \ Z) \ S = X \ Z (since S ⊆ Z) = X ′ \ Z ′. By the inductive hypothesis, there exists some η′′ which
achieves positive margins on Z ′, and zero margins on X ′ \Z ′ = X \Z. Therefore, by setting η† = η′+ cη′′

for a large enough c, we can achieve the desired properties.

Applying Lemma 14 to the sequence η∗(t) yields some convex combination η† having margin at least
γ > 0 (for some γ) on Z and zero margin on its complement, proving Item 1 of the decomposition lemma.
The next lemma proves Item 2.

Lemma 15 The optimal loss considering only examples within F is achieved by some finite combination η∗.

Proof: The existence of η† with properties as in Lemma 14 implies that the optimal loss is the same whether
considering all the examples, or just examples in F . Therefore it suffices to show the existence of finite η∗

that achieves loss K on F , that is, `η
∗
(F ) = K.

Recall MF denotes the matrix M restricted to the rows corresponding to examples in F . Let ker MF =
{x : MFx = 0} be the null-space of MF . Let η(t) be the projection of η∗(t) onto the orthogonal subspace

of ker MF . Then the losses `η
(t)

(F ) = `η
∗
(t)(F ) converge to the optimal loss K. If MF is identically zero,

then each η(t) = 0, and then η∗ = 0 has loss K on F . Otherwise, let λ2 be the smallest positive eigenvalue
of MT

FMF . Then ‖Mη(t)‖ ≥ λ‖η(t)‖. By the definition of finite margin set, inft→∞mini∈F `η
(t)

(i) =
inft→∞mini∈F `η

∗
(t)(i) > 0. Therefore, the norms of the margin vectors ‖Mη(t)‖, and hence that of η(t),

are bounded. Therefore the η(t)’s have a (finite) limit point η∗ that must have loss K over F .

As a corollary, we prove Item 3.

Lemma 16 There is a constant µmax < ∞, such that for any combination η that achieves bounded loss on
the finite-margin set, `η(F ) ≤ m, the margin (Mη)i for any example i in F lies in the bounded interval
[− lnm,µmax] .

Proof: Since the loss `η(F ) is at most m, therefore no margin may be less than − lnm. To prove a finite
upper bound on the margins, we argue by contradiction. Suppose arbitrarily large margins are producible by
bounded loss vectors, that is the set {(Mη)i : `η(F ) ≤ m, 1 ≤ i ≤ m} contains arbitrarily large elements.
Then for some fixed example x ∈ F there exists a sequence of combinations of weak classifiers, whose tth
element achieves more than margin t on x but has loss at most m on F . Applying Lemma 13 we can find a
subsequence λ(t) whose tail achieves vanishingly small loss on some non-empty subset S of F containing x,
and bounded margins in F \ S. Applying Lemma 14 to λ(t) we get some convex combination λ† which has
positive margins on S and zero margin on F \ S. Let η∗ be as in Lemma 15, a finite combination achieving
the optimal loss on F . Then η∗ +∞ · λ† achieves the same loss on every example in F \ S as the optimal
solution η∗, but zero loss for examples in S. This solution is strictly better than η∗ on F , a contradiction to
the optimality of η∗. Therefore our assumption is false, and some finite upper bound µmax on the margins
(Mη)i of vectors satisfying `η(F ) ≤ m exists.

7 Conclusion
In this paper we studied the convergence rate of AdaBoost with respect to the exponential loss. We showed
upper and lower bounds for convergence rates to both an arbitrary target loss achieved by some finite com-
bination of the weak hypotheses, as well as to the infimum loss which may not be realizable. For the first
convergence rate, we showed a strong relationship exists between the size of the minimum vector achieving
a target loss and the number of rounds of coordinate descent required to achieve that loss. In particular, we
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showed that a polynomial dependence of the rate on the `1-norm B of the minimum size solution is neces-
sary, and that a poly(B, 1/ε) upper bound holds, where ε is the accuracy parameter. For the second kind
of convergence, using entirely separate techniques we derived an O(1/ε) upper bound, and showed that this
is tight up to constant factors. In the process, we showed a certain decomposition lemma that might be of
independent interest. In the full version of the paper we study the hidden constants more carefully. We also
combine the separate techniques for the two rate proofs to obtain further improved estimates.
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G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287–320, 2001.
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Appendix
Lemma 17 For any ε < 1/3, to get within ε of the optimum loss on the dataset in Table 2, AdaBoost takes
at least 2/(9ε) steps.

Proof: Note that the optimal loss is 2/3, and we are bounding the number of rounds necessary to get within
(2/3) + ε loss for ε < 1/3. We will compute the edge in each round analytically. Let wta, w

t
b, w

t
c denote the

normalized-losses (adding up to 1) or weights on examples a, b, c at the beginning of round t, ht the weak
hypothesis chosen in round t, and δt the edge in round t. The values of these parameters are shown below for
the first 5 rounds, where we have assumed (without loss of generality) that the hypothesis picked in round 1
is ~b:

Round wta wtb wtc ht δt
t = 1 : 1/3 1/3 1/3 ~b 1/3
t = 2 : 1/2 1/4 1/4 ~a 1/2
t = 3 : 1/3 1/2 1/6 ~b 1/3
t = 4 : 1/2 3/8 1/8 ~a 1/4
t = 5 : 2/5 1/2 1/10 ~b 1/5.

Based on the patterns above, we first claim that for rounds t ≥ 2, the edge achieved is 1/t. In fact we prove
the stronger claims, that for rounds t ≥ 2, the following hold:

1. One of wta and wtb is 1/2.

2. δt+1 = δt/(1 + δt).

Since δ2 = 1/2, the recurrence on δt would immediately imply δt = 1/t for t ≥ 2. We prove the stronger
claims by induction on the round t. The base case for t = 2 is shown above and may be verified. Suppose
the inductive assumption holds for t. Assume without loss of generality that 1/2 = wta > wtb > wtc;
note this implies wtb = 1 − (wta + wtc) = 1/2 − wtc. Further, in this round, ~a gets picked, and has edge
δt = wta+wtc−wtb = 2wtc. Now for any dataset, the weights of the examples labeled correctly and incorrectly
in a round of AdaBoost are rescaled during the weight update step in a way such that each add up to 1/2.
Therefore, wt+1

b = 1/2, wt+1
c = wtc

(
1/2

wt
a+wt

c

)
= wtc/(1 + 2wtc). Hence, ~b gets picked in round t + 1 and,

as before, we get edge δt+1 = 2wt+1
c = 2wtc/(1 + 2wtc) = δt/(1 + δt). The proof of our claim follows by

induction.
Next we find the loss after each iteration. Using δ1 = 1/3 and δt = 1/t for t ≥ 2, the loss after T rounds

can be written as

T∏
t=1

√
1− δ2

t =
√

1− (1/3)2

T∏
t=2

√
1− 1/t2 =

2
√

2
3

√√√√ T∏
t=2

(
t− 1
t

)(
t+ 1
t

)
.

The product can be rewritten as follows:
T∏
t=2

(
t− 1
t

)(
t+ 1
t

)
=

(
T∏
t=2

t− 1
t

)(
T∏
t=2

t+ 1
t

)
=

(
T∏
t=2

t− 1
t

)(
T+1∏
t=3

t

t− 1

)
.

Notice almost all the terms cancel, except for the first term of the first product, and the last term of the second
product. Therefore, the loss after T rounds is

2
√

2
3

√(
1
2

)(
T + 1
T

)
=

2
3

√
1 +

1
T
≥ 2

3

(
1 +

1
3T

)
=

2
3

+
2

9T
,

where the inequality holds for T ≥ 1. Since the initial error is 1 = (2/3) + 1/3, therefore, for any ε < 1/3,
the number of rounds needed to achieve loss (2/3) + ε is at least 2/(9ε).

Lemma 18 Suppose u0, u1, . . . , are non-negative numbers satisfying

ut − ut+1 ≥ c0u1+c1
t ,

for some non-negative constants c0, c1. Then, for any t,

1
uc1t
− 1
uc10

≥ c1c0t.
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Proof: By induction on t. The base case is an identity. Assume the statement holds at iteration t. Then,

1
uc1t+1

− 1
uc10

=
(

1
uc1t+1

− 1
uc1t

)
+
(

1
uc1t
− 1
uc10

)
≥ 1
uc1t+1

− 1
uc1t

+ c1c0t (by inductive hypothesis).

Thus it suffices to show 1/uc1t+1−1/uc1t ≥ c1c0. Multiplying both sides by uc1t and adding 1, this is equivalent
to showing (ut/ut+1)c1 ≥ 1 + c1c0u

c1
t . We will in fact show the stronger inequality

(ut/ut+1)c1 ≥ (1 + c0u
c1
t )c1 . (9)

Since (1 + a)b ≥ 1 + ba for a, b non-negative, (9) will imply (ut/ut+1)c1 ≥ (1 + c0u
c1
t )c1 ≥ 1 + c1c0u

c1
t ,

which will complete our proof. To show (9), we first rearrange the condition on ut, ut+1 to obtain

ut+1 ≤ ut (1− c0uc1t ) =⇒ ut
ut+1

≥ 1
1− c0uc1t

.

Applying the fact (1 + c0u
c1
t ) (1− c0uc1t ) ≤ 1 to the previous equation we get,

ut
ut+1

≥ 1 + c0u
c1
t .

Since c1 ≥ 0, we may raise both sides of the above inequality to the power of c1 to show (9), finishing our
proof.
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