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Abstract— The AWGNC, BSC, and max-fractional pseu-
docodeword redundancy ρ(C) of a code C is defined as the
smallest number of rows in a parity-check matrix such that the
corresponding minimum pseudoweight is equal to the minimum
Hamming distance of C. This paper provides new results
on the AWGNC, BSC, and max-fractional pseudocodeword
redundancies of codes. The pseudocodeword redundancies for
all codes of small length (at most9) are computed. Also,
comprehensive results are provided on the cases of cyclic codes
of length at most 250 for which the eigenvalue bound of
Vontobel and Koetter is sharp.

I. I NTRODUCTION

Pseudocodewords play a significant role in the finite-
length analysis of binary linear low-density parity-check
(LDPC) codes under linear-programming (LP) or message-
passing (MP) decoding (see e.g. [1], [2]). The concept of
pseudoweight of a pseudocodeword was introduced in [3]
as an analog to the pertinent parameter in the maximum
likelihood (ML) decoding scenario, i.e. the signal Euclidean
distance in the case of the additive white Gaussian noise
channel (AWGNC), or the Hamming distance in the case
of the binary symmetric channel (BSC). Accordingly, for
a binary linear codeC and a parity-check matrixH of C,
the (AWGNC or BSC) minimum pseudoweightwmin(H)
may be considered as a first-order measure of decoder error-
correcting performance for LP or MP decoding. Note that
w

min(H) may be different for different matricesH: adding
redundant rows toH introduces additional constraints on
the so-calledfundamental cone and may thus increase the
minimum pseudoweight. Another closely related measure
is the max-fractional weight (pseudoweight). It serves as a
lower bound on both AWGNC and BSC pseudoweights.

The AWGNC (or BSC) pseudocodeword redundancy
ρAWGNC(C) (or ρBSC(C), respectively) of a codeC is defined
as the minimum number of rows in a parity-check matrix
H such that the corresponding minimum pseudoweight
w

min(H) is as large as its minimum Hamming distanced.
It is set to infinity if there is no such matrix. We sometimes
simply writeρ(C), when the type of the channel is clear from
the context.
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The pseudocodeword redundancy for the binary erasure
channel (BEC),ρBEC(C), was studied in [4], where it was
shown to be finite for any binary linear codeC. The authors
also presented some bounds onρBEC(C) for general linear
codes, and for some specific families of codes. The study
of BSC pseudoredundancy was initiated in [5], where the
authors presented bounds onρBSC(C) for various families of
codes. In a recent work [6], we provided some bounds on
ρAWGNC(C) andρBSC(C) for general linear codes. In particular,
[6] listed some preliminary results regarding the AWGNC
and BSC pseudocodeword redundancies of short codes; this
paper provides more comprehensive results in this direction.

The outline of the paper is as follows. After providing
detailed definitions in Section II we prove several new
theoretical results on the pseudocodeword redundancy in
Sections III and IV. The next two sections are devoted to ex-
perimental results; Section V examines the pseudocodeword
redundancy for all codes of small length, and Section VI
deals with cyclic codes that meet the eigenvalue bound of
Vontobel and Koetter.

II. GENERAL SETTINGS

Let C be a code of lengthn ∈ N over the binary fieldF2,
defined by

C = ker H = {c ∈ F
n
2 : Hc

T = 0
T } (1)

whereH is an m × n parity-check matrix of the codeC.
Obviously, the codeC may admit more than one parity-check
matrix, and all the codewords form a linear vector space of
dimensionk ≥ n − m. We say thatk is the dimension of
the codeC. We denote byd(C) (or just d) the minimum
Hamming distance (also called the minimum distance) ofC.
The codeC may then be referred to as an[n, k, d] linear
code overF2.

The parity-check matrixH is said to be(wc, wr)-regular
if every column ofH has exactlywc nonzero symbols, and
every row of it has exactlywr nonzeros. The matrixH is
calledw-regular if every row and every column in it hasw
nonzeros.

Denote the set of column indices and the set of row
indices ofH by I = {1, 2, . . . , n} andJ = {1, 2, . . . ,m},
respectively. Forj ∈ J , we denoteIj

△

= {i ∈ I : Hj,i 6=

0}, and for i ∈ I, we denoteJi
△

= {j ∈ J : Hj,i 6= 0}.
Thefundamental cone of H, denotedK(H), is defined in [7]
and [2] as the set of vectorsx ∈ R

n that satisfy

∀j ∈ J , ∀ℓ ∈ Ij : xℓ ≤
∑

i∈Ij\{ℓ}

xi , (2)

∀i ∈ I : xi ≥ 0 . (3)
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The vectorsx ∈ R
n satisfying (2) and (3) are called

pseudocodewords of C with respect to the parity-check
matrixH. Note that the fundamental coneK(H) depends on
the parity-check matrixH rather than on the codeC itself.
At the same time, the fundamental cone is independent of
the underlying communication channel.

The BEC, AWGNC, BSC pseudoweights and max-
fractional weight of a nonzero pseudocodewordx ∈ K(H)
were defined in [3] and [2] as follows:

wBEC(x)
△

= |supp(x)| ,

wAWGNC(x)
△

=

(∑
i∈I xi

)2

∑
i∈I x2

i

.

Let x
′ be a vector inRn with the same components asx but

in non-increasing order. Fori−1 < ξ ≤ i, where1 ≤ i ≤ n,

let φ(ξ)
△
= x′

i. DefineΦ(ξ)
△

=
∫ ξ

0
φ(ξ′) dξ′ and

wBSC(x)
△

= 2Φ−1(Φ(n)/2) .

Finally, the max-fractional weight ofx is defined as

wmax-frac(x)
△

=

∑
i∈I xi

maxi∈I xi

.

We define the BECminimum pseudoweight of the codeC
with respect to the parity-check matrixH as

w
min
BEC (H)

△

= min
x∈K(H)\{0}

wBEC(x) .

The quantitiesw
min
AWGNC(H), w

min
BSC (H) and w

min
max-frac(H) are

defined similarly. When the type of pseudoweight is clear
from the context, we might use the notationw

min(H). Note
that all four minimum pseudoweights are upper bounded
by d, the code’s minimum distance.

Then we define the BECpseudocodeword redundancy of
the codeC as

ρBEC(C)
△

= inf{#rows(H) | kerH = C , w
min
BEC (H) = d} ,

whereinf ∅
△

= ∞, and similarly we define the pseudocode-
word redundanciesρAWGNC(C), ρBSC(C) and ρmax-frac(C) for the
AWGNC and BSC pseudoweights, and the max-fractional
weight. When the type of pseudocodeword redundancy is
clear from the context, we might use the notationρ(C).
We remark that all pseudocodeword redundancies satisfy
ρ(C) ≥ r

△

= n − k.
We describe the behavior of the pseudocodeword redun-

dancy and the minimum pseudoweight for a given binary
linear [n, k, d] codeC by introducing four classes of codes:

(class 0)ρ(C) is infinite, i.e. there is no parity-check
matrix H with d = w

min(H),

(class 1)ρ(C) is finite, butρ(C) > r,

(class 2)ρ(C) = r, but C is not in class 3,

(class 3)d = w
min(H) for every parity-check matrixH

of C.

III. B ASIC RESULTS

The next lemma is taken from [2].
Lemma 3.1: Let C be a binary linear code with the

parity-check matrixH. Then,

w
min
max-frac(H) ≤ w

min
AWGNC(H) ≤ w

min
BEC (H) ,

w
min
max-frac(H) ≤ w

min
BSC (H) ≤ w

min
BEC (H) .

The following theorem is a straightforward corollary to
Lemma 3.1.

Theorem 3.2: Let C be a binary linear code. Then,

ρmax-frac(C) ≥ ρAWGNC(C) ≥ ρBEC(C) ,

ρmax-frac(C) ≥ ρBSC(C) ≥ ρBEC(C) .

The following results hold with respect to the AWGNC
and BSC pseudoweights, and the max-fractional weight.

Lemma 3.3: Let C be an [n, k, d] code havingt zero
coordinates, and letC′ be the[n − t, k, d] code obtained by
puncturingC at these coordinates. Then

ρ(C′) ≤ ρ(C) ≤ ρ(C′) + t .

In the proof we use the following notation: We identify
R

n with R
I , and forx ∈ R

I and some subsetI ′ ⊆ I we
let x|I′ ∈ R

I′

be the projection ofx onto the coordinates
in I ′.

Proof: Let I ′ ⊆ I be the set of nonzero coordinates of
the codeC. To prove the first inequality, letH be aρ × n
parity-check matrix forC. Consider itsρ× (n− t) submatrix
H

′ consisting of the columns corresponding toI ′. ThenH
′

is a parity-check matrix forC′, and

K(H ′) = {x|I′ : x ∈ K(H), x|I\I′ = 0} .

Therefore,wmin(H ′) ≥ w
min(H), and this provesρ(C′) ≤

ρ(C).
For the second inequality, letH ′ be aρ′ × (n− t) parity-

check matrix forC′. Now we consider a(ρ′+t)×n matrixH

with the following properties: The upperρ′×n submatrix of
H consists of the columns ofH ′ at positionsI ′ and of zero-
columns at positionsI \ I ′, and the lowert × n submatrix
consists of rows of weight1 that have1s at the positions
I \ I ′. ThenC = kerH and

K(H) = {x ∈ R
I : x|I′ ∈ K(H ′), x|I\I′ = 0} .

Consequently,wmin(H) = w
min(H ′), and this proves

ρ(C) ≤ ρ(C′) + t.
Lemma 3.4: Let C be a code of minimum distanced ≤

2. Thend = w
min(H) for any parity-check matrixH of C,

i.e. C is in class3 (for AWGNC and BSC pseudoweight, and
for max-fractional weight).

Proof: By Lemma 3.1 it suffices to prove this lemma
for the max-fractional weightw = wmax-frac. Sincew(x) ≥
1 holds for all nonzero pseudocodewords, we always have
w

min(H) ≥ 1, which proves the result in the cased = 1.
Let d = 2 and H be a parity-check matrix forC. Let

x ∈ K(H) and letxℓ be the largest coordinate. Sinced = 2
there is no zero column inH and thus there exists a rowj
with ℓ ∈ Ij . Thenxℓ ≤

∑
i∈I\{ℓ} xi, hence2xℓ ≤

∑
i∈I xi,

and thusw(x) ≥ 2. It follows w
min(H) ≥ 2 and the lemma

is proved.
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IV. PARITY-CHECK MATRICES WITH ROWS OF WEIGHT2

The main result of this section appears in the following
lemma.

Lemma 4.1: Let H be a parity-check matrix ofC such
that every row inH has weight2. Then:

(a) There is an equivalence relation on the setI of column
indices ofH such that for a vectorx ∈ R

n with non-
negative coordinates we havex ∈ K(H) if and only if
x has equal coordinates within each equivalence class.

(b) The minimum distance ofC is equal to its mini-
mum AWGNC and BSC pseudoweights and its max-
fractional weight with respect toH, i.e. d(C) =
w

min(H).
Proof: For (a), define the required relationR as follows:

For i, i′ ∈ I let (i, i′) ∈ R if and only if i = i′ or there exists
an integerℓ ≥ 1, column indicesi = i0, i1, . . . , iℓ−1, iℓ =
i′ ∈ I and row indicesj1, . . . , jl ∈ J such that

{i0, i1} = Ij1 , {i1, i2} = Ij2 , . . . , {iℓ−1, iℓ} = Ijℓ
.

This is an equivalence relation, and it defines equivalence
classes overI. It is easy to check that inequalities (2) imply
that x ∈ K(H) if and only if xi = xi′ for any (i, i′) ∈ R.

In order to prove (b), we note that the minimum (AWGNC,
BSC or max-fractional) pseudoweight is always bounded
above by the minimum distance ofC, so we only have to
show that the minimum pseudoweight is bounded below by
the minimum distance.

Let S = {S1, S2, . . . , St} be the set of equivalence classes
of R, and letdS = |S| for S ∈ S. It is easy to see that
the minimum distance ofC is d = minS∈S dS (since the
minimum weight nonzero codeword ofC has non-zeros in
the coordinates corresponding to a setS ∈ S of minimal
size and zeros everywhere else).

Now let x ∈ K(H). Since the coordinatesxi, i ∈ I,
depend only on the equivalence classes, we may use the
notationxS , S ∈ S. Let xT be the largest coordinate. Then:

wmax-frac(x) =

∑
i∈I xi

xT

≥

∑
i∈T xi

xT

= |T | = dT ≥ d .

Therefore,wmin
max-frac(H) ≥ d, and by using Lemma 3.1, we

obtain thatwmin
AWGNC(H) ≥ d andw

min
BSC (H) ≥ d.

The following proposition is a stronger version of
Lemma 4.1.

Proposition 4.2: Let H be an m × n parity-check
matrix of C, and assume thatm − 1 first rows in H have
weight 2. Denote bŷH the (m−1)×n matrix consisting of
these rows, consider the equivalence relation of Lemma 4.1
(a) with respect tôH, and assume thatIm intersects each
equivalence class in at most one element. Then, the minimum
distance ofC is equal to its minimum AWGNC and BSC
pseudoweights and its max-fractional weight with respect to
H, i.e. d(C) = w

min(H).
Proof: Let S be the set of classes of the aforementioned

equivalence relation onI, and letdS = |S| for S ∈ S. Let

S ′ = {S ∈ S : |S ∩ Im| = 1} .

Also let S ′′ = S\S ′, so thatS ∩ Im = ∅ for all S ∈ S ′′.
Let x ∈ K(H)\{0}. As before, since the coordinatesxi,

i ∈ I, depend only on the equivalence classes, we may
use the notationxS , S ∈ S. The fundamental polytope
constraints (2) and (3) may then be written asxS ≥ 0 for
all S ∈ S and

∀R ∈ S ′ : xR ≤
∑

S∈S′\{R}

xS , (4)

respectively, and the max-fractional pseudoweight ofx ∈
K(H)\{0} is given by

wmax-frac(x) =

∑
S∈S dSxS

maxS∈S xS

. (5)

Supposex ∈ K(H)\{0} has minimal max-fractional
pseudoweight. LetxT be its largest coordinate. First note
that if there existsR ∈ S ′′ \ {T} with xR > 0, settingxR

to zero results in a new pseudocodeword with lower max-
fractional pseudoweight, which contradicts the assumption
that x achieves the minimum. ThereforexR = 0 for all
R ∈ S ′′ \ {T}. We next consider two cases.

Case 1: T ∈ S ′′. If there existsR ∈ S ′ with xR > 0,
setting all suchxR to zero results in a new pseudocodeword
with lower max-fractional pseudoweight, which contradicts
the minimality of the max-fractional pseudoweight ofx.
ThereforexT is the only positive coordinate ofx, and by
(5) the max-fractional pseudoweight ofx is dT .

Case 2: T ∈ S ′. In this casexR = 0 for all R ∈ S ′′.
From inequality (4) forR = T we obtain

xT ≤
∑

S∈S′\{T}

xS .

With d0
△

= minS∈S′\{T} dS it follows that

d0xT ≤
∑

S∈S′\{T}

d0xS ≤
∑

S∈S′\{T}

dSxS .

Consequently,

(dT + d0)xT ≤
∑

S∈S

dSxS ,

and thus wmax-frac(x) ≥ dT + d0. We conclude that the
minimum max-fractional pseudoweight is given by

w
min
max-frac(H) = min

{
min

S,T∈S′,S 6=T
{dS + dT } , min

S∈S′′
{dS}

}
.

But this is easily seen to be equal to the minimum distance
d of the code.

Finally, by using Lemma 3.1, we obtain thatw
min
AWGNC(H) =

d andw
min
BSC (H) = d.

Remark: Note that the requirement that alli ∈ Im belong
to the different equivalence classes of̂H in Proposition 4.2
is necessary. Indeed, consider the matrix

H =




1 1 0 0

0 1 1 0

1 0 1 0

1 1 1 1


 .
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One can see that there are two equivalence classes forĤ:
S1 = {1, 2, 3}, S2 = {4}. The minimum distance of the
corresponding codeC is 4 (since (1, 1, 1, 1) is the only
nonzero codeword). However,x = (1, 1, 1, 3) ∈ K(H) is
a pseudocodeword of max-fractional weight2.

Corollary 4.3: Let C be a code of lengthn and dimen-
sion 2. Then ρ(C) = n − 2, i.e. C is of class at least2
(for AWGNC and BSC pseudoweight, and for max-fractional
weight).

Proof: We consider two cases.

• Case 1: C has no zero coordinates.
Let c1 and c2 be two linearly independent codewords
of C. Define the following subsets ofI:

S1
△

= {i ∈ I : i ∈ supp(c1) and i /∈ supp(c2)}

S2
△

= {i ∈ I : i /∈ supp(c1) and i ∈ supp(c2)}

S3
△

= {i ∈ I : i ∈ supp(c1) and i ∈ supp(c2)}.

The setsS1, S2 and S3 are pairwise disjoint. Since
C has no zero coordinates,I = S1 ∪ S2 ∪ S3. The
ordering of elements inI implies an ordering on the
elements in each ofS1, S2 andS3. Assume thatS1 =
{i1, i2, · · · , i|S1|} andi1 < i2 < · · · < i|S1|. If S1 6= ∅,
let m1 = i1 be the minimal element inS1, and define
an (|S1| − 1) × n matrix H1 as follows:

(H1)j,ℓ =






1 if ij = ℓ or ij+1 = ℓ ,
j = 1, 2, · · · , |S1| − 1 ,

0 otherwise .

Similarly, define(|S2|−1)×n and(|S3|−1)×n matrices
H2 andH3, with respect toS2 andS3. Let m2 andm3

be minimal elements ofS2 andS3, respectively.
Define also a1 × n matrix H4:

(H4)1,ℓ =






1 if Sj 6= ∅ andmj = ℓ
for j = 1, 2, 3 ,

0 otherwise .

Finally, define an(n − 2) × n matrix H by H
T △

=
[HT

1 | HT
2 | HT

3 | HT
4 ]. (Some of theSi’s might be

equal to∅, in which case the correspondingHi is an
0×n “empty” matrix.) It is easy to see that all rows of
H are linearly independent, and so it is of rankn− 2.
It is also straightforward that for allc ∈ C we have
c ∈ ker(H). Therefore,H is a parity-check matrix
of C.
The matrixH has a form as in Proposition 4.2 (where
S1, S2 and S3 are corresponding equivalence classes
over I), and thereforeρ(C) = n − 2.

• Case 2: C has t > 0 zero coordinates.
Consider a codeC′ of length n − t obtained by punc-
turing C in theset zero coordinates. From Case 1 (with
respect toC′), ρ(C ′) = n − t − 2. By applying the
rightmost inequality in Lemma 3.3, we haveρ(C) ≤
n − 2. Sincek = 2, we conclude thatρ(C) = n − 2.

V. THE PSEUDOCODEWORDREDUNDANCY FOR CODES

OF SMALL LENGTH

In this section we compute the AWGNC, BSC, and max-
fractional pseudocodeword redundancies for all codes of
small length. By Lemma 3.4 it is sufficient to examine only
codes with minimum distance at least3. Furthermore, in
light of Lemma 3.3 we will consider only codes without zero
coordinates, i.e. that have a dual distance of at least2. Finally,
we point out to Corollary 4.3 for codes of dimension2, by
which we may focus on codes with dimension at least3.

A. The Algorithm

To compute the pseudocodeword redundancy of a codeC
we have to examine all possible parity-check matrices for the
codeC, up to equivalence. Here, we say that two parity-check
matricesH andH

′ for the codeC areequivalent if H can
be transformed intoH ′ by a sequence of row and column
permutations. In this case,w

min(H) = w
min(H ′) holds for

the AWGNC and BSC pseudoweights as well as for the max-
fractional weight. The enumeration of codes and parity-check
matrices can be described by the following algorithm.

Input: Parametersn (code length),k (code dimension),ρ
(number of rows of the output parity-check matrices), where
ρ ≥ r

△

= n − k.
Output: For all codes of lengthn, dimensionk, distance

d ≥ 3, and without zero coordinates, up to code equivalence:
a list of all ρ × n parity-check matrices, up to parity-check
matrix equivalence.

1) Collect the setX of all r × n matrices such that

• they have different nonzero columns, ordered lex-
icographically,

• there is no non-emptyF2-sum of rows which has
weight 0 or 1 (this way, the matrices are of full
rank and the minimum distance of the row space is
at least2).

2) Determine the orbits inX under the action of the
groupGLr(2) of invertibler×r matrices overF2 (this
enumerates all codes with the required properties, up to
equivalence; the codes are represented by parity-check
matrices).

3) For each orbitXC , representing a codeC:

a) Determine the suborbits inXC under the action
of the symmetric groupSr (this enumerates all
parity-check matrices without redundant rows, up
to equivalence).

b) For each representativeH of the suborbits, col-
lect all matrices enlarged by addingρ−r different
redundant rows that areF2-sums of at least two
rows of H. Let XC,ρ be the union of all such
ρ × n matrices.

c) Determine the orbits inXC,ρ under the action of
the symmetric groupSρ, and output a represen-
tative for each orbit.
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TABLE I

THE NUMBER OF BINARY [n, k, d] CODES

WITH d ≥ 3 AND WITHOUT ZERO COORDINATES

k = 1 2 3 4 5

n = 5 1 1
6 1 3 1
7 1 4 4 1
8 1 6 10 5
9 1 8 23 23 5

This algorithm was implemented in the C programming
language. The minimum pseudoweights for the various
parity-check matrices were computed by using Maple 12 and
the Convex package [8].

B. Results

We considered all binary linear codes up to lengthn with
distanced ≥ 3 and without zero coordinates, up to code
equivalence. The number of those codes for given lengthn
and dimensionk is shown in Table I.

1) AWGNC pseudoweight: The following results were
found to hold for all codes of lengthn ≤ 9.

• There are only two codesC with ρAWGNC(C) > r, i.e. in
class0 or 1 for the AWGNC.

– The[8, 4, 4] extended Hamming code is the shortest
codeC in class 1. We haveρAWGNC(C) = 5 > 4 = r
and out of12 possible parity-check matrices (up
to equivalence) with one redundant row there is
exactly one matrixH with w

min
AWGNC(H) = 4, namely

H =




1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1




.

There is exactly one matrixH with w
min
AWGNC(H) =

25/7, and for the remaining matricesH we have
w

min
AWGNC(H) = 3.

– Out of the four[9, 4, 4] codes there is one codeC
in class 1. We haveρAWGNC(C) = 6 > 5 = r and
out of 2526 possible parity-check matrices (up to
equivalence) with one redundant row there are13
matricesH with w

min
AWGNC(H) = 4.

• For all codesC of minimum distanced ≥ 3 and for all
parity-check matricesH of C we havewmin

AWGNC(H) ≥ 3;
in particular, if d = 3, then C is in class3 for the
AWGNC.

• For the[7, 3, 4] simplex code there is (up to equivalence)
only one parity-check matrixH without redundant rows
such thatwmin

AWGNC(H) = 4, namely

H =




1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1


 .

It is the only parity-check matrix with constant row
weight 3.

2) BSC pseudoweight: We computed the pseudocodeword
redundancy for the BSC for all codes of lengthn ≤ 8.

• The shortest codes withρBSC(C) > r, i.e. in class0 or
1 for the BSC, are the[7, 4, 3] Hamming codeC and
its dual codeC⊥, the [7, 3, 4] simplex code. We have
ρBSC(C) = 4 > 3 andρBSC(C

⊥) = 5 > 4.

• There are two codes of length8 with ρBSC(C) > r. These
are the [8, 4, 4] extended Hamming code, for which
ρBSC(C) = 6 > 4 holds, and one of the three[8, 3, 4]
codes, which satisfiesρBSC(C) = 6 > 5.

3) Max-fractional weight: We computed the pseudocode-
word redundancy with respect to the max-fractional weight
for all codes of lengthn ≤ 8.

• The shortest code withρmax-frac(C) > r is the unique
[6, 3, 3] codeC. We haveρmax-frac(C) = 4 > 3.

• There are two codes of length7 with ρmax-frac(C) > r.
These are the[7, 4, 3] Hamming code and the[7, 3, 4]
simplex code, which have both pseudocodeword redun-
dancy 7. In both cases, there is, up to equivalence, a
unique parity-check matrixH with seven rows that
satisfiesd(C) = wmin

max-frac(H).
(This demonstrates that Proposition 5.4 and 5.5 in
[6] are sharp for the max-fractional weight, and that
the parity-check matrices constructed in the proofs are
unique in this case.)

• For the [8, 4, 4] extended Hamming codeC we have
ρmax-frac(C) = ∞, and thus the code is in class0 for
the max-fractional weight. It is the shortest code with
infinite ρmax-frac(C).
(It can be checked thatx = [1, 1, 1, 1, 1, 1, 1, 3] is a
pseudocodeword inK(H), where the rows ofH consist
of all dual codewords; sincewmax-frac(x) = 10

3 < 4, we
havewmin

max-frac(H) < 4.)

• There are two other codes of length8 with ρmax-frac(C) >
r, namely two of the three[8, 3, 4] codes, having pseu-
docodeword redundancy6 and8, respectively.

4) Comparison: Comparing the results for the AWGNC
and BSC pseudoweights, and the max-fractional weight, we
can summarize the results as follows.

• For the[7, 4, 3] Hamming codeC we haveρAWGNC(C) =
r = 3, ρBSC(C) = 4, andρmax-frac(C) = 7.

• For the [7, 3, 4] simplex codeC we haveρAWGNC(C) =
r = 4, ρBSC(C) = 5, andρmax-frac(C) = 7.

• For the [8, 4, 4] extended Hamming codeC we have
ρAWGNC(C) = 5, ρBSC(C) = 6, andρmax-frac(C) = ∞. This
codeC is the shortest one such thatρAWGNC(C) > r, and
also the shortest one such thatρmax-frac(C) = ∞.

• If d ≥ 3 then forevery parity-check matrixH we have
w

min
AWGNC(H) ≥ 3. This is not true for the BSC and the

max-fractional weight.

These observations show that there is some significant
difference between the various types of pseudocodeword
redundancies.

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

293



VI. CYCLIC CODESMEETING THE EIGENVALUE BOUND

In this section we apply the following eigenvalue-based
lower bound on the minimum AWGNC pseudoweight,
proved in [9].

Proposition 6.1: The minimum AWGNC pseudoweight
for a (wc, wr)-regular parity-check matrixH whose corre-
sponding Tanner graph is connected is bounded below by

w
min
AWGNC ≥ n ·

2wc − µ2

µ1 − µ2
, (6)

whereµ1 andµ2 denote the largest and second largest eigen-
value (respectively) of the matrixL

△

= H
T
H, considered as

a matrix over the real numbers.
We consider now binary cyclic codes with full circulant

parity-check matrices, defined as follows: LetC be a binary
cyclic code of lengthn with check polynomialh(x) =∑

i∈I hix
i (cf. [10], p. 194). Then thefull circulant parity-

check matrix for C is then×n matrix H = (Hj,i)i,j∈I with
entriesHj,i = hj−i. Here, all the indices are modulon, so
that I = {0, 1, . . . , n − 1}.

Since such a matrix isw-regular, wherew =
∑

i∈I hi, we
may use the eigenvalue-based lower bound of Proposition 6.1
to examine the AWGNC pseudocodeword redundancy: If the
right hand side equals the minimum distanced of the codeC,
thenρAWGNC(C) ≤ n.

Note that the largest eigenvalue of the matrixL =
H

T
H is µ1 = w2, since every row weight ofL equals∑

i,j∈I hihj = w2. Consequently, the eigenvalue bound is

w
min
AWGNC ≥ n ·

2w − µ2

w2 − µ2
,

whereµ2 is the second largest eigenvalue ofL. We remark
further thatL = (Lj,i)i,j∈I is a symmetric circulant matrix,
with Lj,i = ℓj−i and ℓi =

∑
k∈I hkhk+i. The eigenvalues

of L are thus given by

λj =
∑

i

ℓiζ
ij
n = Re

∑

i

ℓiζ
ij
n =

∑

i

ℓi cos(2πij/n)

for j ∈ I, whereζn = exp(2πi/n), i
2 = −1, is the n-th

root of unity (see e.g. [11], Theorem 3.2.2).
We also consider quasi-cyclic codes of the form given in

the following remark.
Remark 6.2: Denote by1m the m×m matrix with all

entries equal to1. If H is aw-regular circulantn×n matrix
then the Kronecker product̃H

△

= H⊗1m will be aw-regular
circulantmn × mn-matrix and defines a quasi-cyclic code.
We have

L̃ = H̃
T
H̃ = H

T
H ⊗ 1

T
m1m = L ⊗ (m1m) ,

and the eigenvalues ofm1m arem2 and0. Thus, the largest
eigenvalues of̃L are µ̃1 = m2µ1 = m2w2 and µ̃2 = m2µ2,
and the eigenvalue bound of Proposition 6.1 becomes

w
min
AWGNC ≥ mn ·

2mw − m2µ2

m2w2 − m2µ2
= n ·

2w − mµ2

w2 − µ2
.

We carried out an exhaustive search on all cyclic codesC
up to lengthn ≤ 250 and computed the eigenvalue bound in

TABLE II

BINARY CYCLIC CODES UP TOLENGTH 250 WITH d = 2

MEETING THE EIGENVALUE BOUND

parameters w-regular constituent code

[2n, 2n−m, 2] 2m Hamming c.,n = 2m−1, m = 2 . . . 6
[2n, 2n−m−1, 2] 2m−2 Hamming c. with overall p.-check

[42, 32, 2] 10 projective geometry codePG(2, 4)
[146, 118, 2] 18 projective geometry codePG(2, 8)
[170, 153, 2] 42 a certain[85, 68,≥6] 21-regular code

(the eigenvalue bound is 5.2)

TABLE III

BINARY CYCLIC CODES UP TOLENGTH 250 WITH d ≥ 3

MEETING THE EIGENVALUE BOUND

parameters w-regular comments

[n, 1, n] 2 repetition code,n = 3 . . . 250
[n, n−m, 3] 2m−1 Hamming c.,n = 2m−1, m = 3 . . . 7

[7, 3, 4] 3 dual of the[7, 4, 3] Hamming code
[15, 7, 5] 4 Euclidean geometry code EG(2,4)
[21, 11, 6] 5 projective geometry code PG(2,4)
[63, 37, 9] 8 Euclidean geometry code EG(2,8)
[73, 45, 10] 9 projective geometry code PG(2,8)

all cases where the Tanner graph of the full circulant parity-
check matrix is connected, by using the following algorithm:

Input: Parametern (code length).
Output: For all divisors ofxn−1, corresponding to cyclic

codesC with full circulant parity-check matrix, such that the
Tanner graph is connected: the value of the eigenvalue bound.

1) Factorxn − 1 over F2 into irreducibles, using Cantor
and Zassenhaus’ algorithm (cf. [12], Section 14.3).

2) For each divisorf(x) of xn − 1:

a) Let f(x) =
∑

i hix
i andH = (hj−i)i,j∈I .

b) Check that the corresponding Tanner graph is
connected (that the gcd of the indicesi with
hi = 1 together withn is 1).

c) Compute the eigenvalues ofL = H
T
H: Let

ℓi =
∑

k∈I hkhk+i and for j ∈ I compute∑
i ℓi cos(2πij/n).

d) Determine the second largest eigenvalueµ2 and
outputn · (2ℓ0 − µ2)/(ℓ20 − µ2).

This algorithm was implemented in the C programming
language. Tables II and III give a complete list of all cases in
which the eigenvalue bound equals the minimum Hamming
distanced, for the casesd = 2 and d ≥ 3 respectively. In
particular, the AWGNC pseudoweight equals the minimum
Hamming distance in these cases as well and thus we have
for the pseudocodeword redundancyρAWGNC(C) ≤ n. All
examples of distance2 are actually quasi-cyclic codes as
in Remark 6.2 with parity-check matrix̃H = H ⊗ 12.
We list here the constituent code given by the parity-check
matrix H.

We conclude this section by proving a result which was
observed by the experiments.
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Lemma 6.3: Let m ≥ 3 and letC be the intersection of
a Hamming code of lengthn = 2m−1 with a simple parity-
check code of lengthn, which is a cyclic[n, n − m − 1, 4]
code. Consider its full circulant parity-check matrixH. Then

w
min
AWGNC(H) ≥ 3 +

1

2m−2 − 1
> 3 .

In particular, ifm = 3 thenC is the [7, 3, 4] code and the
result implieswmin

AWGNC(H) = 4 andρAWGNC(C) ≤ n.
Proof: Let H be thew-regular full circulant parity-

check matrix forC. We claim thatw = 2m−1−1. Indeed, each
row h of H is a codeword of the dual codeC⊥, and since
C⊥ consists of the codewords of the simplex code and their
complements, the weight ofh and thusw must be2m−1−1,
2m−1, or 2m−1. But w cannot be even, for otherwise all
codewords ofC⊥ would be of even weight. Asw = 2m−1
is clearly impossible, it must holdw = 2m−1−1.

Next, we show that the second largest eigenvalue ofL =
H

T
H = (Lj,i)i,j∈I equalsµ2 = 2m−2. Indeed, leth1 and

h2 be different rows ofH, representing codewords ofC⊥.
As their weight is equal, their Hamming distance is even,
and thus it must be2m−1. Hence, the size of the intersection
of the supports ofh1 andh2 is 2m−2−1. This implies that
Li,i = w andLj,i = 2m−2−1, for i 6= j. Consequently,L has
an eigenvalue of multiplicityn−1, namelyw−(2m−2−1) =
2m−2, and thusµ2 must be2m−2.

Finally, we apply Proposition 6.1 to get

w
min
AWGNC ≥ (2m−1)

2 (2m−1−1) − 2m−2

(2m−1−1)2 − 2m−2
= 3 +

1

2m−2−1
.
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