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Exploration of AWGNC and BSC Pseudocodeword Redundancy

Jens Zumligel, Mark F. Flanagan, and Vitaly Skachek

Abstract—The AWGNC, BSC, and max-fractional pseu- The pseudocodeword redundancy for the binary erasure
docodeword redundancy p(C) of a code C is defined as the channel (BEC),pc(C), was studied in [4], where it was
smallest number of rows in a parity-check matrix such that the shown to be finite for any binary linear code The authors

corresponding minimum pseudoweight is equal to the minimum | ted b d o) f L li
Hamming distance of C. This paper provides new results also presented some bounds pnc(C) for general linear

on the AWGNC, BSC, and max-fractional pseudocodeword codes, and for some specific families of codes. The study
redundancies of codes. The pseudocodeword redundancies for of BSC pseudoredundancy was initiated in [5], where the

all codes of small length (at most9) are computed. Also, authors presented bounds pg.(C) for various families of
comprehensive results are prow_ded on th_e cases of cyclic codescodes_ In a recent work [6], we provided some bounds on
of length at most 250 for which the eigenvalue bound of . .
Vontobel and Koetter is sharp. pAWGNC(C) and pgsc(C) _fo_r general linear cod(_as. In particular,
[6] listed some preliminary results regarding the AWGNC
I. INTRODUCTION and BSC pseudocodeword redundancies of short codes; this
Pseudocodewords play a significant role in the finiteP@Per provides more comprehensive results in this direction.
length analysis of binary linear low-density parity-check 1he outline of the paper is as follows. After providing
(LDPC) codes under linear-programming (LP) or messagé'—eta"eq definitions in Section Il we prove several new
passing (MP) decoding (see e.g. [1], [2]). The concept dheoretical results on the pseudocodeword redundancy in
pseudoweight of a pseudocodeword was introduced in [3]5€ctions Il and IV. The next two sections are devoted to ex-
as an analog to the pertinent parameter in the maximuRgfimental results; Section V examines the pseudocodeword
likelinood (ML) decoding scenario, i.e. the signal Euclidea€dundancy for all codes of small length, and Section Vi
distance in the case of the additive white Gaussian noiéi€als with cyclic codes that meet the eigenvalue bound of
channel (AWGNC), or the Hamming distance in the cas¥ontobel and Koetter.
of the binary symmetric channel (BSC). Accordingly, for Il. GENERAL SETTINGS
313?:v%c!ﬂliarofoggc?nrﬂirinﬁjgtypzr;ifjl:)vr\?e?gﬁmo(gj L_et C be a code of length € N over the binary fieldFs,
. . defined by
may be considered as a first-order measure of decoder error-
correcting performance for LP or MP decoding. Note that C=kerH={cecFy : Hc" =07} Q)
wmin(H) may be different for different matriceH : adding
redundant rows taH introduces additional constraints on
the so-calledfundamental cone and may thus increase the
minimum pseudoweight. Another closely related measur%i:
t

is the max-fractional weight (pseudoweight). It serves as X s

| bound both AWGNC and BSC d ights. the codeC. We denote byd(C) (or just d) the minimum

O\q’%; %I/?/Gﬁ?: ?or BSC) psznudocodep\);c?rlij Or\gg:?ndzncﬁamming distance (also called the minimum distancej.of

Pawenc(C) (O pesc(C), respectively) of a cod€ is defined ggecg\?eer% may then be referred to as 4n, k,d] linear
2

as the minimum number of rows in a parity-check matrix . N :
partty The parity-check matrix{ is said to be(w., w, )-regular

H such that the corresponding minimum pseudoweigh% | H h " bol q
wmn(H) is as large as its minimum Hamming distante I every column o as exacllyw. noONZero symools, an
very row of it has exactlys,, nonzeros. The matri is

It is set to infinity if there is no such matrix. We sometimes led lar if d | it h
simply write p(C), when the type of the channel is clear fromc@!l€d w-reguiar it every row and every column in it nas

nonzeros.
the context. -
Denote the set of column indices and the set of row
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The vectorsz € R"™ satisfying (2) and (3) are called
pseudocodewords of C with respect to the parity-check
matrix H. Note that the fundamental cok& H') depends on

the parity-check matrix rather than on the codg itself.

At the same time, the fundamental cone is independent of

the underlying communication channel.

The BEC, AWGNC, BSC pseudoweights and max- wihin (H) < wiin(H)

fractional weight of a nonzero pseudocodeward /C(H)
were defined in [3] and [2] as follows:

WBEC(:B) = |SUpp€IZ)| ,
2

Wawenc (L = 7(21‘61'12') .
one() Ziez 3312

Let ' be a vector ifR™ with the same components asbut
in non-increasing order. Far-1 < ¢ <4, wherel <i < n,

let () £ /. Defined(¢) £ [£ ¢(¢') d¢’ and
Wese(x) = 287 1(®(n)/2) .
Finally, the max-fractional weight aof is defined as

2 Ziel €T

Wmax—frac(x) max T T .
T 3

We define the BEGninimum pseudoweight of the codeC
with respect to the parity-check matréd as

Wé!élcn( ) = Weee(T) -

min
x€(H)\{0}

and woin

The quantitieswi® (H), wXir(H) min_ (FT) are

defined similarly. When the type of pseudoweight is cle

from the context, we might use the notatiaf'*(H ). Note

that all four minimum pseudoweights are upper bounde

by d, the code’s minimum distance.
Then we define the BE@seudocodeword redundancy of

the codeC as

Peec(C) = inf{#rows(H) | ker H = C, w2} H) =

BEC

d},

whereinf @ £ oo, and similarly we define the pseudocode-

word redundancie®awenc(C), Pesc(C) and prauadC) for the

I11. BASIC RESULTS

The next lemma is taken from [2].
Lemma 3.1: Let C be a binary linear code with the
parity-check matrixH. Then,

maciad ) < Wl (H)

max-frac —_

w, wir(H)

Wmin (H) .

<
S BEC

The following theorem is a straightforward corollary to
Lemma 3.1.

Theorem 3.2: Let C be a binary linear code. Then,

pmax-frac(c) > pAWGNC(C) > pBEc(C)7

pmax»frac(c) > pBSC(C) > pBEC(C)-
The following results hold with respect to the AWGNC
and BSC pseudoweights, and the max-fractional weight.
Lemma 3.3: Let C be an|[n,k,d] code havingt zero
coordinates, and lef’ be the[n — t, k, d] code obtained by
puncturingC at these coordinates. Then

p(C) < p(C) < p(C') +t.

In the proof we use the following notation: We identify
R™ with RZ, and forz € R? and some subsét’ C 7 we
let x| € RZ’ be the projection ofc onto the coordinates
in 7.

Proof: LetZ’ C 7 be the set of nonzero coordinates of

the codeC. To prove the first inequality, lel be ap x n

parity-check matrix foC. Consider itsp x (n—t) submatrix
H' consisting of the columns correspondingZio Then H’

is a parity-check matrix fo€’, and

K(H') ={z|p : ® € K(H), z|p\z» =0} .

aFhereforew™"(H') > w™"(H), and this proveg(C’) <
p(C).
For the second inequality, |#’ be ap’ x (n —t) parity-
check matrix forC’. Now we consider &’ +t) x n matrix H
with the following properties: The uppef x n submatrix of
H consists of the columns di’ at positionsZ’ and of zero-
columns at positiong \ Z’, and the lowett x n submatrix
consists of rows of weight that havels at the positions
Z\Z'. ThenC = ker H and

K(H) = {z € R : a|7 € K(H'), z|n7 =0} .

AWGNC and BSC pseudoweights, and the max-fractiondfonsequently,w™* (H) = w™"(H'), and this proves

weight. When the type of pseudocodeword redundancy

clear from the context, we might use the notatip(C).

HC) < p(C') +t. [
Lemma 3.4: LetC be a code of minimum distanee<

We remark that all pseudocodeword redundancies satisfy TN€Nd = w™'*(H) for any parity-check matrid of C,

p(C)>r=n—k.

We describe the behavior of the pseudocodeword redu
dancy and the minimum pseudoweight for a given binar¥ ;
linear [n, k, d] codeC by introducing four classes of codes: °

i.e.C isin class3 (for AWGNC and BSC pseudoweight, and
H)_r max-fractional weight).

Proof: By Lemma 3.1 it suffices to prove this lemma
the max-fractional weightv = Wyamee Sincew(x) >

1 holds for all nonzero pseudocodewords, we always have

(class 0)p(C) is infinite, i.e. there is no parity-check w™(H) > 1, which proves the result in the cade= 1.

matrix H with d = w™"(H),
(class 1)p(C) is finite, butp(C) > r,
(class 2)p(C) = r, butC is not in class 3,

(class 3)d = w™in(H) for every parity-check matrixH
of C.
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Let d = 2 and H be a parity-check matrix fo€. Let
x € K(H) and letz, be the largest coordinate. Sinde= 2
there is no zero column il and thus there exists a royw
with £ € Z;. Thenz, < 377\ (4 T henceay < 3, 7 @i,
and thusw(z) > 2. It follows w™"(H) > 2 and the lemma
is proved. |
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IV. PARITY-CHECK MATRICES WITH ROWS OF WEIGHT2  Also letS” = S\§’, so thatSNZ,, = @ for all S € S§”.

The main result of this section appears in the following L€t # € K(H)\{0}. As before, since the coordinates,
lemma. 1 € Z, depend only on the equivalence classes, we may

Lemma 4.1: Let H be a parity-check matrix af such US€ the notationtg, S € S. The fundamental polytope
that every row inH has weight2. Then: constraints (2) and (3) may then be writtenaas > 0 for

(@) There is an equivalence relation on the&ef column all 5€ § and
indices of H such that for a vectax € R™ with non- YVRe S : azp< Z Tg, (4)
negative coordinates we hawec IC(H) if and only if SES{R}

x has equal coordinates within each equivalence clasrse.S ectively. and the max-fractional pseudoweightzof
(b) The minimum distance of is equal to its mini- P Y P 9

mum AWGNC and BSC pseudoweights and its maxlC(H)\{O} 's given by

fractional weight with respect tdH, i.e. d(C) = D sesdsts

Wmin (H) Wmax-frac(m) -

Proof: For (a), define the required relatidhas follows:
Fori,i' € T let(i,7') € R if and only ifi = i’ or there exists
an integer? > 1, column indicesi = ig,i1,...,4p—1,i¢ =
i’ € 7 and row indicesjy, ..., 5 € J such that

: ()

maxgses s
Supposex € K(H)\{0} has minimal max-fractional

pseudoweight. Letcr be its largest coordinate. First note

that if there existskR € S” \ {T'} with zp > 0, settingzpr

to zero results in a new pseudocodeword with lower max-

{io,in} =T;,, {inyio} =Ty, .oy {ie—1,i0} =T, . fractional pseudoweight, which contradicts the assumption

o ] . ) ] ] that « achieves the minimum. Therefoter = 0 for all
This is an equivalence relation, and it defines equivalencg - g \ {T'}. We next consider two cases.

classes over. It is easy to check that inequalities (2) Imply  cage 1: 7 ¢ S”. If there existsR € S’ with r > 0

thatz € X(H) if and only if z; = z; for any (4,7') € R. setting all suchey to zero results in a new pseudocodeword
In order to prove (b), we note that the minimum (AWGNC ity jower max-fractional pseudoweight, which contradicts

BSC or max-fractional) pseudoweight is always boundege minimality of the max-fractional pseudoweight of

above by the minimum distance 6f so we only have 10 Thereforess is the only positive coordinate af, and by
show that the minimum pseudoweight is bounded below b¢5) the max-fractional pseudoweight afis dy-.

the minimum distance. _ Case 2. T € S'. In this casexyp = 0 for all R € S”.
LetS = {51, 52,..., S} be the set of equivalence classesom inequality (4) forR = T we obtain

of R, and letds = |S| for S € S. It is easy to see that

the minimum distance of is d = mingecs dg (since the xr < Z zs .

minimum weight nonzero codeword @f has non-zeros in SeS\{T}

the coordinates corresponding to a $ete S of minimal

. A . .
size and zeros everywhere else). With do = mingesn () ds it follows that

Now let x € K(H). Sl_nce the coordinates;, i € Z, dozy < Z dozs < Z dszs .
depend only on the equivalence classes, we may use the Sesn(T) sesn (T
notationzg, S € S. Let z1 be the largest coordinate. Then:

Consequently,
Z‘ezxi Z‘eT L
max-frac = z Z L =T :d Zd
Wt ) x7 x7 Tl =dr (dr + do)rr < Z dszs ,

Therefore,wr‘rf;;ﬁrac(H) > d, and by using Lemma 3.1, we Ses

Obtain thatwmln (H) Z d andwrnin(H) Z d. ] and thUSWmax_frac(SC) Z dT + do. We COI’IC|ude that the

AWGNC BSC .. . . . .
_ N _ _ minimum max-fractional pseudoweight is given by
The following proposition is a stronger version of

Lemma 4.1. whin (Fr) = min{ min  {ds +dr}, min {ds}} :
Proposition 4.2: Let H be anm x n parity-check S, TeS",S#T Ses”

matrix of C, and assume that: — 1 first rows in H have Byt this is easily seen to be equal to the minimum distance
weight 2. Denote byH the (m — 1) x n matrix consisting of ¢ of the code.

these rows, consider the equivalence relation of Lemma 4.1Fjnally, by using Lemma 3.1, we obtain thafz (H) =

GNC

(a) with respect toH, and assume thaf,, intersects each 4 and win (H) = d. ™

BSC

equivalence class in at most one element. Then, the minimumRemark: Note that the requirement that alk Z,, belong

distance ofC is equal to its minimum AWGNC and BSC to the different equivalence classesHf in Proposition 4.2
pseudoweights and its max-fractional weight with respect t@ necessary. Indeed, consider the matrix

H, ie.d(C)=w"in(H).

Proof: LetS be the set of classes of the aforementioned 1100

equivalence relation off, and letds = |S]| for S € S. Let H=|"° ; ! g
1 1

S§={SeS :|SNL,|=1}. 111 1

291
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One can see that there are two equivalence classeHl for
S1 = {1,2,3}, S2 = {4}. The minimum distance of the
corresponding cod€ is 4 (since (1,1,1,1) is the only
nonzero codeword). Howeveg; = (1,1,1,3) € K(H) is
a pseudocodeword of max-fractional weight

Corollary 4.3: Let C be a code of length and dimen-
sion 2. Thenp(C) = n — 2, i.e. C is of class at leas®

V. THE PSEUDOCODEWORDREDUNDANCY FOR CODES
OF SMALL LENGTH

In this section we compute the AWGNC, BSC, and max-
fractional pseudocodeword redundancies for all codes of
small length. By Lemma 3.4 it is sufficient to examine only
codes with minimum distance at lea3t Furthermore, in
light of Lemma 3.3 we will consider only codes without zero

(for AWGNC and BSC pseudoweight, and for max-fractionatgordinates, i.e. that have a dual distance of at 2a&nally,

weight).
Proof: We consider two cases.
Case 1: C has no zero coordinates.

Let ¢; and c; be two linearly independent codewords

of C. Define the following subsets &:

S, = {ieT:icsuppel) andi ¢ suppes)}
Sy, £ {ieT :i¢suppei) andi € suppes)}
S;3 = {ieT :icsuppe:) andi € suppes)}.

The setsS;, Sy and S; are pairwise disjoint. Since
C has no zero coordinateg, = S; U S, U S3. The
ordering of elements irf implies an ordering on the
elements in each of;, S, and S;. Assume thatS;
{il,ig,"' 7i|51\} andi| <ip <--- < Z‘|S]‘. If S1 7é g,
let m;, = i, be the minimal element it%;, and define
an (|S1| — 1) x n matrix H; as follows:

1 ifijzéorij+1:€,
(Hl)j,f: j:1,27"',|51|*1,
0 otherwise.

Similarly, define(]|.S2|—1) xn and(]S5|—1) xn matrices
H, and H3, with respect taS; and.Ss. Let mo andms
be minimal elements ofy andSs, respectively.
Define also al x n matrix Hy:

1 ifS;#@andm; =/
(H4)1)g = for _] = 1,2,3 N
0 otherwise.

Finally, define an(n — 2) x n matrix H by H” =
[HT | HI | HT | H]]. (Some of theS;'s might be
equal tow, in which case the correspondird; is an

0 x n “empty” matrix.) It is easy to see that all rows of
H are linearly independent, and so it is of ramk- 2.

It is also straightforward that for alt € C we have
c € ker(H). Therefore,H is a parity-check matrix
of C.

The matrix H has a form as in Proposition 4.2 (where
S1, S and S; are corresponding equivalence classes

overZ), and thereforep(C) = n — 2.

Case 2: C hast > 0 zero coordinates.
Consider a cod€’ of lengthn — t obtained by punc-

turing C in theset zero coordinates. From Case 1 (with

respect toC’), p(C’') = n —t — 2. By applying the
rightmost inequality in Lemma 3.3, we haygC) <
n — 2. Sincek = 2, we conclude thap(C) =n — 2.
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we point out to Corollary 4.3 for codes of dimensidnby
which we may focus on codes with dimension at Iefast

A. The Algorithm

To compute the pseudocodeword redundancy of a €ode
we have to examine all possible parity-check matrices for the
codeC, up to equivalence. Here, we say that two parity-check
matricesH and H' for the codeC areequivalent if H can
be transformed intdd’ by a sequence of row and column
permutations. In this cases™"(H) = w™*(H") holds for
the AWGNC and BSC pseudoweights as well as for the max-
fractional weight. The enumeration of codes and parity-check
matrices can be described by the following algorithm.

Input: Parameters (code length)k (code dimension)p
(number of rows of the output parity-check matrices), where
p>r=n—k.

Output: For all codes of lengtm, dimensionk, distance
d > 3, and without zero coordinates, up to code equivalence:
a list of all p x n parity-check matrices, up to parity-check
matrix equivalence.

1) Collect the setX of all » x n matrices such that

« they have different nonzero columns, ordered lex-
icographically,

« there is no non-empt¥,-sum of rows which has
weight 0 or 1 (this way, the matrices are of full
rank and the minimum distance of the row space is
at leasp).

2) Determine the orbits inX under the action of the
groupGL,(2) of invertibler x r matrices oveffy (this
enumerates all codes with the required properties, up to
equivalence; the codes are represented by parity-check
matrices)

3) For each orbitX¢, representing a codé:

a) Determine the suborbits iX: under the action
of the symmetric groups, (this enumerates all
parity-check matrices without redundant rows, up
to equivalence)

For each representatid of the suborbits, col-
lect all matrices enlarged by addipg-r different
redundant rows that af®,-sums of at least two
rows of H. Let X¢ , be the union of all such
p X n matrices.

Determine the orbits iX¢ , under the action of
the symmetric grougd,, and output a represen-
tative for each orbit.

b)
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TABLE |
THE NUMBER OF BINARY [n, k, d] CODES
WITH d > 3 AND WITHOUT ZERO COORDINATES

| k=1 2 3 4 5
n=>5 1 1
6 1 3 1
7 1 4 4 1
8 1 6 10 5
9 1 8 23 23 5

This algorithm was implemented in the C programming

2) BSC pseudoweight: We computed the pseudocodeword
redundancy for the BSC for all codes of length< 8.

« The shortest codes withysc(C) > r, i.e. in class0 or

1 for the BSC, are thd7,4,3] Hamming codeC and
its dual codeC+, the [7,3, 4] simplex code. We have
Pesc(C) = 4 > 3 and pgsc(C) = 5 > 4.

There are two codes of leng&with pgec(C) > r. These
are the[8,4,4] extended Hamming code, for which
pesc(C) = 6 > 4 holds, and one of the threg, 3, 4]
codes, which satisfiegs.(C) = 6 > 5.

language. The minimum pseudoweights for the various 3) Max-fractional weight: We computed the pseudocode-
parity-check matrices were computed by using Maple 12 arnglord redundancy with respect to the max-fractional weight

the Convex package [8].

B. Results
We considered all binary linear codes up to lengttvith

distanced > 3 and without zero coordinates, up to code
equivalence. The number of those codes for given lemgth

and dimensiork is shown in Table I.
1) AWGNC pseudoweight: The following results were
found to hold for all codes of length < 9.
« There are only two code8 with puuenc(C) > 1, i.€. in
class0 or 1 for the AWGNC.

— The|[8, 4, 4] extended Hamming code is the shortest

codeC in class 1. We havee(C) =5 >4=r

and out of12 possible parity-check matrices (up
to equivalence) with one redundant row there is ,

exactly one matrixd with w2z (H) = 4, namely

10 01 10 0 1
0101 010 1
H=]001 1001 1
11110 0 0 0
00001111

There is exactly one matrifl with wiit (H) =
25/7, and for the remaining matriced we have
W%I\IV]V?NC(H) =3.

— Out of the four[9,4, 4] codes there is one codk

in class 1. We haveg,ye(C) = 6 > 5 = r and

for all codes of lengtm < 8.
« The shortest code withy,....{C) > r is the unique

[6,3, 3] codeC. We havep,...C) =4 > 3.

There are two codes of length with p,..d(C) > 7.
These are thg7,4,3] Hamming code and thé, 3, 4]
simplex code, which have both pseudocodeword redun-
dancy 7. In both cases, there is, up to equivalence, a
unique parity-check matrixt with seven rows that
satisfiesd(C) = win (H).

(This demonstrates that Proposition 5.4 and 5.5 in
[6] are sharp for the max-fractional weight, and that
the parity-check matrices constructed in the proofs are
unique in this case.)

For the [8,4,4] extended Hamming codé we have
Praciiad C) = 00, and thus the code is in clagsfor
the max-fractional weight. It is the shortest code with
infinite praciradC)-

(It can be checked that = [1,1,1,1,1,1,1,3] is a
pseudocodeword it (H ), where the rows oH consist

of all dual codewords; SINC&,,..codx) = 13—0 < 4, we
havew™n (H) < 4.)

max-frac
There are two other codes of lengitwith p..dC) >
r, namely two of the thres, 3,4] codes, having pseu-
docodeword redundandy and 8, respectively.

4) Comparison: Comparing the results for the AWGNC

out of 2526 possible parity-check matrices (up toand BSC pseudoweights, and the max-fractional weight, we
equivalence) with one redundant row there &8¢ can summarize the results as follows.

matricesH with wiin (H) = 4.

« For all codesC of minimum distancel > 3 and for all
parity-check matricedd of C we havewin (H) > 3;
in particular, if d = 3, thenC is in class3 for the
AWGNC.

« For the[7, 3, 4] simplex code there is (up to equivalence)

only one parity-check matri¥ without redundant rows

such thatwin (H) = 4, namely

1101000
0110100
H =
0011010
000110 1
It is the only parity-check matrix

weight 3.
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For the[7, 4, 3] Hamming code& we havepen(C) =
r= 31 pBSC(C) = 41 and pmax-frac(c) = 7

« For the[7,3,4] simplex codeC we havepuenc(C) =

r= 41 pBSC(C) = 5! and pmax-frac(c) = 7

« For the [8,4,4] extended Hamming codé we have

pAWGNC(C) =5, PBSC(C) = 6, and Pmax,frac(C) = oo. This
code( is the shortest one such thatye(C) > r, and
also the shortest one such that,.{C) = cc.

If d > 3 then forevery parity-check matrixd we have
win (H) > 3. This is not true for the BSC and the
max-fractional weight.

_ These observations show that there is some significant
with constant row difference between the various types of pseudocodeword
redundancies.
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TABLE Il

VI. CvycLic CODESMEETING THE EIGENVALUE BOUND BINARY CYCLIC CODES UP TOLENGTH 250WITH d — 2

In this section we apply the following eigenvalue-based MEETING THE EIGENVALUE BOUND
lower bound on the minimum AWGNC pseudoweight,
proved in [9]. parameters w-regular  constituent code
Proposition 6.1: The minimum AWGNC pseudoweight : [2n,2n—m, 2] ! 2m Hamming c..n = 2"”—1”, m :h2-k- .6
_ P ; _ [2n,2n—-m-—1,2] 2Mm-2 Hamming c. with overall p.-checl
for a (@c,wr) regular parlty check ma.trle whose corre (42,32, 9] " projective geometry cod®G(2, 4)
sponding Tanner graph is connected is bounded below by (146,118, 2] 18 projective geometry cod®G (2, 8)
N, — (170,153, 2] 42 a certain[85, 68, > 6] 21-regular code
\,\,lﬂﬂie’ﬂc n - We — K2 (6) (the eigenvalue bound is 5.2)
AWGNC —
1 — p2
TABLE I

wherey; andus denote the largest and second largest eigen-
value (respectively) of the matrik = H” H, considered as
a matrix over the real numbers.

We consider now binary cyclic codes with full circulant parameters w-regular  comments
parity-check matrices, defined as follows: ltebe a binary

BINARY CycLIC CODES UP TOLENGTH250WITH d > 3
MEETING THE EIGENVALUE BOUND

; ) - [n,1,n] 2 repetition codepn = 3...250
cyclic code of lengthn with check polynomialh(z) = [n,n—m,3]  2m~! Hamming c.,n = 2™ —1,m =3...7
> ez hiz' (cf. [10], p. 194). Then théull circulant parity- [[175 377 45]] i guall_gf the[7,4,3]t HamgﬁinlgGC((;d;

i i i - AT i e uclidean geometry code ,
chegk matrix for C is then xn matr_lxI_{ = (Hj )i jez With 21,11, 6] 5 projective geometry code PG(2.4)
entriesH;; = h;_,. Here, all the indices are modulg so [63,37,9] 8 Euclidean geometry code EG(2,8)
thatZ = {0’ 1,...,n— 1}_ (73, 45,10] 9 projective geometry code PG(2,8)

Since such a matrix ig-regular, wherev =, h;, we
may use the eigenvalue-based lower bound of Proposition 6.1 . .
to examine the AWGNC pseudocodeword redundancy: If trll cases where the Tanner graph of the full circulant parity-
then pAWGNC(C) <n. .
Note that the largest eigenvalue of the matix = Input: Parameter (code length).

T H _ 2 H H .. . .
H H sy = w, since every Tow weight ofL equals  oyput: For all divisors ofz™ — 1, corresponding to cyclic
i jer hihj = w®. Consequently, the eigenvalue bound is ¢qqege with full circulant parity-check matrix, such that the

min < 2w — fig Tanner graph is connected: the value of the eigenvalue bound.
Wawene = 02 —5—
we T e 1) Factorz™ — 1 overF, into irreducibles, using Cantor
where s, is the second largest eigenvalue bf We remark and Zassenhaus’ algorithm (cf. [12], Section 14.3).
further thatL = (L; ;)i jez is @ symmetric circulant matrix,  2) For each divisorf(z) of 2" — 1:
with L;; = Ej_q;_ and/; = ZkeI hrhir+i. The eigenvalues a) Letf(x) =Y, hizt and H = (hj—i)i ez
of L are thus given by b) Check that the corresponding Tanner graph is
N — 0:CY — Re 0.C0 — 0 cos(2mii connected (that the gcd of the indicéswith
’ XZ: it Zl: in ZZ: i cos(2mij/n) h; = 1 together withn is 1).
_ ] 9 . c) Compute the eigenvalues i = H' H: Let
for j € Z, where(,, = exp(2ni/n), i = —1, is then-th 6 = Yperhihiss and forj € Z compute
root of unity (see e.g. [11], Theorem 3.2.2). >0 cos(2mij/n).
We also consider quasi-cyclic codes of the form given in d) Determine the second largest eigenvaleand
the following remark. outputn - (20 — 1)/ (£2 — p2).

Remark 6.2; Denote byl,, the m x m matrix with all
entries equal td. If H is aw-regular circulant x n matrix
then the Kronecker produdf = H®1,, will be aw-regular This algorithm was implemented in the C programming
circulantmn x mn-matrix and defines a quasi-cyclic code.language. Tables Il and Il give a complete list of all cases in
We have which the eigenvalue bound equals the minimum Hamming
distanced, for the casesl = 2 andd > 3 respectively. In
particular, the AWGNC pseudoweight equals the minimum
and the eigenvalues ofi1,, arem? and0. Thus, the largest Hamming distance in these cases as well and thus we have
eigenvalues ofL areji; = m2u; = m2w? andji, = m2u,, for the pseudocodeword redundanpye.c(C) < n. All

and the eigenvalue bound of Proposition 6.1 becomes  €xamples of distance are actually quasi-cyclic codes as
in Remark 6.2 with parity-check matrtH = H ® 1.

. - ) We list here the constituent code given by the parity-check
m2w? —m? i w? — i matrix H.
We carried out an exhaustive search on all cyclic cales We conclude this section by proving a result which was
up to lengthn < 250 and computed the eigenvalue bound imbserved by the experiments.

L=H H=H"H®1%1,, =L (ml,,),

m

min

2mw — m? o 2w — mys
AWGNC =n-

w >mn
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Lemma 6.3: Let m > 3 and letC be the intersection of
a Hamming code of length = 2™ — 1 with a simple parity-
check code of length, which is a cyclic[n,n —m — 1, 4]
code. Consider its full circulant parity-check mat#ik. Then

(1

[2
min
AWGNC

(H) >3+ >3.

1

2m—2 _ |
In particular, ifm = 3 thenC is the[7, 3,4] code and the
result implieswin (H) = 4 and puenc(C) < n.

Proof: Let H be thew-regular full circulant parity-
check matrix forC. We claim thato = 2™~'-1. Indeed, each
row h of H is a codeword of the dual codg", and since [l
C+ consists of the codewords of the simplex code and their
complements, the weight & and thusw must be2™ 11, [5]
2m=1 or 2™ —1. But w cannot be even, for otherwise all
codewords o’ would be of even weight. Asy = 2™ —1
is clearly impossible, it must hold = 2™~ 1 —1.

Next, we show that the second largest eigenvalué ef
H"H = (L;;); jer equalsu, = 22, Indeed, leth; and
h, be different rows ofH, representing codewords Gf-.
As their weight is equal, their Hamming distance is even,
and thus it must be™~1. Hence, the size of the intersection
of the supports ok, andh, is 272 —1. This implies that
L;; =wandL,;,; = 2m~2-1, fori # j. ConsequentlyL has
an eigenvalue of multiplicity: — 1, namelyw — (2m=2-1) =
2m=2 and thusu, must be2™—2,

Finally, we apply Proposition 6.1 to get

(3]

(6]

(71

(8]

9]

[10]

min > (2m 1) 2 (2m—1_1> — 27”_2 3+ [11]
W — =
AWGNC = (2m7171)2 _ 2m—2 2m72,1 [12]
|
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