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Abstract— We show how to improve the echelon-Ferrers
construction of random network codes introduced in [3] to
attain codes of larger size for a given minimum distance.
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I. PRELIMINARIES

In network coding one is looking at the transmission of
information through a directed graph with possibly several
senders and several receivers. One can increase the through-
put by doing linear combinations at intermediate nodes of
the network. If the underlying topology of the network is
unknown we speak about random network coding. Since
linear spaces are invariant under linear combinations, they
are exactly what is needed as codewords (see [6]). It is
helpful (e.g. for decoding) to constrain oneself to subspaces
of a fixed dimension, in which case we talk about constant
dimension codes.

Let Fq be the finite field with q elements (where q = pr

and p prime). The projective space Pn−1 of order n−1 over
Fq is the set of all 1-dimensional subspaces of Fnq . The set of
all subspaces of Fnq of dimension k is called Grassmannian,
denoted by G(k, n).

It is a well-known result that

|G(k, n)| =
[
n
k

]
q

:=
k−1∏
i=0

qn−i − 1
qk−i − 1

Let U ∈ Matk×n(Fq) be a matrix such that U =
rowspace(U). The matrix U is usually not unique. Indeed
one can notice that

U = rowspace(U) = rowspace(A · U)

for any A ∈ GLk(Fq), i.e. any k-dimensional subspace is
stable under the action of GLk(Fq). However there exists a
unique matrix representation of elements of the Grassman-
nian, namely the reduced row echelon forms.

The subspace distance is a metric on G(k, n) given by

dS(U ,V) =2(k − dim(U ∩ V))

=2 · rank
[
U
V

]
− 2k

for any U ,V ∈ G(k, n).
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A constant dimension code C is simply a subset of the
Grassmannian G(k, n). If the distance between any two
elements of it is greater than or equal to 2δ we say that
C has minimum distance 2δ and call it a [n, 2δ, |C|, k]-code.

Remark: A[n, 2δ, k] denotes the maximal cardinality of a
code in G(k, n) with minimum distance 2δ. It holds that
A[n, 2δ, k] = A[n − k, 2δ, k] (orthogonal complement [4]).
Therefore we restrict our studies to the case 2k ≤ n.

In classical coding theory over F2 the Hamming distance
dH between two vectors of the same length is defined to be
the number of positions in which they differ. Lexicodes, also
called lexicographic codes [1], are greedily generated codes
with minimum distance d, where one starts with the first
element in lexicographic order and adds the lexicographic
next element that fulfills the distance requirement.

In the space of m× n-matrices over Fq the rank distance
between two elements X and Y is defined to be

dR(X,Y ) := rank(X − Y )

In [3] T. Etzion and N. Silberstein introduced the Echelon-
Ferrers construction for which we need the following defi-
nitions:

Definition 1.1: 1) The identifying vector v(U) of a
matrix U in reduced row echelon form is the binary
vector of length n and weight k such that the 1’s of
v(U) are in the positions where U has its pivots (also
called leading ones).

2) A Ferrers diagram F is a pattern of dots such that
all dots are shifted to the right of the diagram and the
number of dots in a row is less than or equal to the
number of dots in the row above.

3) A Ferrers diagram code CF is a rank-metric code such
that all entries not in the Ferrers diagram F are 0.

The echelon-Ferrers code construction is a multilevel con-
struction: First we construct the skeleton code by choosing
a binary linear code of length n, weight k and minimum
Hamming distance δ and finding the corresponding matrices
such that these code words are their identifying vectors.

Then we fill each of the originated Ferrers diagrams
with a compatible Ferrers diagram code with minimum rank
distance δ.

One can easily check (with the following propositions)
that the row spaces of the above constructed matrices form a
constant dimension code in G(k, n) with minimum subspace
distance 2δ.

Remark: The set of all reduced row echelon forms with
the same identifying vector is exactly a Schubert cell.

Proposition 1.2: Let U and V be in the same Schubert
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cell, i.e. v(U) = v(V ). Then

dS(U ,V) = dR((CF )U , (CF )V )

where (CF )U and (CF )V denote the submatrices of U and
V , respectively, without the columns of their pivots.

Proposition 1.3: [2] Let U and V ∈ G(k, n) and U and V
their representation matrices, respectively. Then

dS(U ,V) ≥ dH(v(U), v(V ))
Remark: It is a hard problem to understand which skeleton

code leads to the largest subspace code. Although lexicodes
themselves are not among the largest binary linear codes they
are a good choice for skeleton codes.

Example 1.4: We want to construct a code in G(3, 6) with
minimum distance 4, hence we start with the binary lexicode
of length 6, weight 3 and distance 2 as skeleton code. This
code has the following three codewords:

(111000), (100110), (010101)

The corresponding echelon-Ferrers forms are: 1 0 0 • • •
0 1 0 • • •
0 0 1 • • •

 ,

 1 • • 0 0 •
0 0 0 1 0 •
0 0 0 0 1 •

 ,

 0 1 • 0 • 0
0 0 0 1 • 0
0 0 0 0 0 1


We can fill the Ferrers diagrams with rank distance codes
of size q6, q2 and q, respectively. Thus we constructed a
[6, 4, q6 + q2 + q, 3]-code.

The following theorem was stated and proved in [2].
Theorem 1.5: Let F be a Ferrers diagram and CF the

corresponding Ferrers diagram code. Then

|CF | ≤ qmini{wi}

where wi is the number of dots in F which are not contained
in the first i rows and the rightmost δ− 1− i columns (0 ≤
i ≤ δ−1). Moreover the bound can be obtained for (at least)
δ = 1, 2.

For certain Ferrers diagrams this gives us a nice formula
on the size of the Ferrers diagram code.

Corollary 1.6: Let a ≥ b and F be an a × b Ferrers
diagram. Assume that each one of the rightmost δ − 1
columns of F has a dots. Then

dimCF =
b−δ+1∑
i=1

γi

where γi is the number of dots in the i-th column of F .
Similarly let a ≤ b and F be an a × b Ferrers diagram.

Assume that each of the first δ − 1 rows of F has a dots.
Then

dimCF =
b∑

i=δ−1

γ̂i

where γ̂i is the number of dots in the i-th row of F .

II. IMPROVEMENT ON THE PACKING

Some skeleton code words lead to a Ferrers diagram where
one can remove dots and still achieve the same size of the
corresponding Ferrers diagram code. We can improve the
size of our subspace codes if we take these removable dots
into account.

Example 2.1: All of the following Ferrers diagrams give
rise to a Ferrers diagram code with minimum distance 4 of
size q3, since the minimum number of dots not contained
either in the first row or in the last column is 3.

• • • •
• •
•

• • •
• •
•

• • • • • •
• • •

Definition 2.2: Let F be a Ferrers diagram and fij be the
dot in the i-th row and j-th column from the right. F\fij
denotes the Ferrers diagram F after removing fij . We call a
set of dots {fij} pending if they are in the first row and the
leftmost columns of the Ferrers diagram and

|CF | = |CF\{fij}|
Remark: One can also define pending dots in the rightmost

column on the very bottom and translate the following results
to that setting.

Example 2.3: In Example 2.1 the first and the second
Ferrers diagrams lead to the same-size rank metric code.
Thus the top leftmost dot of the left diagram is pending.

Proposition 2.4: Let zi be the number of 0’s after the i-th
1 of the identifying vector and

p :=
k∑
i=1

zi −max
zl 6=0

l = n− k − z0 −max
zl 6=0

l.

Then the following holds:
1) If zi = 0 for all but one i > 1 then p = 0. If zi = 0

for all i > 1, i.e. z1 = n− k − z0, then p = z1.
2) If p > 0 then there are min{p, z1} pending dots in the

top row of the Ferrers diagram.
Proof:

1) If zi = 0 for all but one i, i.e. all 0’s are in one block,
then the Ferrers diagram is a rectangle, hence there are
no pending dots (except if it is a line, then the whole
diagram is pending).

2) The number of dots not located in the last column is∑k
i=2 i ·zi−maxzl 6=0 l the number of dots not located

in the first row is
∑k
i=2(i−1) ·zi. Thus the number of

dots without importance for the Ferrers diagram code
is the difference of the two:
k∑
i=1

i · zi −max
zl 6=0

l −
k∑
i=2

(i− 1) · zi =
k∑
i=1

zi −max
zl 6=0

l

Pending dots can only occur in the first row, hence
their number cannot be larger than z1.

Theorem 2.5: Let v(U) be an identifying vector of length
n and constant weight k such that the corresponding Ferrers
diagram has a set of pending dots in the first row. Let v(V )
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be another identifying vector of the same length and weight
(subsequent in lexicographic order) such that the first 1 is in
the same position as for v(U) and dH(v(U), v(V )) = 2δ−2.
Fix the matrix entries at the positions of the pending dots
as a p-tuple µ for all elements of the cell of v(U) and as a
p-tuple ν 6= µ for all elements of the cell of v(V ). Then

rank

[
U
V

]
≥ k + δ

for any Ui in the cell of v(U) and Vj in the cell of v(V ).
Proof: From the Hamming distance of the identifying

vectors we know that

rank

[
U
V

]
≥ k + δ − 1.

Moreover the first rows of U and V are linearly independent
since µ 6= ν. Together with the fact that all other leading ones
appear to the right of µ and ν, this proves the statement.

Corollary 2.6: Let v(U) and v(V ) as before and fill the
Ferrers diagrams of v(U) and v(V ) with a respective Ferrers
diagram code of minimum distance δ. The corresponding row
spaces of this set of matrices is a constant dimension code
in G(k, n) with minimum distance 2δ.

Proof: One knows already that dS(Ui,Uj) = 2δ and
dS(Vi,Vj) = 2δ, hence inside the cell the minimum distance
is out of question. Because of the above theorem we know
that

dS(Ui,Vj) = 2 · rank
[
Ui
Vj

]
− 2k ≥ 2δ

Example 2.7: Let us consider the skeleton code word
(1001100), thus our cell is of the type 1 • • 0 0 • •

0 0 0 1 0 • •
0 0 0 0 1 • •


where the dot in the box marks the position of the pending
dot. We choose (1000110) as second skeleton code word and
fix the pending position as 0 in the first cell and as 1 in the
second:  1 0 • 0 0 • •

0 0 0 1 0 • •
0 0 0 0 1 • •


 1 1 • 0 • 0 •

0 0 0 1 • 0 •
0 0 0 0 0 1 •


Although the Hamming distance between the two identifying
vectors is 2 we obtain a subspace distance of 4.

III. IMPROVED CODE CONSTRUCTION

We will now explain the new construction:
1) Begin the skeleton code with the first lexicode element

(11...10...0) and fill the echelon-Ferrers form with a
maximum rank distance code.

2) Choose the second skeleton code word as the next
lexicode element and fix the set of pending dots (if

there are any) of the Ferrers diagram as µ1. Fill the
echelon-Ferrers form with a Ferrers diagram code.

3) For the next skeleton code word choose the first 1 in
the same positions as before and use the next lexicode
element of distance ≥ 2δ − 2 from the other elements
with the same pending dots and ≥ 2δ from any other
skeleton code word. Fix the pending dots as a tuple
µi different from the tuples already used for echelon-
Ferrers forms where the Hamming distance of the
identifying vectors is 2δ − 2. Fill the echelon-Ferrers
form with a Ferrers diagram code.

4) Repeat step 3 until no possibilities for a new skeleton
code word with the fixed 1 are left.

5) In the skeleton code choose the next vector in lexi-
cographic order that has distance ≥ 2δ from all other
skeleton code words and repeat steps 2,3 and 4.

Proposition 3.1: Let us consider the above construction
and δ = k. Then every originating Ferrers diagram is of
rectangular shape and has no pending dots.

Proof: Since the first skeleton code word has all 1’s in
a block, there are no pending dots. Because of the minimum
distance the second skeleton code word is

(0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
k

0 . . . 0)

thus there are again no pending dots. The same argument
holds for all following code words.

It follows that for codes of maximal distance, i.e. 2δ =
2k, the construction is exactly the classical echelon-Ferrers
construction.

Lemma 3.2: The first skeleton code word (1...10...0) al-
ways leads to a component code of size q(n−k)(k−δ+1).

For the remain of this section we look at the case δ = 2.
Thus dimCF is equal to the minimum number of dots that
are either not in the first row or the last column of a Ferrers
diagram F .

Example 3.3: We want to construct a code in G(3, 7) with
minimum distance 4.

1) We choose the first skeleton code word 1110000,
whose echelon-Ferrers form can be filled with a maxi-
mum rank distance code of size q8.

2) a) The second skeleton code word 1001100 leads
to a Ferrers diagram with one pending dot (see
example 2.7).

b) Fix the pending dot as 0.
c) The echelon-Ferrers form can be filled with a

Ferrers diagram code of size q4. 1 0 • 0 0 • •
0 0 0 1 0 • •
0 0 0 0 1 • •


3) a) The next skeleton code word 1001010 leads to a

Ferrers diagram with a pending dot in the same
position as before.

b) Fix the pending dot as 1.
c) The echelon-Ferrers form can be filled with a

Ferrers diagram code of size q3.
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 1 1 • 0 • 0 •
0 0 0 1 • 0 •
0 0 0 0 0 1 •


4) a) The next skeleton code word 1000101 leads to

a Ferrers diagram with a pending dot in the
same position as before. (Actually there are two
pending dots but we can only make use of the
one from before.)

b) Fix the pending dot as 1.
c) The echelon-Ferrers form can be filled with a

Ferrers diagram code of size q. 1 1 • • 0 • 0
0 0 0 0 1 • 0
0 0 0 0 0 0 1


5) The following skeleton code word 0101001 leads to a

echelon-Ferrers form that can be filled with a Ferrers
diagram code of size q2.

6) In analogy 0100110 can be filled with a Ferrers dia-
gram code of size q2.

7) The last skeleton code word 0010011 can be filled with
a Ferrers diagram code of size 1.

Hence we constructed a [7, 4, q8 + q4 + q3 + 2q2 + q+ 1, 3]-
code, which is larger than the code constructed by the
standard echelon-Ferrers construction.

The following tables show some examples where the new
construction leads to larger codes than the one before. All
codes have minimum distance 4.

n k classical echelon-Ferrers construction
7 3 q8 + q4 + q3 + 2q2 + 1
8 3 q10 + q6 + q5 + 2q4 + q3 + q2

9 3 q12 + q8 + q7 + 2q6 + q5 + q4 + 1

n k new echelon-Ferrers construction
7 3 q8 + q4 + q3 + 2q2 + q + 1
8 3 q10 +q6 +q5 +2q4 +2q3 +2q2 +q+1
9 3 q12 +q8 +q7 +2q6 +2q5 +3q4 +2q3+

2q2 + q + 1

IV. CONCLUSION AND OPEN PROBLEMS

In this work we show how the echelon-Ferrers construction
by T. Etzion and N. Silberstein can be improved by consi-
dering the pending dots of the obtained Ferrers diagrams. We
show when and how many pending dots occur depending on
the underlying identifying vector. In the end some examples
of code sizes were given, which are larger than codes
obtained by other constructions in [2], [7] and [8]. Although
over F2 some larger codes have been found in [5], some of
our codes are the largest codes found so far in the general
setting over Fq .

Since in this paper we only considered pending dots in the
top row, an open problem is to look at a generalized setting
where a set of pending dots can occur in the top rows (more
than one). Moreover one could investigate if improvements

can be made by looking at pending dots in the top row as
well as in the rightmost column.
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