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Abstract— Singular valued decomposition (SVD) is a com-
monly applied technique for dimensionality reduction. SVD
implicitely minimizes an unweighted sum of squares which
may be inappropriate in several practical applications. This
paper gives generalizations of SVD to other loss functions, e.g.,
weighted Frobenius distance and logistic loss, that are better
suited to the data. We describe algorithms for minimizing these
loss functions, and give an application to Hungarian mortality
data.
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I. INTRODUCTION
Low dimensional data representations are primordial to

numerous applications in statistics, machine learning, signal
processing, and bioinformatics. Singular valued decomposi-
tion (SVD) suggested by Eckart and Young [8] is one of
the most widely used methods for dimensionality reduction.
SVD expresses a rectangular matrix via an additive com-
bination of the dyadic (outer) products of dual right and
left eigenvectors, see Chapter 4 in [21]. Partial sums of
these dyadic products provide optimal solution of the least
squares problem of matrices in various norms under low–
rank condition, and the error of the approximation can be ex-
pressed by the appropriate singular values of the data matrix.
Moreover, SVD plays a crucial role in several problems of
linear algebra and numerical optimization, see [4] and [21].
Examples of applications can be found in pattern recognition
([1], [20]), cluster analysis ([7]), multidimensional scaling
([17]), correspondence analysis ([3]), data visualization ([6]),
time series analysis ([12]), and collaborative filtering ([19]).

Recently, there has been considerable interest in factor-
ization or approximation of matrices which satisfy some
additional conditions or constraints, e.g., weighting, nonneg-
ativity, or discreteness. On the one hand, often we obtain
heteroscedastic low–rank approximation problem since we
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have some additional knowledge on the precision of the
entries of the data matrix. On the other hand, often the
data to be analyzed is nonnnegative which follows from
physical realities. The discrete nature of certain data sets may
come from the need to count events, objects or individuals.
Classical tools like principal component analysis (PCA) and
singular valued decomposition (SVD) cannot garantee to
maintain these requirements and properties. In this paper
we propose a few generalizations of the low–rank matrix
approximation and SVD that are better suited in the above
mentioned situations, and describe numerical algorithms for
computing the approximate matrix efficiently.

In the first part of the paper we consider the low–rank ma-
trix approximation by weighted least squares. This problem
has payed relatively little attention up to now. In statistics
Wold and Lyttkens [23], later Gabriel and Zamir [10] investi-
gated the weighted case. The former suggested the nonlinear
iterative partial least squares (NIPALS) algorithm, while the
latter applied the criss–cross multiple regression. In machine
learning Srebro and Jaakkola [18] provided a simple EM
algorithm for minimizing the weighted sum of squares. Lu
et al. [13] suggested alternating optimization method based
on combined rank–one approximations. In this paper we
propose a new algorithm which is based on the second order
Taylor expansion of the objective function. Moreover, our
algorithm is a kind of Fisher scoring because the Hessian
in the second order term of the expansion is approximated
by the Fisher information. Since the local convergence of
the algorithm is quadratic, hence it is faster than the above
mentioned ones, and thus it is an attractive alternative in
numerous practical applications.

In the second part of the paper the low–rank approximation
of non–negative integer–valued matrices is considered. As an
application we are interested in the approximation of three
dimensional contingency tables of size 2×I×J . These tables
arises naturally in the analysis of mortality tables, where
the two I × J dimensional subtables denote the number of
individuals who died and survived, respectively, at age i in
year j. Several non–negative matrices can be derived from
these subtables, e.g., the odds ratio of the dead and the living
or the relative frequency of the dead. Then standard non–
negative matrix factorization methods, e.g. the Lee–Seung
algorithm [14], can be applied, see the review paper of Berry
et al. [5]. Instead of these descriptive statistical techniques
we propose stochastic generative models for describing con-
tingency tables by low–rank matrices. There are two ways for
dimensionality reduction: the inner (indirect) and the outer
(direct) factorization. The former one is given by modelling
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the I × J matrix of probabilities of death by Bernoulli
distribution where the parameter matrix satisfies a low–
rank constraint, see Section III. The latter one is given by
approximating the table by a mixture of independent tables.
In this case an EM algorithm can be applied similarly to the
mixture decomposition of latent class models, see [9]. In the
paper we propose a new algorithm, the iteratively reweighted
singular valued decomposition (IRSVD), for deriving the
inner factorization. This algorithm seems more stable and
faster than the EM–type ones in the outer factorization.
Moreover, this new factorization technique provides better
fit to the data than the standard Lee–Carter model, see Lee
and Carter [12] and Baran et al. [2].

The rest of the paper is organized as follows. Section II
describes the weighted SVD as a low–rank approximation
problem in weighted Frobenius distance. Section III contains
stochastic models whose likelihoods lead to the low–rank
approximation problem discussed in the paper. Section IV
provides the asymptotic theory of these stochastic models.
In Section V we propose an efficient algorithm for obtain-
ing weighted dyadic approximation. In Section VI further
numerical algorithms are presented in more general cases,
particularly, in the logistic low–rank approximation model.
Application of these algorithms in the field of mortality study
for the Hungarian data is highlighted in Section VII. The
proofs are left for the Appendix.

Notation

Let N, R and R+ denote the set of positive integers,
real numbers and non–negative real numbers, respectively.
Matrices are denoted by capital letters (A,B,Σ, . . .), vectors
by roman lowercase (u, v, w, . . .), and scalars by greek
lowercase (α, β, . . .). An entry of a matrix A is referred as
aij or A(i, j). The column and row vectors of a matrix A ∈
RI×J are denoted by a1, . . . , aJ and a1, . . . , aI , respectively.
Id stands for the d × d identity matrix and δij for the
Kronecker delta. For any pair of vectors u, v ∈ Rd and
weight vector w ∈ Rd+ the weighted scalar product of u
and v is defined by 〈u, v〉w :=

∑d
i=1 wiuivi. The weighted

norm is denoted by ‖u‖w := 〈u, u〉1/2w . For any pair of
matrices U, V ∈ RI×J and weight matrix W ∈ RI×J+ the
weighted Frobenius scalar product of U and V is defined by
〈U, V 〉W :=

∑I
i=1

∑J
j=1 wijuijvij . The weighted Frobenius

norm ‖A‖W of A ∈ RI×J is defined as the square root
of 〈A,A〉W . In case of wij = 1 for all i = 1, . . . , I and
j = 1, . . . , J the Frobenius scalar product and norm are
denoted by 〈·, ·〉F and ‖ · ‖F , respectively. We denote by
A ◦B the entry–wise multiplication (Hadamard product) of
matrices A,B, i.e., (A ◦ B)ij := aijbij for all i and j. For
a matrix A its rank is denoted by rank(A). For matrices
Akl ∈ RI×J , k, l = 1, . . . ,K, denote by mat{Akl, k, l =
1, . . . ,K} the block–matrix of order IK × JK with entries
Akl. The block diagonal matrix of order IK × JK is
denoted by diag{Ak, k = 1, . . . ,K}, where Ak ∈ RI×J ,
k = 1, . . . ,K. Linear mappings between vector spaces of
matrices are denoted by calligraphic capitals (F ,G, . . .). If
G : RI×J → RI×J is a linear mapping then we refer to the

entries of its matrix as G(k, l; i, j). Thus, if B = GA then
bkl =

∑I
i=1

∑J
j=1 G(k, l; i, j)aij for all k and l.

II. WEIGHTED LOW–RANK APPROXIMATION

Let us briefly describe the weighted SVD, or weighted
matrix approximation by cumulative sum of the dyadic (i.e.
rank one) matrices. Let D denote a data (or target) matrix
of I × J order, where I, J ∈ N, with elements dij of its
ith row and jth column. Let us given a corresponding non–
negative weight matrix W ∈ RI×J+ , and a positive integer K
such that K ≤ min{I, J} for the rank of the approximate
matrix. If wij = 1 for all i = 1, . . . , I and j = 1, . . . , J then
we have the so–called unweighted case. We would like to
find matrices U ∈ RI×K and V ∈ RJ×K that minimizes the
weighted Frobenius distance

Q(U, V ) :=
1
2
‖D − UV >‖2W . (1)

Denote the column vectors of U and V by u1, . . . , uK and
v1, . . . , vK , respectively. Thus, in (1), D is approximated
by a rank–K matrix M := UV > =

∑K
k=1 ukv

>
k . Since

any matrix of rank K can be decomposed in such a way,
the weighted rank–K approximation is an unconstrained
problem over pairs of matrices (U, V ) with objective function
(1). The pairs (U, V ) form an (I + J)K–dimensional real
vector space, i.e., the dimension of the parameter space
for optimization problem (1) is (I + J)K. However, this
decomposition is not unique because for any invertable
O ∈ RK×K the pair (UO, V O−1) yields the same approx-
imate matrix like (U, V ), thus Q(U, V ) = Q(UO, V O−1).
These equivalent solutions form a K2–dimensional manifold
suggesting that the proper parameter space has dimension
(I + J −K)K.

Indeed, taking the SVD of the approximate matrix M we
have the following block–matrix representation

M =
[
U1ΣV >1 U1ΣV >2
U2ΣV >1 U2ΣV >2

]
, (2)

where Σ := diag{σ1, . . . , σK} with σi > 0, i = 1, . . . ,K,
singular values of M , and U1, V1 ∈ RK×K , U2 ∈
R(I−K)×K , V2 ∈ R(J−K)×K with U>1 U1 + U>2 U2 = IK
and V >1 V1 + V >2 V2 = IK (see Appendix). Without loss
of generality, taking appropriate permutations of rows and
columns of the data matrix and the approximate matrix, we
may suppose that the matrix M1 := U1ΣV >1 is of rank K.
This implies that U1 and V1 are invertable matrices. Our
parametrization is based on congruence classes of matrices.
Recall that two matrices A,B ∈ RK×K are called congru-
ent provided there exists an invertable matrix P such that
B = PAP>. Clearly this is an equivalence relation. The
complete description of the congruence classes can be found
in [15] by enumerating their representatives. Assume that
M1 is congruent to a representative O with ‖O‖F = 1 by
M1 = POP>. Introduce the matrices Q = U2U

−1
1 P and

R = V2V
−1
1 P . Then the matrix M can be expressed as

M =
[
POP> POR>

QOP> QOR>

]
=
[
P
Q

]
O[P>R>].
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Thus, if we fix O, we might expect that it is possible to
parametrize the neighborhood of M in the space of rank–
K matrices by the triplet (P,Q,R), where P ∈ RK×K ,
Q ∈ R(I−K)×K and R ∈ R(J−K)×K confirming that
the proper parametrization is (I + J − K)K dimensional.
Unfortunately, this is not true in general. If a congruence
class is isolated, i.e., there exists a neighborhood of its
representative which does not contain any representative
of an other congruence class, then this parametrization is
proper. For example, we will see later that if K = 1 then
there are two isolated congruence classes with representatives
O = +1, and O = −1. However, if K > 1 then there
exist connected congruence classes. In two dimensions a
simple example is congruence classes belonging to Oα :=

(2 + 2α2)−1

[
0 1 + α

1− α 0

]
, α ∈ R. Particularly, the

congruence class with representative O0 is one of Sylvester’s
classes of symmetric matrices with eigenvalues +1 and −1,
see Theorem 4.5.8 in [11]. The cases α 6= 0 cover more
general, skew–symmetric congruent classes. Thus, in these
cases we need extra parameters for representatives resulting
overparametrization on the surface. However, in connected
congruence classes the degrees of freedom in parameter P

decrease. For example, if Pγ :=
[
γp1 γ−1p2

γp3 γ−1p4

]
, γ 6= 0, then

PγOαPγ = P1OαP1 for all γ 6= 0 and α ∈ R, hence the
proper dimension of parameter P is 3, i.e., we have again a
4–dimensional parametrization for M1. A general approach
to parametrize the set of matrices of rank K is to partition it
into isolated and connected congruence classes and then to
parametrize these open sets by the same way. The result of
this procedure will be a (I + J −K)K dimensional global
parametrization of the set of matrices of rank K. We note
that an other, local parametrization of the set of matrices of
finite rank can be derived by the implicit function theorem.

Equipped with the above parametrization of the matrices
of rank K we may investigate whether the objective function
(1) has a unique minimum or not. Unfortunately, unlike
the unweighted case where there is unique global minimum
provided the singular values of M are different, (1) might
have more local minima. For example, in case of rank–

one approximation of D =
[
1 1.1
1 −1

]
with weight matrix

W =
[
1 + α 1

1 1 + α

]
, α ≥ 0, for large α a non–global

local minimum appears, see [18].

III. STOCHASTIC MODELS

The low–rank approximation (1) has the following refor-
mulation to obtain a stochastic problem. Suppose that the
data matrix D can be decomposed to the sum of low–rank
signal matrix and, in general, full–rank noise matrix in the
following way

D = UV > + E, (3)

where U ∈ RI×K , V ∈ RJ×K , and E = (εij) is a random
matrix of I×J order. In the sequel, we assume that εij’s are
mutually independent normally distributed random variables

with mean zero and known variances w−1
ij , where wij > 0,

for all i = 1, . . . , I and j = 1, . . . , J . The model (3) will
be called heteroscedastic low–rank approximation problem.
The assumptions of the model imply that the likelihood of
the data can be written as an exponential of a quadratic form.
Namely, the loglikelihood ` can be expressed by a weighted
sum of squares in the form

`(U, V ) ∝ −Q(U, V ), (4)

where Q is defined in (1). We therefore see that maximizing
likelihood is equivalent, as far as the error variances are
known, to minimizing the weighted sum of squares defined
in (1) solving a weighted low–rank approximation prob-
lem. There are at least two reasons to consider weighted
approximation problems allowing the noise variance to be
heteroscedastic. On the one hand, we would like to express
our differing uncertainty over the signal value of each data
entry by the error variance σ2

ij := w−1
ij . On the other hand,

we may have external knowledge derived from experts on the
precision or realibility of data entries. Thus, the weight wij
is referred as the precision of the data entry dij at ith row
and jth column. The matrix W := (wij) is called precision
matrix.

Another way to derive a model which leads to the het-
eroscedastic probabilistic model (3) is to consider a ho-
moscedastic low–rank approximation problem under longitu-
dinal study. Let us assume that we have multiple observations
d`ij , ` = 1, . . . , nij (nij ∈ Z+) in each cell (i, j), where
i = 1, . . . , I , j = 1, . . . , J , which satisfy the probabilistic
model

d`ij =
K∑
k=1

uikvjk + ε`ij , (5)

where U = (uik) and V = (vjk) are parameter matrices
of I × K and J × K order, respectively, and ε`ij are
mutually independent normally distributed random variables
with mean zero and variance σ2. Then, introducing D =
(dij) with dij := n−1

ij

∑nij

`=1 d
`
ij and E = (εij) with εij :=

n−1
ij

∑nij

`=1 ε
`
ij , we have

D = UV > + E. (6)

This model is a particular case of model (3) since Var(εij) =
σ2/nij . The weight matrix for model (6) is given by W :=
(nij/σ2).

In certain situations we might consider non–negative
integer–valued data matrix which comes from independent
Bernoulli experiments possessing similar arrangement to the
previous longitudinal study. Denote by Be(p) the Bernoulli
probability distribution with mean p ∈ [0, 1], i.e., we write
ξ ∼ Be(p) for a random variable ξ if P(ξ = 1) = 1−P(ξ =
0) = p. Assume that the data d`ij , ` = 1, . . . , nij (nij ∈ Z+),
i = 1, . . . , I and j = 1, . . . , J , satisfy

d`ij ∼ Be(g(aij)) with A = (aij) = UV >,

where g is the logistic function defined by g(a) := (1 +
exp(−a))−1, a ∈ R, U and V are parameter matrices of
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I×K and J×K order, respectively. Let us introduce the data
matrix D = (dij), where dij :=

∑nij

`=1 d
`
ij . Then D ∈ ZI×J+ ,

dij’s are mutually independent, and they have binomial
distribution with parameters nij and g(aij), i = 1, . . . , I and
j = 1, . . . , J . We will refer to this model in the following
way

D ∼ Bi(N, g(UV >)), (7)

where N := (nij), the function g acts on a matrix A entry–
wise, i.e., g(A) := (g(aij)), and Bi(N,P ) := (Bi(nij , pij))
for N ∈ ZI×J+ , P ∈ [0, 1]I×J , where the entries are
mutually independent. The parameter (U, V ) is estimated by
the maximum likelihood method. For the loglikelihood we
have

`(A) = 〈D,A〉F − 〈N, ln(1 + expA)〉F , (8)

where expA := (eaij ). If we define d̃`ij := 2d`ij −1 then we
obtain that

`(A) = −
I∑
i=1

J∑
j=1

nij∑
`=1

ln
(

1 + exp
(
−d̃`ijaij

))
,

where the sum after the negative sign is the so–called logistic
loss. Thus, maximizing the loglikelihood is equivalent to
minimizing the logistic loss. The logistic low–rank approxi-
mation problem is to maximize the objective function `(A)
subject to the low–rank constraint rank(A) = K. Like for
the heteroscedastic low–rank approximation problem (3) the
decomposition UV > of A is not unique. However, taking the
SVD of this matrix we have unique decomposition and thus
parametrization for model (7) provided the singular values of
A are distinct. In general, we will refer to the optimization
of the objective function `(UΣV >) subject to U ∈ RI×K ,
V ∈ RJ×K are orthogonal matrices and Σ ∈ RK×K+ is a
diagonal matrix as the K-th order logistic singular valued
decomposition (LSVD) of pair (D,N).

In fact, the models (3) and (7) are particular cases of
the following general stochastic low–rank approximation
problem. Let f(·|θ), θ ∈ R, be a known family of gen-
eralized probability density functions with respect to a σ–
finite measure µ over a probability space. Let us given a
set of mutually independent observations d`ij which have
generalized probability density functions f(·|θij) for all ` =
1, . . . , nij (nij ∈ Z+), i = 1, . . . , I and j = 1, . . . , J .
We suppose that the parameter matrix Θ := (θij) satisfies
a low–rank condition. Then the stochastic low–rank matrix
approximation problem is to estimate Θ based on the data
d`ij’s.

IV. ASYMPTOTIC INFERENCE

The partial derivatives of the loglikelihood (4) become,
denoting by ◦ the entry–wise multiplication,

∂`

∂U
= (W ◦ (D − UV >))V,

∂`

∂V
= (W> ◦ (D> − V U>))U.

(9)

The partial derivatives should vanish at the maximum like-
lihood estimator (Û , V̂ ) of the model (3), i.e.

∇` :=
(
∂`

∂U
,
∂`

∂V

)
= 0, (10)

which is bilinear in U and V . Due to the nonlinear nature
of this estimating equation numerical optimization methods
are needed to find its solution. A few of them are described
in the next two sections.

The Fisher information in this case will be a linear map-
ping on R(I+J)×K . Its matrix representation in the standard
basis is given as a block matrix

F(U, V ) =
[
FUU FUV
FV U FV V

]
,

where FUU is a linear mapping on RI×K with the following
matrix in the standard basis

FUU (i, k;m, l) := E

(
∂`

∂uik

∂`

∂uml

)
,

i,m = 1, . . . , I , k, l = 1, . . . ,K, and the matrices FUV ,
FV U and FV V are defined similarly. For a pair (A,B),
where A ∈ RI×K and B ∈ RJ×K , the image F(A,B)
of (A,B) is the pair (FUUA + FUVB,FV UA + FV VB).
We derive explicit formula for Fisher information expressing
it by U , V and W . Introduce the matrices

Ukl = diag{〈uk, ul〉wj
, j = 1, . . . , J},

Vkl = diag{〈vk, vl〉wi , i = 1, . . . , I},

for all k, l = 1, . . . ,K. Then we have, for the proof see the
Appendix, that

FUU = mat{Vkl, k, l = 1, . . . ,K},
FV V = mat{Ukl, k, l = 1, . . . ,K}.

(11)

Moreover

FUV = mat>{W ◦ (ukv>l ), k, l = 1, . . . ,K},
FV U = mat{W> ◦ (vku>l ), k, l = 1, . . . ,K},

(12)

where mat> denotes the block–transpose. It is well–known
that the Fisher information is positive semi–definit. However,
since the model is overparametrized it is not positive definit
and hence it is not invertable. In the next lemma we charac-
terize the null space of the Fisher information, for the proof
see the Appendix.

Lemma 1: Suppose that the matrices U and V are of full
rank K and the weight matrix W is strictly positive. Then
the null space of the Fisher information F(U, V ) is the K2–
dimensional subspace

ker(F(U, V )) =
{

(UR,−V R>) |R ∈ RK×K
}
. (13)

Recall that if an estimator (Û , V̂ ) is a solution of the
likelihood equation (10) then it is called M–estimator. The
covariance matrix of an M–estimator (Û , V̂ ) is also singular
since its distribution is concentrated on a lower dimensional
subspace. In order to investigate the asymptotic behaviour of
M–estimators of model (3) we have to consider a sequence
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of these models with same parameter (U, V ) under appro-
priate sequence of error matrices. Since by Lemma 1 the
Fisher information matrix is singular we could not expect
that an M–estimator (Û , V̂ ) converges weakly to a non–
degenerated distribution under any normalization. However,
if we consider a proper parametrization, e.g., the parametriza-
tion introduced in Section II, then the following asymptotic
result holds.

Theorem 1: Suppose that the sequence of data matrices
Dn, n ∈ N, satisfies the model (3) with parameter (U, V )
and precision matrices Wn, n ∈ N, such that n−1Wn →W
as n→∞, where W is a strictly positive matrix. Moreover,
let consider a proper parametrization θ ∈ R(I+J−K)K of the
model. If θ̂n is a maximum likelihood estimator of θ based
on Dn for all n ∈ N, then the sequence

√
n(θ̂n − θ), n ∈

N, is asymptotically normal with mean zero and covariance
matrix F−1(θ), where F(θ) is the positive definit Fisher
information matrix at θ.

The proof is based on the general results of Section 5.5.
in [22]. One can easily check that model (5) satisfies the
condition of Theorem 1 provided nij/n → wij > 0 for all
i = 1, . . . , I and j = 1, . . . , J as n → ∞. We conjecture
that similar result holds for the logistic low–rank model (7).

In practice, we are interested in the entries of the ap-
proximate matrix M but not the parameter θ itself. The
entries of M depend on the parameter θ by a differ-
entiable function hence their asymptotical behaviour can
be described by the delta method. More general, if g :
R(I+J−K)K → RL is a differentiable function at θ, where
L ∈ N, then the sequence

√
n(g(θ̂n) − g(θ)), n ∈ N,

is asymptotically normal with mean zero and covariance
matrix g′(θ)F−1(θ)(g′(θ))>, see Theorem 3.1 in [22]. It
is hard to handle the proper parametrization and to deduce
explicit formula for Fisher information matrix. Hence we
revert to the original parametrization given by the pair
(U, V ). One can see that there exists a differentiable func-
tion h : R(I+J)K → RL such that h(U, V ) = g(θ) if
M(θ) = UV >. Then the asymptotic covariance matrix of
h(Ûn, V̂n) = g(θ̂n), n ∈ N, can be expressed by the Moore–
Penrose inverse of the Fisher information F(U, V ) in the
form h′(U, V )F−(U, V )(h′(U, V ))>.

V. WEIGHTED DYADIC APPROXIMATION

In this section we consider the rank–one case. Suppose
that the data matrix D satisfies the stochastic model

D = uv> + E, (14)

where u ∈ RI and v ∈ RJ are parameter vectors, and the
entries εij of the error matrix E are mutually independent
normally distributed random variables with mean zero and
precision wij for all i = 1, . . . , I and j = 1, . . . , J . As
we mentioned in Section II this model is not identifiable
since αu and α−1v is an equivalent parametrization for all
α 6= 0. A proper parametrization can be derived in the
following way. Without loss of generality we may suppose
that u1v1 6= 0. Let o := (u1v1)/|u1v1|, α := (|u1v1|)1/2,

ũ := oα−1v1(u2, . . . , ur)> and ṽ := oα−1u1(v2, . . . , vr)>.
Then we have

uv> = o

[
α
ũ

]
[α ṽ]

and ϑ := (α, ũ>, ṽ>)> is a I + J − 1 dimensional
parametrization. Clearly, the two congruence classes in the
set of dyads are given according to the value of o, which
is +1 or −1. However, in this proper parametrization the
data matrix depends quadratically in α that is hard to handle.
Hence we will use the original bilinear parametrization (u, v)
inspite of its redundancy.

The loglikelihood of the model (14) is given by `(u, v) ∝
−Q(u, v), where Q is defined in (1). For a parameter (u, v)
let us define the estimated error matrix by

Ê(u, v) := D − uv>. (15)

By (9), for the partial derivatives of ` we have

∂`

∂u
= (W ◦ Ê(u, v))v = (W ◦D)v −R(v)u,

∂`

∂v
= (W ◦ Ê(u, v))>u = (W ◦D)>u− C(u)v,

where C(u) = diag{〈u, u〉wj
, j = 1, . . . , J} and R(v) =

diag{〈v, v〉wi , i = 1, . . . , I}. The stationary points of ` can
be derived by solution of the equation ∇` = 0, where the
gradient is defined by ∇` := ( ∂`∂u ,

∂`
∂v ). We have

R(v)u = (W ◦D)v,

C(u)v = (W ◦D)>u.

One of the possible way to solve these nonlinear equations is
the criss–cross regression or the method of nonlinear iterative
partial least squares (NIPALS) suggested in [23]. We iterate
the following steps: fixing v we solve the first linear equation
onto u, then we do same for v in the second equation by
fixing u.

The Fisher information in this case can be expressed as a
block matrix of (I + J)× (I + J) order

F(u, v) =
[

R(v) W ◦ (uv>)
W> ◦ (vu>) C(u)

]
.

By Lemma 1 the null space of this matrix is the one–
dimensional subspace generated by the vector (u,−v) ∈
RI+J . The range of the Fisher information matrix is the
I + J − 1–dimensional subspace R(u, v) := {(x, y)|x ∈
RI , y ∈ RJ : u>x = v>y}. The second order partial
derivatives of ` are given by ∂2`

∂u∂u>
= −R(v), ∂2`

∂v∂v>
=

−C(u), and ∂2`
∂u∂v>

= W ◦D−2W ◦(uv>). Then the Hessian
of the loglikelihood ` can be written as

H(u, v) = −F(u, v) + E(u, v), (16)

where

E(u, v) :=

[
0 W ◦ Ê(u, v)

W> ◦ Ê>(u, v) 0

]
.
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Considering a Taylor series expansion around (u, v), we have
for all x ∈ RI and y ∈ RJ

`(u+ x,v + y) = `(u, v) +∇`>(u, v)
[
x
y

]
+

1
2

[x> y>]H(u+ αx, v + αy)
[
x
y

]
where α ∈ (0, 1). We suggest a trust–region method,
see Chapter 4 in [16], for numerical optimization of the
loglikelihood. Trust–region methods define a region around
the current iterate within which the model is an adequate
approximation of the objective function. We may assume that
the second part of the Hessian in (16) is negligible and define
the quadratic model function m for approximating ` around
(u, v) as

m(x, y) = `(u, v)+∇`>(u, v)
[
x
y

]
− 1

2
[x> y>]F(u, v)

[
x
y

]
.

Since

∇`>(u, v)
[
u
−v

]
= [u>v>]E(u, v)

[
u
−v

]
= 0

and the vector (u,−v) belongs to the null space of F(u, v)
we may restrict the increment vector at an iteration onto
the subspace R(u, v). Thus, the model function m is a good
approximation of ` around (u, v) in the trust–region R(u, v).
The minimum of m is given as the solution of the linear
equation

F(u, v)
[
x
y

]
= ∇`(u, v) (17)

whose matrix is singular by Lemma 1. We can solve this
equation by applying Schur complements. Define the Schur
complements of the Fisher information in the following way

SR(u, v) := R(v)− (W ◦ (uv>))C−1(u)(W> ◦ (vu>)),

SC(u, v) := C(u)− (W> ◦ (vu>))R−1(v)(W ◦ (uv>)).

We have the following lemma for Schur complements.

Lemma 2: The Schur complements SR(u, v) and
SC(u, v) are positive semidefinite and their null space are
generated by u and v, respectively.

By the block structure of Fisher information and gradient
(17) consists of two linear equations for the increments x and
y. After expressing y by the second equation and substituting
into the first equation we obtain that x is given by the solution
of the linear equation

SR(u, v)x =(W ◦ Ê(u, v))v − (W ◦ (uv>))×
C−1(u)(W> ◦ Ê>(u, v))u.

(18)

Then y can be expressed as the following function of x

y = C−1(u)
(

(W> ◦ Ê>(u, v))u− (W> ◦ (vu>))x
)
.

Since, by Lemma 2, the equation (18) is singular we have
to eliminate this singularity by Gram–Schmidt orthonor-
malization. By the Gram–Schmidt process we may find an
ortogonal matrix Ou ∈ RI×I whose first column is the unit

vector u/‖u‖. Let us denote the matrix (0, II−1) of order
(I − 1) × I by J and introduce the vector x̃ := JOux and
the matrix S̃R(u, v) := JOuSR(u, v)O>u J

>. Then x̃ fulfills
the equation

S̃R(u, v)x̃ = JOu
(
W ◦ Ê(u, v))v − (W ◦ (uv>))×
C−1(u)(W> ◦ Ê>(u, v))u

)
.

(19)

Since S̃R(u, v) is a symmetric positive definite matrix this
equation has a unique solution, and we can solve it by the
Cholesky decomposition of S̃R(u, v). Then x is given by
x = O>u J

>x̃. From the point of view of the computational
cost this order for solving equation (17) is prefered when
I ≤ J else we propose to solve (17) first in y by using
Schur complement SC(u, v).

Summarizing, the weighted rank–one approximation algo-
rithm by Fisher scoring is provided below.

ALGORITHM A: Weighted rank–one approximation
INPUT: Data matrix D, weight matrix W .
1. Choose an initial setting for u and v.
REPEAT

2. Evaluate the error matrix Ê(u, v) by (15).
3. Evaluate the diagonal matrices C(u) and R(v).
4. Evaluate the Schur complement SR(u, v).
5. Orthogonalize (u, II) to obtain Ou.
6. Solve (19) by Cholesky decomposition of S̃R(u, v).
7. Compute x and y.
8. Update: let u = u+ x and v = v + y.

UNTIL the convergence criterion is satisfied.
OUTPUT: Rank–one matrix uv>.

VI. LOW–RANK APPROXIMATION ALGORITHMS

In this section we consider the general low–rank case. It
is still possible to obtain satisfying low–rank approximation
by means of stepwise dyadic residual fitting or successive
dyadic fits, see [10], e.g., using our Algorithm A recursively
or several times. However, we propose a new algorithm
which takes into account the matricial nature of parameters
U and V .

The algorithm is based on the quadratic model function
M defined by

M(X,Y ) =`(U, V ) +
〈
∇`(U, V ),

[
X
Y

]〉
F

−
〈

1
2

[
X
Y

]
,F(U, V )

[
X
Y

]〉
F

,

which is a satisfying approximation of ` around (U, V ) pro-
vided the increment (X,Y ) ⊥ ker(F(U, V )). The minimum
of M is given as the solution of the linear equation

F(U, V )
[
X
Y

]
=

[
(W ◦ Ê(U, V ))V

(W ◦ Ê(U, V ))>U

]
, (20)

where the error matrix is defined by Ê(U, V ) := D−UV >.
One can solve this linear equation by taking the Schur com-
plement S(U, V ) := FUU −FUV F−1

V V FV U and introducing

M. Ispány et al. • Approximation of Non-Negative Integer-Valued Matrices with Application to Hungarian Mortality Data 

836



its non–singular transform S̃ similarly to the preceding sec-
tion. Thus, the weighted low–rank approximation algorithm
based on the Fisher scoring is the following.

ALGORITHM B: Weighted low–rank approximation with
INPUT: Data matrix D, weight matrix W , rank K.
1. Choose an initial setting for U and V .
REPEAT

2. Evaluate the error matrix Ê(U, V ).
3. Evaluate the diagonal block matrices FUU and FV V .
4. Evaluate the Schur complement S(U, V ).
5. Orthogonalize (X, IIK) in the Frobenius norm.
6. Solve (20) by Cholesky decomposition of S̃(u, v).
7. Compute X and Y .
8. Update: let U = U +X and V = V + Y .

UNTIL the convergence criterion is satisfied.
OUTPUT: Rank–K matrix UV >.

Finally, we move on to the logistic low–rank approxi-
mation problem. Consider again the Taylor expansion of `
defined by (8) up to second order. We have that the quadratic
model function

Q(A) :=
1
2

∥∥A− (UV > +W ◦−1(D −N ◦ P ))
∥∥2

W

is a good approximation of the negative loglikelihood around
UV >, where P = P (U, V ) := g(UV >), the weight matrix
W := N ◦P ◦(E−P ) with E = (1ij), and W ◦−1 := (w−1

ij ).
We may formulate an EM algorithm for solving the logistic
low–rank approximation problem as follows.

ALGORITHM C: Logistic low–rank approximation
INPUT: Data matrices D,N , rank K.
1. Choose an initial setting for U and V .
REPEAT

E step. Compute P (U, V ) and W (U, V ).
M step. Solve the weighted low–rank problem Q(UV >).

UNTIL the convergence criterion is satisfied.
OUTPUT: Rank–K matrix UV >.

At the M step the Algorithm B is used. If we take
the SVD of the output UV > then we obtain the logistic
SVD of the pair (D,N). Thus, we may refer to Algorithm
C as iteratively reweighted singular valued decomposition
(IRSVD).

VII. APPLICATION TO HUNGARIAN MORTALITY
DATA

For mortality tables nij and dij denote the total number
of individuals at the beginning of the year and the number
of deaths in the year, respectively, at age i in year j. (I is
the maximal age and J denotes the number of years.) For
Hungarian mortality data the observed period is 1949-2008,
i.e. I = 60, and J = 101 supplied by the Hungarian Central
Statistical Office. Having looked at the singular values given
by the standard SVD it turned out that the best candidate
for the low rank is K = 2. Figure 1 plots the Hungarian
mortality data for women (left) and shows the mortality
estimation (right) derived by logistic rank–2 approximation.
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Fig. 1. Hungarian mortality data (left), estimated (right)

VIII. APPENDIX

Proof of block–matrix representation (2). The matrix M
has SVD in the form M = UΣV > with orthogonal matrices
U ∈ RI×I , V ∈ RJ×J and diagonal matrix Σ ∈ RI×J ,
see Theorem 4.1 in [21]. Since rank(M) = K we have
rank(Σ) = K, i.e., Σ = diag{σ1, . . . , σK , 0, . . . , 0} with
σi > 0 for all i = 1, . . . ,K. Consider the block–matrix
representation of U and V :

U =
[
U1 U2

U3 U4

]
, V =

[
V1 V2

V3 V4

]
,

where U1, V1 ∈ RK×K . Then, by the orthogonality of U and
V , we have U>1 U1 +U>2 U2 = IK and V >1 V1 +V >2 V2 = IK ,
and (2) follows by matrix multiplication.

Proof of formula (11). By (3) and (9) we have ∂`
∂U =

(W ◦ E)V , i.e., ∂`
∂uik

=
∑J
j=1 wijεijvjk. Hence

FUU (i, k;m, l) = E

 J∑
j=1

wijεijvjk

J∑
n=1

wmnεmnvnl


=

J∑
j,n

wijwmnvjkvnlE(εijεmn)

= δim

J∑
j=1

wijvjkvjl = δim〈vk, vl〉wi

for all i,m = 1, . . . , I , k, l = 1, . . . ,K. The proof is same
for FV V . To prove (12) we note that

FUV (i, k;n, l) = E

 J∑
j=1

wijεijvjk

I∑
m=1

wmnεmnuml


=

I∑
m=1

J∑
j=1

wijwmnvjkumlE(εijεmn) = winuilvnk.

Proof of Lemma 1. For any pair (A,B), where A ∈ RI×K
and B ∈ RJ×K , we have

〈(A,B),F(A,B)〉F =〈A,FUUA〉F + 2〈A,FUVB〉F
+ 〈B,FV VB〉F .
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By definition of the Frobenius norm we have

〈A,FUUA〉F =
I∑

i,m=1

K∑
k,l=1

FUU (i, k;m, l)aikaml

=
I∑

i,m=1

K∑
k,l=1

δim

J∑
j=1

wijvjkvjlaikaml

=
I∑
i=1

J∑
j=1

wij

(
K∑
k=1

vjkaik

)2

=
I∑
i=1

J∑
j=1

wij〈vj , ai〉.

Similarly, we have

〈B,FV VB〉F =
I∑
i=1

J∑
j=1

wij〈ui, bj〉,

〈A,FUVB〉F =
I∑
i=1

J∑
j=1

wij〈ui, bj〉〈vj , ai〉.

Thus

〈(A,B),F(A,B)〉F =
I∑
i=1

J∑
j=1

wij
(
〈ui, bj〉+ 〈vj , ai〉

)2
.

Since W is strictly positive the right hand side equals to zero
if and only if 〈ui, bj〉+ 〈vj , ai〉 = 0 for all i = 1, . . . , I and
j = 1, . . . , J , i.e.,

UB> +AV > = 0. (21)

It is easy to see that elements of the subspace (13) fulfill
the above equation. It remains to show that if a pair (A,B)
satisfies (21) then there exists R ∈ RK×K such that A = UR
and B = −V R>. Taking the SVD of U , since rank(U) = K
there exist matrices S ∈ RI×K and T,Σ ∈ RK×K such that
S>S = IK , TT> = T>T = IK and Σ = diag{σ1, . . . , σK}
with σk > 0 for all k = 1, . . . ,K such that U = SΣT>. By
(21) we have B = −V A>SΣ−1T>, i.e., the matrix B can
be expressed in the form −V R>, where R := TΣ−1S>A.
Finally, suppose that B = −V R> with a matrix R ∈ RK×K .
Then, by (21), (A − UR)V > = 0 which implies A = UR
since rank(V ) = K. This completes the proof.

Proof of Lemma 2. We prove the lemma for the Schur
complement SR(u, v). For all u, x ∈ RI the Cauchy–
Schwarz inequality states(

I∑
i=1

wijuixi

)2

≤
I∑
i=1

wiju
2
i

I∑
i=1

wijx
2
i .

Thus, we have

x>R(v)x =
I∑
i=1

J∑
j=1

wijx
2
i v

2
j ≥

J∑
j=1

v2
j

(∑I
i=1 wijuixi

)2

∑I
i=1 wiju

2
i

,

where the right hand side is equal to x>(W ◦
(uv>))C−1(u)(W> ◦(vu>))x. Hence x>SR(u, v)x ≥ 0 for

all x ∈ RI and x>SR(u, v)x = 0 if and only if there exists
α ∈ R such that x = αu. Thus, ker(SR(u, v)) = {αu : α ∈
R}.
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