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Abstract— This paper considers the multi-scale optimal con-
trol of the Czochralski crystal growth process. The temperature
distribution of the crystal is realized by heat input at the
boundary and by the force applied to the mechanical subsystem
drawing the crystal from a melt. A parabolic partial differential
equation (PDE) model describing the temperature distribution
of the crystal is developed from first-principles continuum
mechanics to preserve the time-varying spatial domain dynam-
ical features. The evolution of the temperature distribution is
coupled to the pulling actuator finite-dimensional subsystem
with dynamics modelled as a second order ordinary differential
equation (ODE) for rigid body mechanics. The PDE time-
varying spatial operator with natural boundary conditions is
characterized as a Riesz-spectral operator in the L2(0, l(t))
functional space setting. The finite and infinite-time horizon
optimal control law for the infinite-dimensional system is
obtained as a solution to a time-dependent and time-invariant
differential Riccati equation.

I. INTRODUCTION
The optimal control of transport-reaction processes has

many industrial applications such as tubular reactors with ax-
ial dispersion, metal casting and crystal growth where it is of
interest to maintain the temperature or concentration profile
of a material within the specified processing requirements.
The treatment of the material during its processing regime
causes a change in shape, state or other material property as
a part of the desired manufacturing result, [1]. The validity
of the process model as the basis for controller formulation
must account for the transport phenomena arising from the
domain time-evolution. In this paper, the importance of
these phenomena is clearly demonstrated and provides an
enriched theory complementing the existing works on control
of distributed parameter systems, see [2] and [3].

The Czochralski crystal growth process depicted in Fig.1
that is used for the production of semiconductor material is
a prime example of a transport-reaction process with time-
varying domain evolution, see [4]. During the process a
mechanically actuated pulling arm draws a crystal seed from
a melt in a heated furnace resulting in the formation of a
large single ingot as the melt solidifies at the crystal-melt
interface, see [5], [6], [7], [4]. The control objective is the
production of high-purity crystals with specified shape which
depend on the temperature distribution throughout the crystal
domain and the rate at which the ingot is formed by adjusting
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the force applied to the pulling arm and the heat applied at
the boundary of the crystal. Several works consider control
of Czochralski crystal growth and control of time-varying
domain parabolic PDEs in which the domain evolution is
pre-specified, see [8], [9]. In similar works, the optimal
control realization of the process is considered using multi-
scale models given by parabolic PDEs with time varying
boundaries coupled to finite-dimensional subsystems, see
[10] and [11].

This paper is organized to provide a concise formulation
of a complete control problem starting from Section 2
where the transport-reaction process model is derived from
principles of continuum mechanics to include the boundary
domain time evolution. In Section 3, the analysis of the time
dependent-spatial operator of the derived PDE is studied in
the functional space context of infinite-dimensional state-
space linear system theory to demonstrate that the time-
varying spatial operator is a Riesz-spectral operator. Finally,
utilization of the Riesz-spectral operator properties leads to
the optimal control synthesis for the coupled problem of
finite dimensional optimal regulation of the domain’s bound-
ary evolution and optimal infinite dimensional temperature
regulation problem.
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Fig. 1. A simple process diagram of a crystal slab being drawn from a melt
(shaded area) in the direction ξ1. The boundary l(t) is moving with velocity
w(t) in respect to the scalar property f(ξ) represents the temperature of the
slab at a given point. At the ξ1 = 0 boundary, there is zero flux boundary
condition across the slab and pulling mechanism. At the ξ = l(t) boundary,
there is zero flux boundary condition across the interface (dashed lines),
between the slab and the melt.
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II. PRELIMINARIES

A. Configuration space setting

Let us consider the following configuration space setting
in the development of the parabolic PDE for the time-
dependent spatial domain. Consider the manifold R3 where
the physical space region is defined as the open set Ω ⊂
R3 with material points, ξ̂ = (ξ̂1, ξ̂2, ξ̂3), containing an
arbitrary time dependent, moving subregion that is the open
set U(t0, tf ) ⊂ Ω with volume element dv and spatial points
ξ = (ξ1, ξ2, ξ3). The surface of U(t0, tf ) is the piecewise C1

boundary ∂U(t0, tf ) and consists of the element ds.
The spatial velocity field w(ξ, t) describes the regular

motion of the boundary ∂U(t0, tf ) where w is the continuous
and invertible mapping w : Ψt(Ω) → R3, such that
U(t0, tf ) = Ψt(U0) is the region at time t in the interval
[t0, tf ] relative to its initial configuration at t0. Then the
set U(t0, tf ) preserves the one-to-one mapping Ψt : U →
U ⊂ R3. The motion is presumed to be regular, that is
the boundary ∂U(t0, tf ) remains intact such that U(t0, tf )
is not divided or penetrated. The relationship between the
spatial points ξ ∈ U(t0, tf ) and material points ξ̂ ∈ Ω is the
mapping ξ = Ψt(ξ̂).

B. Model formulation

Considering the physical region in the configuration space
settings facilitates the use of the Reynolds Transport Theo-
rem, see [12], [13]. In particular one can consider the scalar
physical quantity of temperature defined f = f(ξ, t) as a C1

function on ∂U(t0, tf ) and also bounded on U(t0, tf ). By the
Transport theorem, the rate of change of f with respect to
time in U(t0, tf ) is expressed as:

ρCp
d

dt

∫
U(t0,tf )

fdv = ρCp

∫
U(t0,tf )

(
∂f

∂t
+∇ · (fw)

)
dv

(1)
where ρ and Cp respectively denote the physical parameters
of mass density and specific heat capacity that are assumed to
be invariant throughout U(t0, tf ) for all t ∈ [t0, tf ]. The in-
tegration and differentiation operators on f over U(t0, tf ) =
Ψt(U0) may be interchanged since the continuity of Ψt(·)
preserves the structure of the domain for all ξ ∈ U(t0, tf )
and t ∈ [t0, tf ], see [12].

Internal reactionary sources of the U(t0, tf ) are denoted
ĥf(ξ, t) and heat flux across ds in the direction opposite to
the outward normal component n of ds is given as g(ξ, t) =
−κ∇f(ξ, t), where κ is the thermal conductivity constant.
The integral form of the Conservation Law provides the total
heat balance in the control volume U(t0, tf ) as,

ρCp
d

dt

∫
U(t0,tf )

fdv =
∫

U(t0,tf )

ĥfdv −
∫

∂U(t0,tf )

g ·nds (2)

Substitution by Eq.1 for the time rate of change in f and
invoking the divergence theorem relates the heat flux across
∂U(t0, tf ) to the integral of f over U(t0, tf ). The assumption
of continuity throughout U(t0, tf ) for all t ∈ [t0, tf ] allows

for the material form of the heat balance in U(t0, tf ) to be
determined from Eq.2 as, see [12]:

ρCp
∂f

∂t
= ∇ · (κ∇f)− ρCp∇ · (fw) + ĥf (3)

The contribution of the transport term term ρCp∇ · (fw)
distinguishes Eq.3 from the conventional material derivative
expression for the transport of a scalar property, see [13].
Expansion of this transport term gives:

∇ · (fw) = f∇ · w + w · ∇f (4)

One notices this transport phenomenon arises from the
motion of the boundary, ∂U(t0, tf ), along the spatial velocity
field, w, which determines the configurations of U(t0, tf ) and
subsequently vanishes when ∂U(t0, tf ) is the constant. The
assumption of density invariance implies incompressibility
of U(t0, tf ) such that the divergence of the velocity field
vanishes, i.e. ∇ · w = 0. The velocity field w(ξ, t) =
∂Ψt(ξ̂, t)/∂t = dξ/dt provides the relation among the
spatial and material coordinates ξ̂ ∈ Ω to ξ ∈ U(t0, tf )
so that contribution of the moving boundary to the scalar
quantity, f , is obtained as:

w · ∇f =
dξi
dt

∂f

∂ξi
, i = {1, 2, 3} (5)

The term in Eq.5 can be viewed as the type of convective
transport due to the motion of U(t0, tf ). From Eqs.3-4-5,
we obtain the expression for the heat equation for the region
U(t0, tf ) with moving boundary, ∂U(t0, tf ), as follows:

cρ
∂f

∂t
= ∇ · (κ∇f)− cρ(w · ∇f) + ĥf (6)

In the case when the domain becomes constant, Eq.6 leads
to the well known expression of the reaction diffusion
parabolic PDE with time invariant domain. The general form
of the boundary conditions imposed upon Eq.6 for prescribed
functions α, β and u on ∂U(t0, tf ) is expressed as:

αf + β
∂f

∂n

∣∣∣∣∣
∂U(t0,t)

= u (7)

where ∂f/∂n is the outward normal component to
∂U(t0, tf ). The boundary conditions of Eq.7 relate to the
temperature, f , on the boundary of the region and the flux
of f through ∂U(t0, tf ).

Consider the process depicted in Fig.1 in the ξ = ξ1
direction. The manifold in Euclidean space is the open set
Ω ⊂ R such that Ω is a topological space with mapping
Ψt : R→ R with material points ξ ∈ (0, l(t)), see [14]. The
dynamics of the transport process are given by the 1D-PDE:

∂f

∂t
= k

∂2f

dξ2
− w(t)

∂f

dξ
+ hf + F (ξ, t) (8)

where k = κ
Cpρ

is the diffusivity constant, w(t) = d l(t)
dt is the

boundary velocity, h = ĥ
Cpρ

and F (ξ, t) is the heating source
term applied over the domain. The boundary conditions for
this process model are given as, see [2]:

df

dξ
(0, t) = 0 =

df

dξ
(l, t) (9)
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III. PROPERTIES OF TIME-VARYING SPATIAL OPERATOR

A. Functional space setting

The discussion of Riesz-spectral and infinite-dimensional
linear system theory requires the following basic results
from the functional analysis. Consider the set of measurable,
square integrable functions x ∈ H, i.e. for [a, b] ⊂ R, we
have

∫ b
a
|x|2dξ < ∞, with x belonging to the equivalence

class [x] where [x] = x almost everywhere, i.e. which differ
only on a set of measure zero in [a, b]. H is a normed
linear space with norm given by ‖x‖ as one can show that
[x] forms a linear vector space satisfying ‖[x]‖ := ‖x̂‖
for any x̂ ∈ [x]. Further, H is a Hilbert space denoted
as L2(a, b) for any given two square integrable functions,
x, y ∈ H, each belonging to their respective equivalence
classes, with inner product space 〈·, ·〉 and assuming that
the metric d(x, y) = ‖x − y‖ is complete, see [14]. The
time-varying nature of model dynamics Eqs.8-9, requires
satisfaction of the aforementioned topological properties on
space H at each time instance. i.e, given two functions
{x(ξ, t), y(ξ, t)} ∈ L2(0, l(t)) the inner product is given
as 〈x, y〉L2(0,l), for t ∈ [t0, tf ]. Therefore, for the time-
varying operator, one must consider a family of Hilbert
spaces equipped with a family of inner products.

The analysis of the PDE system in Eqs.8-9 is carried out
in L2(0, l) where l = l(t) > 0 is the length of the domain
at each time t ∈ [t0, tf ]. The associated time-varying spatial
operator is given in the following definition and considered
with respect to the subsequent proposition.

Definition 1: Consider the operator L defined on the do-
main: D(L) := {f ∈ L2(0, l) : f, dfdξ absolutely continuous,
d2f
dξ2 ∈ L2(0, l), and df

dξ (0) = 0, dfdξ (l) = 0}, where 0 < l <
∞. For f ∈ D(L), we define L as the operator:

Lf = k
d2f

dξ2
− wdf

dξ
+ hf (10)

where w := {ξ = l |w(t) : (l, t0) 7→ (l, tf ), 0 ≤ t0 <
tf < ∞}, is the velocity of the domain’s boundary for all
t ∈ [t0, tf ], and k ∈ R is constant.

The adjoint operator L∗ and associated boundary condi-
tions are obtained heuristically from 〈Lφ, ψ〉 = 〈φ,L∗ψ〉 as,

L∗f = k
d2f

dξ2
+ w

df

dξ
+ hf (11)

Proposition 1: Consider the operator L defined in Def-
inition 1. If f ∈ L2(0, l) is admissible in D(L) then the
operator L has adjoint L∗ with domain D(L∗) := {f ∈
L2(0, l) : f, dfdξ absolutely continuous, d2f

dξ2 ∈ L2(0, l) and
k dfdξ (l) + wf(l) = 0, k dfdξ (0) + wf(0) = 0}

Proof 1: For functions φ, ψ ∈ L2(0, l), application of the
natural boundary conditions to 〈Lφ, ψ〉 gives:

〈Lφ, ψ〉 = −φ(l)[kψ′(l) + wψ(l)] (12)
+ φ(0)[kψ′(0) + wψ(0)] + 〈φ,L∗ψ〉 (13)

The required adjoint boundary conditions for ψ ∈ D(L∗)
easily follow.

B. Riesz-spectral representation

One can consider the operator L and its adjoint L∗ in
association with the Sturm-Liouville operator S such that for
f ∈ D(S),

Sf =
1
ρ(ξ)

d

dξ

(
−p(ξ)df

dξ

)
+ q(ξ)f (14)

where p(ξ) > 0, ρ(ξ) > 0 and q(ξ) are analytic real valued
functions for ξ ∈ (0, l). In particular, demonstrating the
operator L is the negative of a Sturm-Liouville operator
in Eq.14 defined on D(S) gives that L is a Riesz-spectral
operator and infinitesimal generator of a C0-semigroup of
bounded linear operators on L2(0, l), see [15], [16], [17]. The
features of L with its Sturm-Liouville form, S, are related
in the construction of a normed L2(0, l) space with weight
function ρ(ξ) and inner product,

〈φm, ψn〉ρ =

l(t)∫
0

ρ φm ψndξ = δmn (15)

where {φm, ψn, n ∈ N} are eigenvectors forming a Riesz-
spectral basis of L2(0, l) and S is Hermitian, i.e. 〈Sφ, ψ〉ρ =
〈φ,Sψ〉ρ. By comparing Eq.10 with Eq.14 one easily obtains
that ρ = e−

w
k ξ, p = −ke−w

k ξ, q = h such that L is a
Sturm-Liouville operator of the form in Eq.14. Letting f =
e

w
2k ξv(ξ), the eigenvalue problem Lf = λf is represented

as,

k e
w
k ξ

d

dξ

(
e−

w
k ξ
de

w
2k ξv

dξ

)
+ he

w
2k ξv = λe

w
2k ξv (16)

Application of the boundary condition in Definition 1 yields
the countably infinite set of eigenvalues,

λ0 = − 1
2k
w2

2
+ h, n = 0 (17)

λn = −k
(
nπ

l(t)

)2

− 1
2k
w2

2
+ h n ≥ 1 (18)

From the Eq.18 one can show that for,∣∣∣∣k( nπl(t)
)2

+
w2

4k

∣∣∣∣ > |h| (19)

the eigenvalues are negative, moreover, for all n ≥ 1 the
eigenvalues λn → −∞ as n→ +∞ and |λn+1−λn| → +∞
as n→ +∞, which implies that the spectrum of L, i.e. σ(L),
is:

σ(L) = {λ ∈ R| inf
n≥1
|λ− λn| > 0} ∪ {λ0} (20)

Therefore, {λn, n ∈ N} is totally disconnected. Calculating
the Wronskian determinant W(φn, φm) evaluated at the
boundaries and application of Abel’s Theorem gives that the
eigenvalues {λn, n ∈ N} are simple, see [18].

The corresponding set of eigenvectors, {φn, n ∈ N}, can
be determined as,

φn(ξ) = Bne
w
2k ξ

[
cos
(
nπ

l(t)
ξ

)
− w

2k nπl(t)
sin
(
nπ

l(t)
ξ

)]
(21)

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

1001



and form an orthonormal basis of D(L) given the coefficients
calculated using the orthogonality relation 〈φn, φm〉ρ = δnm,
which yields,

Bn(t) =

√
2
l(t)

1 +

(
w

2k nπl(t)

)2
− 1

2

(22)

The adjoint eigenvectors {ψn, n ∈ N} form an orthonormal
basis of D(L∗) defined in Proposition 1 can be determined
by utilizing the weight function ρ as ψn(ξ) = e−

w
k ξφn(ξ).

Taking the inner product, one gets 〈φm, ψn〉 = δmn such
that {φn, ψn, n ∈ N} are biorthonormal and form a Riesz
basis of L2(0, l). Then every f ∈ L2(0, l) can be represented
uniquely by, see [3],

f =
∞∑
n=1

〈f, ψn〉φn =
∞∑
n=1

cnφn (23)

Denoting the finite sum
∑N
n=1 cnφn, we have,∥∥∥∥f − N∑

n=1

cnφn

∥∥∥∥2

= ‖f‖2 −
N∑
n=1

c2n ≥ 0 (24)

so that as N →∞ we have Bessel’s Inequality, that implies
cn → 0 as n → ∞ and that

∑N
n=1 c

2
n ≤ ‖f‖2. Assuming

cn is square summable we look at the convergence of the
sequence fN to f in the mean square, see [3]. Denoting the
partial sum of fN =

∑N
n=1 cnφn and assuming Parseval’s

equality,
∑∞
n=1 c

2
n = ‖f‖2, is satisfied then we have that,

lim
N→∞

‖f − fN‖2 = lim
N→∞

[
‖f‖2 −

N∑
n=1

c2n

]
→ 0 (25)

That is, every sequence {fn, n ∈ N} ∈ L2(0, l) converges
to f ∈ L2(0, l) such that Sfn → f ∈ L2(0, l) as n → ∞.
Then the operator L is closed. By these results, it is verified
that the operator, L, is a Riesz-spectral operator such that L
has the representation, see [3],

Lf =
∞∑
n=1

λn〈f, ψn〉φn, for f ∈ D(L) (26)

D(L) = {f ∈ L2(0, l) |
∞∑
n=1

|λn|2|〈f, ψn〉|2 <∞} (27)

The semigroup T (t) is bounded since,

‖T (t)‖ ≤Meωt for t ≥ 0 (28)

for ω > ω0, where the growth bound, ω0 of T (t) is given
by,

ω0 = inf
t>0

(
1
t

log ‖T (t)‖
)

= sup
n≥1

Re(λn). (29)

Since λn < 0, one obtains that L is the infinitesimal
generator of an exponentially stable C0-semigroup given by,

T (t)( · ) =
∞∑
n=0

eλnt〈 · , ψn〉φn (30)

The main result given here is that operator L is the
negative of a Sturm-Liouville operator S . Then from ([15],
Lemma 1), L is a Riesz-spectral operator and infinitesimal
generator of the C0-semigroup in Eq.30 with eigenvalues
{λn, n ∈ N} in Eqs.17-18 and the eigenvectors of L and L∗
are {φn, ψn, n ∈ N} respectively, which form a Riesz-basis
of L2(0, l).

IV. CONTROLLER FORMULATION

A. System description

We consider the following model describing the temper-
ature evolution in the slab which is given by the parabolic
PDE,

∂x

∂t
= k

∂2x

dξ2
− w(t)

∂x

dξ
+ hx+ F (ξ, t) (31)

dx

dξ
(0, t) = 0 =

dx

dξ
(l, t) (32)

y(t) =

l(t)∫
0

δ̂(ξ − ξc)x(ξ, t) dξ (33)

for x(ξ, t) ∈ D(L), where F (ξ, t) = b(ξ)u(t) with b(ξ) = 1
is the uniform heat source input over the domain and y(t)
is the output measurement where δ̂(ξ − ξc) is the square-
integrable function in L2(0, l) approximating the Dirac delta
function which specifies the output measurements location.
Eqs.31-32-33 are coupled with the domain evolution, l(t) =
{l(t), t ∈ [t0, tf ]} > 0, through the boundary evolution
which is determined by the actuator pulling the slab with
dynamics governed by,

M
d2l(t)
dt2

+ ν
dl(t)
dt

+ ηl(t) = Fm(t) (34)

where M,η are the positive coefficients of the mass and elas-
ticity of the system and ν < 0 is the dampening coefficient.
The input for the mechanical subsystem is the force applied
by the actuator, Fm(t). The corresponding state-space form
of the infinite-dimensional system augmented with the finite-
dimensional subsystem is given by, ż1(t)

ż2(t)
ẋ(t)

 =

 0 1 0
a1 a2 0
0 0 A(t)

 z1(t)
z2(t)
x(t)

+

 0 0
b1 0
0 B(t)

 [ Fm u
]

(35)

y(t) =

 c1 0 0
0 c2 0
0 0 C(t)

 z1(t)
z2(t)
x(t)

 (36)

with states z1(t) = l(t) and z2(t) = l̇(t) where
a1 = − η

M , a2 = − ν
M and the PDE state x(ξ, t) =∑∞

n=0 xi(t)φn(ξ, t) where {φn(ξ), n ∈ N} are the eigenvec-
tors in Eq.21 with coefficients in Eq.22 and the infinite di-
mensional state vector is denoted x(t) = [x1(t) x2(t) · · · ]T .
The matrix A(t) is associated with the infinite dimensional
system representation which is obtained from the exact
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modal decomposition of the time-dependent spatial operator
L utilizing the Galerkin method, such that A(t) is the
diagonal matrix of corresponding time varying eigenvalues in
Eqs.17-18, see [16]. The input matrix B(t) = 〈b(ξ), φ(ξ, t)〉
contains the modal decomposed terms associated with the
input, u, to the infinite dimensional system.

The ensuing sections consider the optimal control problem
for cases on the finite and infinite time interval for Eq.35-36
where,

Ż(t) = A(t)Z(t) + B(t)U(t) (37)

Y(t) = C(t)Z(t) (38)

defines the linear state system Σ(A,B,C) with the matrices:

A =
[
A1 0
0 A

]
B =

[
B1

B2

]
C =

[
C 0
0 C

]
(39)

The optimal input is determined from the solution, Π(t), of
the continuous-time differential Riccati equation,

Π̇ = A∗Π + Π A + C∗C−Π BR−1B∗Π (40)

where Π(t) is symmetric, positive semi-definite and self
adjoint and R ∈ L2(0, l) is coercive. The case that the
optimal control problem solution for the finite and infinite
dimensional systems is decoupled corresponds to having
the off diagonal elements of Π(t) as infinite dimensional
zero matrices in addition noting the terms B1B

∗
2 and B2B

∗
1

arising from Eq.40 vanish. The solution matrix Π(t) has the
form,

Π =
[

Π1 0
0 Π2

]
, Π1 =

[
π1 π2

π2 π3

]
(41)

for Π1 and Π2 respectively corresponding to the finite-
dimensional and infinite-dimensional systems.

B. Optimal state trajectories of mechanical subsystem

Let us consider the finite-dimensional problem associated
with the mechanical subsystem. For the case of full state
measurement then Π1 is the stationary solution of the alge-
braic Riccati equation,

Π1A1 +A∗Π1 + C∗C −Π1B1r
−1B∗1Π1 = 0 (42)

where r > 0 is the input penalty term. The elements
π1, π2, π3 of Π are the set of solutions obtained from the
following algebraic equations implicitly given as:

π1 =
b21
r
π2π3 − a2π2 − a1π3 (43)

π2 =
r

b21

(
a1 ± r

√
a2
1r + b21c

2
1

)
(44)

π3 =
r

b21

(
a2 ± r

√
a2
2r + 2b21π2 + b21c

2
2

)
(45)

For a semi-stabilizing solution to exist, Π1 must be positive
semi-definite. In terms of the principle minors of Π1, the
requirement is to ensure that each of,

π1 ≥ 0 (46)
π1π3 − π2

2 ≥ 0 (47)

are satisfied where strictly positive principle minors give
stabilizing solutions of Π1.

For the case that the states are not measured, i.e. C = 0,
the optimal state trajectories of the mechanical subsystem
require the determination of Π1 from the algebraic Riccati
equation,

Π1A1 +A∗1Π1 −Π1B1r
−1B∗1Π1 = 0 (48)

The elements π1, π2, π3 of Π1 are determined from the
solution of the following set of equations:

2a1π2 −
b21
r
π2

2 = 0 (49)

π1 + a2π2 + a1π3 −
b21
r
π2π3 = 0 (50)

2π2 + 2a2π3 −
b21
r
π2

3 = 0 (51)

A family of solutions for Π1 can be determined from Eqs.49-
50-51. For π2 = 2a1

r
b21

, two possible solutions of Eq.50
denoted π±3 can be determined and if the following condition,

r

b21

(
a2 ± a1

√
a2
2 + 4a1 ±

√
a2
2 + 4a1 − a1a2

)
≥ 0 (52)

is satisfied, then Π±1 is positive semi-definite such that the
feedback gain, K = r−1BT1 Π1, for the finite-dimensional
subsystem is semi-stabilizing. The solution π2 = 0 again
leads to two possible values of π3. For π3 = 0, Π1 is the
zero matrix and semi-stabilizing. For π3 = 2a2

r
b21

, one gets
the solution matrix Π1 as,

Π1 =

[
−2a1a2

r
b21

0
0 2a2

r
b21

]
(53)

Noting that a1 = − η
M and a2 = − ν

M with ν < 0, one
obtains that Π1 is positive-definite so the optimal feedback
gain for the finite-dimensional system is stabilizing and the
expression for the optimal input Fm(t) is given as,

Fm(t) = −B∗1Π1z(t) =
[

0 − 2a2
b1

] [ z1(t)
z2(t)

]
(54)

The optimal state trajectories, z1 = l(t) and z2 = l̇(t),
for the mechanical system can be easily obtained in the
analytic form. Further, under the feedback given by Eq.54
feedback the asymptotic stability of the closed loop system
can be verified depending on the parameters a1 and a2. That
is, the closed loop system ż = (A1 + B1Fm)z satisfies
‖K(t)‖ ≤ me−αt for positive constants m and α, where
K(t) = e(A1+B1Fm)t is the Cauchy matrix solution of the
finite-dimensional subsystem, see [19].

The optimal feedback laws for the remaining cases of
partial state measurement of the mechanical subsystem can
be determined in a similar procedure as the two cases given.

C. The optimal control law of infinite-dimensional system on
the finite-time interval

The Riesz-spectral operator L is an infinitesimal generator
of the C0-semigroup, T , which defines the evolution of the
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x(t) state, see Eq.28-29-30. The respective input and output
operators, B and C, are bounded linear operators with well
defined mappings from the input into the state space and
from the state to the output space. The state evolution is
given as,

x(t) = T (t)x0 +

t∫
0

T (t− s)Bu(s)ds (55)

y(t) = Cx(t) (56)

where x0 ∈ L2(0, l) is the initial condition, see [3].
The associated cost functional for the finite-time interval

for t ∈ [0, tf ] is given by,

J(x0;u; 0, tf ) = 〈x(tf ), Qx(tf )〉

+

tf∫
0

〈y(s), y(s)〉+ 〈u(s), Ru(s)〉 ds (57)

where the state penalty matrix Q self-adjoint and nonnegative
and the input penalty matrix R is coercive. The decoupling
of the finite and infinite dimensional systems by the structure
of Π(t) in Eq.41 requires determination of the optimal
stabilizing input u = umin(x0, t) for the infinite-dimensional
state linear system Σ(A,B, C) that depend on the time
varying solutions Π2(t) of a differential Riccati equation,
see [3]. Since A, associated with L, is not self-adjoint we
utilize the biorthonormal set of eigenvectors that form a
Riesz-basis of L2(0, l) with {φ0, φm,m ≥ 1} ∈ D(L),
{ψ0, ψn, n ≥ 1} ∈ D(L∗) and Π2(t)φm ∈ D(L∗). The
differential Riccati equation is,

d

dt
〈ψn,Π2φm〉 = −〈ψn,Π2Aφm〉 − 〈Aψn,Π2φm〉

−〈Cψn, Cφm〉+ 〈Π2BR−1B∗Π2ψn, φm〉 (58)
〈ψn,Π2(tf )φm〉 = 〈ψn, Qnmφm〉 = Qnmδnm (59)

The solution of Eqs.58-59 is of the form Π2(t)x =∑
n,m

Π2,nm(t)〈x, ψn〉φm with the relation,

Π2,nm = 〈ψn,Π2φm〉 (60)

Noting that Π2,nm(t) = 0 for n 6= m, one is left with the
following expression for Π2,nn(t),

Π̇2,nn = −2λnΠ2,nn − C2nn + EnnΠ2
2,nn (61)

Π2,nn(tf ) = Qnn (62)

where E = BR−1B∗. By defining the following expressions,

an = −E−1
nn

(
λn +

√
λ2
n + EnnC2nn

)
(63)

bn = −E−1
nn

(
λn −

√
λ2
n + EnnC2nn

)
(64)

dn = 2E−1
nn

√
λ2
n + EnnC2nn (65)

gn(t) = (Π2,nn + an)−1 (66)

one obtains the linear ODE,

ġn(t) = −1− dngn(t) (67)
gn(tf ) = (Qnn + an)−1 (68)

The solution gn(t) is determined to be,

gn(t) =
−(Qnn + an) + (Qnn + bn)e−dn(t−tf )

(Qnn + an)dn
(69)

From Eq.66, one obtains the solution of Π2,nn(t),

Π2,nn =
(Qnn + an)bn − an(Qnn + bn)e−dn(t−tf )

−(Qnn + an) + (Qnn + bn)e−dn(t−tf )
(70)

Then the finite-time interval optimal control law for the
infinite-dimensional system is determined as,

umin(x0; t) = −R−1B∗Π2(t)x0

= −R−1B∗
∞∑
n=0

Π2,nn〈x0, ψn〉φn

= −R−1B∗


l(t)∫
0

B0(t)x0(ξ) dξ +

∞∑
n=1

(Qnn + an)bn − an(Qnn + bn)e−dn(t−tf )

−(Qnn + an) + (Qnn + bn)e−dn(t−tf )
·

l(t)∫
0

x0(ξ)ψn(ξ)dξ φn(·)

 (71)

For the case when state measurement is not considered, i.e.
C = 0, the differential Riccati equation becomes,

d

dt
〈ψn,Π2φm〉 = −〈ψn,Π2Aφm〉 − 〈Aψn,Π2φm〉

+ 〈Π2BR−1B∗Π2ψn, φm〉 (72)
〈ψn,Π2(tf )φm〉 = Qnmδnm (73)

Proceeding as before, one is left with the following expres-
sion for Π2,nn(t) as,

Π̇2,nn = −2λnΠ2,nn + EnnΠ2
2,nn (74)

Π2,nn(tf ) = Qnn (75)

The ODE in Eq.74 is separable and has solution,

Π2,nn =
2λnQnne−2λn(t−tf )

2λn − EnnQnn + EnnQnne−2λn(t−tf )
(76)

Given that the following condition is satisfied,

1− e−2λn(t−ff ) > 0 (77)

then Eq.76 is positive definite and the finite-time optimal
control law for C = 0 is determined as,

umin(x0; t) = −R−1B∗


l(t)∫
0

B0(t)x0(ξ) dξ +

∞∑
n=1

2λnQnne−2λn(t−tf )

2λn − EnnQnn + EnnQnne−2λn(t−tf )
·

l(t)∫
0

x0(ξ)ψn(ξ)dξ φn(·)

 (78)
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D. The optimal control law of infinite-dimensional system on
the infinite-time interval

The optimal control law for the infinite-time interval,
t ∈ [0,∞], is obtained by considering the associated cost
functional given by,

J(x0;u) =

∞∫
0

〈y(s), y(s)〉+ 〈u(s), Ru(s)〉ds (79)

The optimal control law can be obtained by determining
the stationary operator Π2 ∈ D(L∗) as the solution to the
algebraic Riccati equation (ARE), see [3]:

0 = 〈Aφm,Π2ψn〉+ 〈Π2φm,Aψn〉
+ 〈Cφm, Cψn〉 − 〈B∗Π2φm, R

−1B∗Π2ψn〉 (80)

where φm ∈ D(L) and ψn ∈ D(L∗) with Π2φn ∈ D(L∗).
As previously defined, Π2,nm = 〈ψn,Π2φm〉 = δnm, and
the ARE becomes,

0 = 2λnΠ2,nn + C2nn − EnnΠ2
2,nn (81)

where E = BR−1B∗. The explicit, nonnegative solution is
determined to be,

Π2,nn = E−1
nn

(
λn +

√
λ2
n + EnnC2nn

)
(82)

Then, the optimal control law for the infinite-time interval is
given by,

umin(x0; t) = −R−1B∗
∞∑
n=0

E−1
nn ·(

λn +
√
λ2
n + EnnC2nn

)
〈x0, ψn〉φn(·) (83)

For the case when state measurement is not considered, i.e.
C = 0, the ARE is reduced to,

0 = 2λnΠ2,nn − EnnΠ2
2,nn (84)

with two possible solutions,

Π2,nn =
{

0
2E−1λn

(85)

Since λn < 0 in Eqs.17-18 given that Eq.19 holds, the only
nonnegative solution is Π2,nn = 0 and the optimal input is
given by,

umin(x0; t) = 0 (86)

Note that the state linear system Σ(A,B, 0) is not expo-
nentially detectable and therefore the ARE does not admit a
unique nonnegative solution Π2,nn that guarantees the stabil-
ity of the closed loop system, Σ(A−BR−1B∗Π2,nn, B, 0),
see [3].
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Fig. 2. Domain and boundary velocity evolution for M = 10, η = 1.5
and ν = −2.75, and under control law given by Eq.54 with input penalty
term r = 1.
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Fig. 3. Optimal control input given by Eq.83 for infinite-dimensional
system with control parameters Q2,nn = 15 and Rnn = 0.5.

V. SIMULATION AND NUMERICAL RESULTS

The system in Eq.37-38 was simulated with optimal con-
trol laws for the finite and infinite-dimensional systems given
in Eq.54 and Eq.83, respectively. The normalized eigen-
vectors in Eq.21 with Eq.22 were utilized for exact modal
decomposition of the parabolic PDE system, Eq.31-32-33,
with no internal reactionary sources, i.e. h = 0, see [2]. The
two systems are coupled through the mechanical subsystem
states which are injected into the infinite-dimensional system
at each time instance. The domain evolution and boundary
velocity for the closed-loop system are shown in Fig.2. The
optimal heat input profile is shown in Fig.3 and the evolution
of the temperature distribution in the time-varying crystal
domain is shown in Fig.4.

VI. SUMMARY

In this paper, a parabolic PDE model describing the
transport dynamics of a diffusion-reaction process with do-
main changing along a velocity field was derived from
first principles continuum mechanics. The associated time-
varying spatial operator was demonstrated to be a Riesz-
spectral operator and generator of an exponentially stable
C0-semigroup. The multiscale control problem formulation
of the Czochralski crystal growth process considered the
crystal temperature distribution given by the derived PDE
with infinite-dimensional state-space representation, coupled
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Fig. 4. Closed-loop temperature evolution in domain with crystal slab
conductivity k = 1.5 and initial conditions x(ξ, 0) = x2.

through the domain boundary motion determined by the
mechanically actuated pulling arm, with dynamics governed
by a linear second order ODE with finite-dimensional state
space representation. The control objectives were optimal the
stabilization of the temperature distribution by heat applied
along the domain boundary and by the optimal pulling rate.
The LQR optimal control synthesis of the coupled infinite
and finite-dimensional linear state system Σ(A,B,C) was
considered. The optimal minimizing inputs for finite and
infinite-time intervals, requiring the respective solutions to
associated algebraic and time-dependent differential Ric-
cati equations, were determined using the Riesz-spectral
properties of the time-varying spatial operator. Numerical
simulations provide an insight into the optimal stabilization
of crystal slab temperature as the domain undergoes as time-
varying change.

REFERENCES

[1] H. S. Brown, I. G. Kevrekidis, and M. S. Jolly, “A minimal model for
spatio-temporal patterns in thin film flow,” in Pattern and Dynamics
in Reactive Media, R. Aris, D. G. Aronson, and H. L. Swinney, ed.,
Springer-Verlag, 1991, pp. 11–31.

[2] W. Ray, Advanced Process Control. New York, New York: McGraw-
Hill, 1981.

[3] R. F. Curtain and H. Zwart, An introduction to Infinite-Dimensional
Linear Systems Theory. New York: Springer-Verlag, 1995.

[4] R. Brown, “Theory of transport processes in single crystal growth from
the melt,” AIChE J, vol. 34, pp. 881–911, 1988.

[5] J. Derby and R. Brown, “On the dynamics of czochralski crystal
growth,” J. Cryst. Growth, vol. 83, pp. 137–151, 1987.

[6] ——, “Thermal-capillary analysis of czochralski and liquid encap-
sulated czochralski crystal growth. I. simulation,” J. Cryst. Growth,
vol. 74, pp. 605–624, 1986.

[7] ——, “Thermal-capillary analysis of czochralski and liquid encapsu-
lated czochralski crystal growth. II. processing strategies,” J. Cryst.
Growth, vol. 75, pp. 227–240, 1986.

[8] A. Armaou and P. D. Christofides, “Crystal temperature control in the
czochralski crystal growth process,” AIChE J., vol. 47, pp. 79–106,
2001.

[9] ——, “Robust control of parabolic PDE systems with time-dependent
spatial domains,” Automatica, 1999.

[10] P. K. C. Wang, “Stabilization and control of distributed systems with
time-dependent spatial domains,” J. Optim. Theor. & Appl., vol. 65,
pp. 331–362, 1990.

[11] ——, “Feedback control of a heat diffusion system with time-
dependent spatial domains,” Optim. Contr. Appl. & Meth., vol. 16,
pp. 305–320, 1995.

[12] J. Marsden and T. Hughes, Mathematical Foundations of Elasticity.
New York, U.S.A.: Dover Publications, 1983.

[13] G. Leal, Laminar Flow and Convective Transport Processes. Boston,
U.S.A: Butterworth-Heinemann, 1992.

[14] J. Marsden, T. Ratiu, and R. Abraham, Manifolds, Tensor Analysis
and Applications. New York, U.S.A.: Springer-Verlag, 2001.

[15] D. Cedric, D. Dochain, and J. Winkin, “Sturm-Liouville systems are
Riesz-spectral operators,” Int. J. Appl. Math. Comput. Sci., vol. 13,
pp. 481–484, 2003.

[16] W. H. Ray, Advanced Process Control. New York: McGraw-Hill,
1981.

[17] S. Holland, Applied analysis by the Hilbert space method. New York,
New York: Marcel Dekker, 1990.

[18] W. Boyce and R. DiPrima, Introduction to differential equations. New
York: Wiley, 1970.

[19] X. Liao, L. Wang, and P. Yu, Stability of Dynamical Systems. Oxford,
UK: Elsevier, 2007.

J. Ng. et al. • Multiscale Dynamics Optimal Control of Parabolic PDE with Time Varying Spatial Domain (Crystal Growth Process) 

1006




