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Abstract— In this work we take a dynamical approach to
the evolution of complex networks using simulated output of
the full system dynamic to direct evolution of the underlying
network structure. Extending previous work, we study the
problem of enhanced synchronisation and the generality of
Type 2 features which have been shown to emerge in regimes
where full synchronisation is unstable. Networks are evolved
using a new computational tool called NetEvo which aims to
minimise a dynamical order parameter performance measure.
This process is performed for networks with several alternative
node dynamics, showing in all cases that qualitatively similar
Type 2 topologies emerge. Analysis of these structures highlights
variation in many of the network statistics and motif frequen-
cies, but helps to classify some key characteristics exhibited by
all Type 2 networks, regardless of node dynamic.

I. INTRODUCTION

Over recent years many types of complex system have
been described using dynamical networks as a basis (e.g. see
[1]); nodes represent components having an internal dynamic
and edges dictate how these components interact with one
another. Such a description provides a common framework
in which to study many types of complex phenomena, with
synchronisation having seen much attention. Synchronisation
forms an important part of many natural and man-made
processes, ranging from circadian rhythms in biology [2],
to oscillating voltages across power grids [3].

When studying synchronisation it is common to consider
a network of N coupled m-dimensional systems of the form,

ẋi = F(xi)− σ
N∑

j=1

LijHxj , i = 1, 2, . . . , N, (1)

where xi ∈ Rm is the state of the ith node, F : Rm → Rm

defines the internal node dynamics, σ ∈ R is the global
coupling strength between connected nodes, L = (Lij) is the
network Laplacian, and H ∈ Rm×m is a matrix specifying
the inner coupling between states of two interacting nodes.
We say a system is fully or asymptotically synchronised if
limt→∞ ‖xi − xj‖ = 0.

It was shown by Pecora and Carroll in [4] that the syn-
chronisability of a network—the range of coupling strengths
for which full synchronisation is achieved—is related to the
eigenvalues of the network Laplacian. They illustrated how

T. E. Gorochowski is with the Bristol Centre for Complexity Sciences,
Department of Engineering Mathematics, University of Bristol, Bristol, BS8
1TR, UK thomas.gorochowski@bristol.ac.uk

M. di Bernardo is with the Department of Engineering Mathematics,
University of Bristol, Bristol, BS8 1TR, UK and Department of Systems
and Computer Science, University of Naples Federico II, Via Claudio 21,
80125, Napoli, Italy

C. S. Grierson is with the School of Biological Sciences, University of
Bristol, Bristol BS8 1UG, UK

the master stability function (MSF) can be formulated for
dynamical networks, and how minimisation of the eigenratio
(λN/λ2) ensures stability of the synchronisation manifold,
x1 = x2 = · · · = xN , for the largest range of coupling
strengths [5]. More recently, this work has also formed
the basis of attempts to improve the synchronisability of
networks, by finding methods to rewire the structure such that
the eigenratio is minimised. These have included network
optimisation techniques [6] and the utilisation of graph
theoretic knowledge [7], [8] to help make better decisions
when altering the underlying topology. Optimised networks
produced using these methods were highly homogeneous,
displaying short path lengths and narrow degree and be-
tweenness distributions. These networks were referred to as
“entangled” in [6], with an example shown in Fig. 1(a).

The eigenratio is classified as a purely topological mea-
sure, requiring no consideration of system-level dynamics
when being calculated. This permits widespread use across
many types of system. Such generality is a major benefit of
topological measures, however, there are limitations related
to possible constraints on the system of interest. For example,
it may be that the coupling strength of the system is fixed
at a value that does not allow for a stable synchronisation
manifold. In this case, minimisation of the eigenratio may
provide no benefit at all. Furthermore, a more specific form
to the synchronisation may be required, for example only
occurring at a specified coupling strength. Under these sorts
of scenario, where existing topological measures are unlikely
to exist, a more flexible approach is required.

In [9] we attempted to use a dynamical approach to
improving synchronisation. A computational tool called
NetEvo1 [10] was developed to evolve the network structure
of a system through the rewiring of edges. The evolutionary
process was embodied in an optimisation method, using a
dynamical measure (order parameter) based on simulated
output of the full system dynamic. Networks were evolved
using Rössler node dynamics and diffusive coupling. Fur-
thermore, a variety of fixed coupling strengths were used to
see how this would affect the final topologies. It was shown
that for coupling strengths permitting stable synchronisation,
structures converged towards “entangled” features generating
what was termed Type 1 networks [see Fig. 1(a)].

As the fixed coupling strength was increased we reached
a point at which the synchronisation manifold became un-
stable, reflected in a change to the evolved topologies.
A transition was observed to networks displaying hub-like

1For further information about the framework, see the project website at
http://www.netevo.org
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Fig. 1. The two types of evolved topology. (a) Type 1 “entangled” and
(b) Type 2.

features, surrounding a highly interconnected central region.
These were classified as Type 2 networks and the transition
as a topological bifurcation. An example of a Type 2 network
can be found in Fig. 1(b). Furthermore, Type 2 structures
were shown to have an increased frequency of 3 node closed
loop feedback motifs and it was conjectured that these may
allow for localised stability during the evolutionary process.

This previous work focused on assessing the viability of
a dynamical approach when evolving improved topologies
for synchronisation. In doing so, it did not fully investigate
the generality of the results to alternative node dynamics,
concentrating on a single form throughout. In this paper we
build on this work, attempting to understand the sensitivity
of the emergence of Type 2 topologies to alternative forms
of node dynamic.

II. THE NETEVO FRAMEWORK
NetEvo [10] is a computational framework developed to

allow for numerical experimentation and analysis of evolving
dynamical networks. To carry out the evolutionary process,
NetEvo introduces the idea of a supervisor which attempts
to make changes to the underlying topology and dynamical
parameters, such that a user specified performance measure
Q is minimised. The concept of a supervised network is
illustrated in Fig. 2.

In many ways this process can be viewed as an opti-
misation procedure, searching for dynamical networks with
improved performance. For this reason, NetEvo currently
implements a simulated annealing metaheuristic to search
for near-optimal configurations. Furthermore, the framework
has been built in an extendible manner to allow for users
to specify their own node and edge dynamics, evolutionary
processes and performance measures. At present, the form
of dynamics is limited to continuous ordinary differential
equations, however, we hope to extend this to discrete and
stochastic processes in the near future.

III. SENSITIVITY TO NODE DYNAMICS
To assess the sensitivity of the Type 2 topologies to node

dynamics, we used NetEvo to evolve networks for a variety
of node types. All networks consisted of 100 nodes with
an average degree of 4 and an initial random topology.
The number of nodes and edges remaind fixed throughout
evolution, with only rewiring of edges permitted.

Updates Topology

Node/Coupling Dynamics
dxi/dt = F(xi) + coupling

Supervisor
Computerized Agent

Network Topology
Laplacian/Adjacency Matrix

Alters Coupling

Updates Parameters

Performance Measure

Q

Fig. 2. Flowchart of a supervised network taken from [9].

In the following sections we describe the types of node
dynamics and coupling that were chosen, and the method of
network evolution.

A. System Dynamics

Three types of network were considered, each with an
alternative form of identical node dynamic, to assess the
impact this had on resultant topological features. We defined
each node to have an internal state xi = (pi, qi, ri), with
the dynamics of either a standard Rössler, Lorenz or Chua
oscillator described by the equations,

FRössler(xi) =

 −qi − ri
pi + 0.165qi
0.2 + (pi − 10)ri,

(2)

FLorenz(xi) =

 10(qi − pi)
pi(28− ri)− qi
piqi − 2ri,

(3)

FChua(xi) =

 10[qi − pi + g(pi)]
pi − qi + ri
−14.87qi,

(4)

where,

g(x) =

 0.68x+ 1.27− 0.68, x > 1
1.27x, |x| < 1
0.68x− 1.27 + 0.68, x < −1,

Diffusive coupling was used between nodes with internal
states of connected nodes i and j varying for each type
of network; Rössler based networks used pi → pj and
ri → rj , Lorenz based networks used qi → pj , and Chua
based networks used ri → rj . These coupling schemes were
selected to ensure a master stability function of the form
Γ2 as reported in the literature [11], leading to a bounded
region of stability (α1, α2) for the synchronisation manifold.
Master stability functions for each type of system are shown
in Fig. 3. Large fixed coupling strengths σ̂ were selected
during evolution to place the systems into regimes where full
synchronisation was not possible, i.e. where σ̂λN > α2. This
allowed us to specifically investigate the generality of Type 2
topologies which had previously been seen to emerge within
this regime. The chosen fixed coupling strengths were σ̂ =
0.9 for Rössler based networks, σ̂ = 4.5 for Lorenz based
networks, and σ̂ = 0.85 for Chua based networks.
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Fig. 3. Master stability functions for our chosen (a) Rössler, (b) Lorenz,
and (c) Chua systems. An approximate stable range (α1, α2) is displayed
at the bottom right of each graph.

To simulate system dynamics during the evolutionary
process, NetEvo was configured to use an Embedded Runge-
Kutta-Fehlberg (4, 5) numerical method with an adaptive step
size and absolute and relative errors of 10−5. To minimise
the effect of finite simulation times an average of 10 separate
runs was taken, with each simulation lasting for 150 time
units.

B. Network Evolution

Networks were evolved using NetEvo’s simulated anneal-
ing supervisor configured in a similar way to [9]. Evo-
lution started with 100 random networks being generated
and an initial temperature for the optimisation procedure
being calculated using 4qmax, where qmax was the maximum
difference in the performance measure Q for each of the
initial networks. Temperature remained fixed for every trail
at a given step and was reduced by 10% once a step had
been completed. Every step consisted of a maximum 5000
trails, or 500 consecutively accepting trails. For each trail a
number of edges, selected from an exponentially distributed
random variable with a mean value of 1, were rewired and
the performance measure recalculated. If this lead to an
improvement then the new configuration was selected. If not,
then the new configuration was selected with a probability
e−dQ/T , where dQ was the change in performance measure
and T was the current temperature. Evolution halted after 5

temperature reductions without change, if 300000 trials had
been performed, or if a temperature of 10−7 was reached.

To direct the evolutionary process we adapted the dy-
namical order parameter performance measure of Yook and
Meyer-Ortmanns [12] taking,

QOP = 1− 1
N(N − 1)

N∑
i=1

N∑
j=1

Θ [δ − dij(t∞)] , (5)

where N is the number of nodes, Θ is the Heaviside function,
δ is a threshold to accommodate numerical errors during
simulation, dij is the standard Euclidean norm distance
between trajectories for nodes i and j, and t∞ is a time
at which trajectories will have converged to within δ if at all
possible.

IV. ANALYSIS OF THE EVOLVED TOPOLOGIES
Networks were evolved using Rössler, Lorenz and Chua

node dynamics. The resultant topologies were analysed by
calculating standard statistical measures and motif distribu-
tions, searching of similarities and differences between their
features. To provide a reference for comparison, previous
results for Type 1 topologies were included in the analysis.

A. Topological Structure

To better understand the evolved topologies, visualisations
and average statistical measures were calculated (see Fig. 4
and Table I). From these results, two main types of evolved
structure were immediately evident. As reported in [9],
topologies (a) and (b) showed that topological and dynamical
performance measures lead to a convergence of similar Type
1 “entangled” structures, when the fixed coupling strength
σ̂ used during evolution allowed for a stable synchronisation
manifold, i.e. when σ̂λ2 > α1 and σ̂λN > α2. Visualisations
show a highly homogeneous and interwoven topology, with
no discernible features separating the structure despite the
different node dynamics. Furthermore, statistics reveal that,
in all cases, both dynamical and topological approaches lead
to reduced network diameter and eigenratio.

Figures 4(c), (d) and (e) show our newly evolved topolo-
gies, generated using a fixed coupling strength that results
in an unstable synchronisation manifold. These display very
different structures, characterised by standard Type 2 features
– hubs connected to lower degree nodes, surrounding a
highly interconnected central region. Although all Type 2
networks are qualitatively similar, specific differences can
be seen for each type of node dynamic.

Type 2 Rössler based networks contain the largest hubs,
consisting mainly of one and two degree nodes. The size of
these hubs leads to a surplus of edges, as the total number
remains fixed during evolution with only rewiring allowed.
This provides necessary resources for an increased density
at the interconnected central region, helping reduce network
diameter to 5.60 and increase the average clustering co-
efficient to 0.0185.

Lorenz networks display the weakest Type 2 form, with
small hubs containing single degree nodes. This reduction
in hub size causes a less densely packed central region and
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Fig. 4. Evolved topologies for both toplogical (Eigenratio) and dynamical (Order Parameter) performance measures with differing node dynamics.
(a) Eigenratio, (b) Rössler – Order Parameter σ̂ = 0.6, (c) Rössler – Order Parameter σ̂ = 0.9, (d) Lorenz – Order Parameter σ̂ = 4.5, and (e) Chua –
Order Parameter σ̂ = 0.85. It is clear to see the two qualitatively different topologies with (a) and (b) displaying Type 1 and (c) to (e) Type 2 features.

TABLE I
STATISTICS FOR THE EVOLVED TOPOLOGIES

Diameter Clustering Eigenratio
Dynamics Performance Measure Topology Average Std Dev Average Std Dev Average Std Dev

– Eigenratio Type 1 5.25 0.4443 0.0029 0.0036 7.57 0.11
Rössler Order Parameter σ̂ = 0.6 Type 1 6.20 0.4104 0.0917 0.0175 12.53 0.58
Rössler Order Parameter σ̂ = 0.9 Type 2 5.60 0.5477 0.0798 0.0185 154.73 53.02
Lorenz Order Parameter σ̂ = 4.5 Type 2 7.30 0.8233 0.0466 0.0131 55.63 31.35
Chua Order Parameter σ̂ = 0.85 Type 2 6.78 0.8333 0.1560 0.0322 107.22 53.02

effects the statistical properties accordingly. These networks
see the smallest reduction in diameter and increase in clus-
tering. A possible reason for these features may relate to the
specific form of the node dynamics and the rate of change
of the MSF as α is varied.

Chua based networks displayed the most intricate hubs of
all. Each can be seen to be built from nodes connecting to at
least two other neighbouring nodes within the same hub. This
causes intricate fan-like structures to emerge, increasing the
average clustering co-efficient to 0.156, the largest of all our
evolved networks. By investing many edges within each hub,
these networks also see the lowest density of edges within
the centrally connected region.

B. Motif Distributions

With network motifs having been shown to play an im-
portant role both functionally [13] and in the classification
[14], [15] of many complex systems, we calculated motif
distributions for each of our evolved networks. Motifs of size
3 and 4 nodes were considered and detection was performed
using the FANMOD algorithm [16]. To assess statistically
significant over and under expression of a particular motif,
evolved topologies were compared to a sample of 1000
randomised versions, with average expression, z-scores and
p-values being calculated. Results are presented in Table II
with arrows representing over and under expression of a
given motif with a p-value < 0.01.

These distributions highlight two distinct groups of net-
work. The first contains those evolved using the topological
eigenratio performance measure. These display little over or
under expression of any motif, however, do contain very
low frequencies of those with closed loop triangular features.
This result can be attributed to minimisation of the eigenratio

leading to networks with increased girth – shortest loop in
the network. With triangles representing the shortest possible
loop, eigenratio evolved networks will remove these features,
attempting to maximise their length.

The second group contains all networks evolved using
the dynamical order parameter performance measure. By
focusing on the statistically significant over and under ex-
pression, we see near identical motif distributions, with the
only anomaly being the fan-like motif 3. The key feature of
these distributions is an over expression of motifs 2, 4 and
6, all closed loop feedback motifs.

Taking a more detailed look at the actual expression
frequencies we also see separation between Type 1 and Type
2 networks. Type 2 networks see a range of frequencies for
many of the motifs and in some cases covering frequency
seen for dynamically evolved Type 1 networks. This variation
is the result of alternative hub-like structures for each type
of node dynamic and allows for the specific features that
differentiate Type 1 and Type 2 structures to be elucidated.
These can be seen in the higher frequencies of motif 3 and
7, and the lower frequencies of motif 5. Together these three
motifs appear to be a signature of the Type 2 structure
and are therefore likely to be related to hub formation.
This seems to confirm the conjecture made in [9] that the
presence of feedback motifs is to be expected with higher
frequency, independently of the specific node dynamics being
considered.

V. CONCLUSIONS

In this work we have outlined a dynamical approach to
the evolution of complex networks. Building on previous
work in [9], we assessed the generality of Type 2 topologies
for networks evolved using the dynamical order parameter
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TABLE II
AVERAGE MOTIF FREQUENCIES FOR THE EVOLVED TOPOLOGIES∗

Dynamics Performance Measure Topology 1 2 3 4 5 6 7 8
– Eigenratio Type 1 99.90 0.10 19.71 ↓ 0.20 80.05 ↑ – 0.04 ↓ –
Rössler Order Parameter σ̂ = 0.6 Type 1 96.74 ↓ 3.26 ↑ 15.95 ↓ 5.83 ↑ 77.77 ↓ 0.17 ↑ 0.28 ↓ 0.002 ↑
Rössler Order Parameter σ̂ = 0.9 Type 2 97.18 ↓ 2.82 ↑ 40.25 ↑ 5.53 ↑ 52.50 ↓ 0.33 ↑ 1.09 ↓ 0.01 ↑
Lorenz Order Parameter σ̂ = 4.5 Type 2 98.39 ↓ 1.61 ↑ 25.90 ↓ 3.58 ↑ 69.56 ↓ 0.11 ↑ 0.86 ↓ –
Chua Order Parameter σ̂ = 0.85 Type 2 93.98 ↓ 6.02 ↑ 36.74 ↑ 8.60 ↑ 51.93 ↓ 1.36 ↑ 1.28 ↓ 0.10 ↑

∗Arrows represent statistically significant over ↑ and under ↓ expression in comparison to a randomised network (p-value < 0.01)

performance measure, at a fixed coupling strength that does
not permit full synchronisation, and for a variety of node
dynamics. We showed the emergence of Type 2 features
for all node dynamics, with the formation hubs of low
degree nodes surrounding a highly interconnected central
region. Differences in the hub structures were analysed and
it was shown that these differences lead to variation in
general statistical properties and motif distributions of the
evolved networks. Although it is impossible using simulation
alone to be sure that such Type 2 features will emerge
for every form of node dynamic, analysis of the variation
between our different Type 2 topologies allowed for essen-
tial shared features to be extracted. From this, two motifs
were highlighted having increased and one as decreasing
in frequency when compared to Type 1 topologies. These
motifs were seen as characteristic of the Type 2 topologies
and it was proposed that further analysis of these specific
motifs may help understand the role they play in relation
to synchronisation. In ongoing work we are also addressing
the case of directed network evolution and considering how
other factors, such as nonlinear coupling, may also influence
the resultant structures.

With dynamics and evolution being a vital component
of all complex systems, having tools to understand how
various dynamical and topological features arise will become
increasingly important. The dynamical approach presented
here provides a complementary perspective to those focused
solely on topological features; allowing for both dynamics
and evolution to be brought together coherently. The question
of generality still stands, however, the flexibility of our
approach allows for persistent behaviours to be uncovered,
providing a promising starting point for more detailed anal-
ysis.
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