
On the Optimal Reconstruction Kernel of Causal Rate Distortion
Function

Charalambos D. Charalambous, Christos K. Kourtellaris and Photios Stavrou

Abstract— This paper considers source coding of general
sources with memory, when causal feedback is available at the
decoder. The rate distortion function defined as the infimum
of the directed information between source and reconstruction
sequences over causal data compression channels, which satisfy
a distortion fidelity constraint. The form of the optimal causal
data compression Kernel is derived.

I. INTRODUCTION

Over the past few years there has been a renewed interest
in communication systems with feedback, and in designing
causal encoders and decoders. The emergence of sensor
technology stimulated interest in new applications involv-
ing control and communication networks, in which source
coding and channel coding received significant attention.
An important application which involves communication and
control analysis and design is that of controlling dynamical
systems over finite rate communication channels [1], [2], [3],
[4], [5], [6]. These type of control/communication systems
are often represented by a dynamical control system whose
output is the source which is reproduced at the output of
the channel, while the output of the channel is the input to
the controller. Hence, dynamical system outputs are reliably
reproduced at the decoder, which drives the control law of
the dynamical system in real-time. When feedback or side
information is available at the communication/control blocks,
the encoder and/or decoder, and controller, then causality of
the information entering these blocks should be ensured for
real-time applications. Since feedback to the control system
is applied via a finite rate communication channel (which
might be noisy or noiseless), then quantization of the output
of the dynamical system is required to reliably communicate
the information over a finite rate channel to the controller .
One of the fundamental problems often encountered in com-
munication systems and/or control/communication systems
is causal lossy compression, in which information should
be provided causally to the encoder and/or decoder, and
controller. A typical scenario is depicted in Figure II.1.
This systems consist of a control system (sensors, actuators,
dynamical model) and a communication system (encoders,
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decoders). The information of the dynamical system output
in communicated to the controller via a finite rate commu-
nication channel.
The objective of this paper is to investigate the source
coding problem, when the decoder has causal feedback for
general uncontrolled sources, via the rate distortion func-
tion. However, unlike the classical rate distortion theory
[7], which employs the mutual information to represent the
rate between the source sequence and the reconstruction of
source sequence, causality of the decoder requires the use of
directed information [8], a variant of the mutual information.
Specifically, the optimal classical data compression channel
[9], [7] is non-causal. The implications of causality on the
data compression channel is explained below.
Consider two sequences, Xn 4

= (X0, X1, . . . , Xn) denot-
ing the source, and Y n 4

= (Y0, Y1, . . . , Yn), denoting the
reconstruction of the source, taking values in X0,n and Y0,n

respectively. Let M1(X ) denote the space of probability
measure on X .
Shannon’s self-mutual information for a given realization
Xn = xn, Y n = yn of these sequences is defined by
i(xn; yn)

4
= log q(dyn;xn)

ν(dyn) , where q(dyn; xn) ∈ M1(Y0,n)
denotes conditional distribution and ν(dyn) ∈M1(Y0,n),
while its average over all realizations, called Shannons
mutual information is defined by [10]

I(Xn; Y n)
4
= EP (dxn,dyn)

{
i(xn; yn)

}

=
∫

log
q(dyn;xn)

ν(dyn)
q(dyn; xn)µ(dxn)

where µ(dxn) ∈M1(X0,n)). The classical source coding
or lossy data compression is defined by introducing an
average distortion or fidelity constraint associated with a
distortion measure ρn : X0,n × Y0,n → [0,∞), n ∈ N.
The data compression channel which minimizes the rate of
reconstructing Xn by Y n [9] is given by

q∗(dyn; xn) =
esρn(xn,yn)ν∗(dyn)∫
Y0,n

esρ(xn,zn)ν∗(dzn)
, s ≤ 0 (I.1)

where ν∗(dyn) ∈ M1(Y0,n) is the marginal of
P ∗(dxn, dyn) = µ(dxn) ⊗ q∗(dyn;xn) ∈ M1(X0,n ×
Y0,n), and s ≤ 0 is the Largange multiplier asso-
ciated with the fidelity constraint. Even for single let-
ter distortion ρn(xn, yn) =

∑n
i=0 ρi(xi, yi) it follows

from (I.1) that q∗(dyn; xn) = ×n
j=0q

∗(dyj ; yj−1, xn) 6=
×n

j=0q
∗(dyj ; yj−1, xi), hence causality of the data compres-

sion fails.
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The main objective of this paper is to re-define the rate
distortion function and ensure the optimization leads to a
causal data compression channel. To further explain the
implications of causality and feedback consider the following
alternative expressions of self-mutual information.

i(xn; yn) =
n∑

i=0

log
qi(dyi; yi−1, xi)
νi(dyi; yi−1)

+
n∑

i=0

log
q̂i(dxi; yi−1, yi−1)

µi(dxi; xi−1)

where qi ∈ Q(Yi;Y0,i−1 × X0,i), νi ∈ Q(Yi;Y0,i−1),
µi ∈ Q(Xi;X0,i−1), q̂i ∈ Q(Xi;Y0,i−1×X0,i−1). By taking
expectation

I(Xn; Y n) = I(Xn → Y n) + I(Xn ← Y n)

where

I(Xn → Y n)
4
=

n∑

i=0

I(Xi; Yi|Y i−1)

=
n∑

i=0

∫
log

qi(dyi; yi−1, xi)
νi(dyi; yi−1)

P (dyi, dxi)

I(Xn ← Y n)
4
=

n∑

i=0

I(Y i−1; Xi|Xi−1)

=
n∑

i=0

∫
log

q̂i(dxi; xi−1, yi−1)
µi(dxi; xi−1)

P (dyi−1, dxi).

Note that the term I(Xn → Y n) is the directed informa-
tion from Xn to Y n discussed in [8], and corresponds to
the Shannon mutual information restricted to the channel
connecting causally Xn to Y n, while I(Xn ← Y n) is the
directed information from Y n to Xn, which corresponds to
the Shannon mutual information restricted to the channel
connecting causally Xn to Y n. Thus, the formulation of
causal rate distortion function should involve only the term
I(Xn → Y n).
The main objectives of this paper are to provide the definition
of the causal rate distortion function for general sources, and
derive the optimal causal reconstruction kernel.
Previous related work on causal rate distortion is found
in [11], where coding theorems are also derived. Recently,
the problem is revisited in [12], [13]. An alternative non-
information theoretic approach is found in [14], [15] using
stochastic optimization methods. The material presented in
this paper compliments previous work in causal data com-
pression in the sense that we provide the formulation, as
well as the optimal causal reproduction kernel, for general
sources.

II. PROBLEM FORMULATION

In this section, we introduce the set up of the problem
on abstract alphabets (Polish spaces) and a discrete time set
Nn 4

= {0, 1, . . . , n}, n ∈ N 4
= {0, 1, 2, . . .}. All processes are

defined on a complete probability space (Ω,F(Ω),P) with

filtration {Ft}t≥0. The source and reconstruction alphabets
are sequences of Polish spaces {Xt : t = 0, 1, . . . , n}
and {Yt : t = 0, 1, . . . , n}, respectively, (e.g., Yt,Xt are
complete separable metric spaces). Moreover, the abstract
alphabets are associated with their corresponding measurable
spaces (Xt,B(Xt)) and (Yt,B(Yt)) (e.g., B(Xt) is a Borel
σ−algebra of subsets of the set Xt generated by closed sets).
Thus, sequences of source and reproduction of the source
alphabets are identified with the product measurable spaces
(X0,n,B(X0,n)

4
= ×n

k=0(Xk,B(Xk)), and (Y0,n,B(Y0,n)
4
=

×n
k=0(Yk,B(Yk)), respectively. The source is a random

process denoted by Xn 4
= {Xt : t = 0, 1, . . . , n}, X :

Nn × Ω 7→ Xt, and the reconstruction of the source is
another process denoted by Y n 4

= {Yt : t = 0, 1, . . . , n},
Y : Nn × Ω 7→ Yt, where the subscript denotes the time
evolution of the processes.
Probability measures on any measurable space (Z,B(Z))
are denoted by M1(Z).
Next, we introduce the definition of conditional indepen-
dence.
Conditional Independence: Conditionally independent
Random Variables (R.V’s) are denoted by (X, Y ) ⊥ Z or
equivalently Y ↔ Z ↔ X form a Markov chain.

Conditional distributions are identified by stochastic kernels
as defined below.

Definition 2.1: Given the measurable spaces
(X ,B(X )), (Y,B(Y)), a stochastic Kernel on
(Y,B(Y)) conditioned on (X ,B(X )) is a mapping
q : B(Y) × X → [0, 1] satisfying the following two
properties:
1) For every x ∈ X , the set function q(·; x) is a probability
measure (possibly finitely additive) on B(Y);
2) For every A ∈ B(Y), the function q(A; ·) is B(X )-
measurable.
The set of all stochastic Kernels on (Y,B(Y)) conditioned
on (X ,B(X )) are denoted by Q(Y;X ).

The definition of stochastic kernel can be used to define a
causal and non-causal rate distortion channels (reproduction
kernels) as follows.

Definition 2.2: Given the measurable spaces
(X0,n,B(X0,n)) and (Y0,n,B(Y0,n)), n ∈ N, and their
product spaces, data compression channels are defined as
follows.
1. Causal Data Compression Channel. A causal data
compression channel is a sequence of stochastic kernels
{qj(dyj ; yj−1, xj) ∈ Q(Yj ;Y0,j−1 ×X0,j) : j ∈ Nn}

2. Non-Causal Data Compression Channel. A non-
causal data compression channel is a stochastic kernel
q0,n(dyn;xn) ∈ Q(Y0,n;X0,n).

Thus, a causal data compression channel is a sequence of
conditional distributions for Yj given Y j−1 = yj−1 and
Xj = xj denoted by PYj |Y j−1,Xj (dyj |Y j−1 = yj−1, Xj =
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Fig. II.1. Control/Communication System with Feedback

xj), j = 0, 1, . . . , n. On the other hand, a non-causal data
compression channel is given by PY n|Xn(dyn|Xn = xn).
Since by chain rule PY n|Xn(dyn|Xn = xn) =⊗n

j=0 PYj |Y j−1,Xn(dyj |Y j−1 = yj−1, Xn = xn), it is clear
that in classical rate distortion theory the reconstruction of
Yj = yj depends on future values of the source sequence,
namely, (Xj+1 = xj+1, . . . , Xn = xn) in addition to the
past reconstructions Y j−1 = yj−1, and past and present
source symbols Xj = xj . Thus, classical rate distortion
theory is not restricted to causal relations between source
and reconstruction sequences.

III. RATE DISTORTION FUNCTION

The goal of this section is to formulate the rate distortion
function subject to a causal constraint on the reconstruction
Kernel, and then to derive the optimal casual reconstruction
kernel. Next, starting with the abstract formulation of the
mutual information between sequences Xn and Y n defined
via relative entropy, we will define the classical rate distor-
tion function, and then deduce from it the formulation of the
causal rate distortion function.
Given the source q̂i ∈ Q(Xi;Y0,i−1 × X0,i−1), i =
0, 1, ..., n, and a causal stochastic kernel qi ∈ Q(Yi;Y0,i−1×
X0,i) i = 0, 1, ..., n the joint measure P (dxn, dyn) and the
marginal measures, ν0,n(dyn) ∈ M1(Y0,n), µ0,n(dxn) ∈
M1(X0,n) are uniquely defined with probability one. Hence,
the directed information is also defined via

I(Xn → Y n)

=
n∑

i=0

∫

X0,n×Y0,n

log
(qi(dyi; yi−1, xi)

νi(dyi; yi−1)

)
P (dxi, dyi)

(III.2)

where P (dxn, dyn) = ⊗n
i=0qi(dyi; yi−1xi) ⊗

q̂i(dxi; xi−1yi−1) Hence, the following rate distortion
definition.

Definition 3.1: Let ρj : X0,j × Y0,j → [0,∞) be a se-
quence of B(X0,j)×B(Y0,j) measurable distortion functions
continuous in the second argument, 0 ≤ j ≤ n, and let−→
Q0,n(D) denote the average distortion function defined by

−→
Q0,n(D) =

{
qi(dyi; yi−1xi), 0 ≤ j ≤ n :

1
n + 1

n∑

j=0

∫

X0,j

∫

Y0,j

ρj(xj , yj)P (dxj , dyj) ≤ D
}

The causal rate distortion function is defined by

−→
R 0,n(D) = inf

{qi(dyj ;yj−1,xj)}n
j=0∈

−→
Q 0,n(D)

1
n + 1

I(Xn → Y n)

The rate distortion function is made precise by first identi-
fying the appropriate spaces on which existence of solution
to −→

R 0,n(D) is sought, and equivalence between the con-
strained and unconstrained problems is shown. The claim is
that at least for the case when the source is independent
of the reconstruction sequence, e.g, q̂i(dxi; xi−1yi−1) =
µi(dxi;xi−1), P-a.s., ∀i, then the weak∗ convergence found
in [16] is sufficient to establish the above mentioned results.
However, in the current paper this issue will not be discussed.
Rather, the subsequent results will be based on the following
assumption.

Assumptions 3.2: Appropriate conditions are assumed so
that the constrained problem −→

R 0,n(D) is equivalent to the
unconstrained problem, specifically, it is assumed that

−→
R 0,n(D) = sup

s≤0
inf

{qj(dyj ;yj−1,xj)∈Q(Yj ;Y0,j−1×Xj)}n
j=0

=
{ 1

n + 1
I(Xn → Y n)

−s
( 1

n + 1

∫

X0,j

∫

Y0,j

ρj(xj , yj)P (dxj , dyj)−D
)}

Next, the main result of the paper are presented.
Theorem 3.3: Suppose Assumptions 3.2 hold.

The optimal reconstruction Kernel which achieves the infi-
mum of the rate distortion function is given by

q∗t (dyt; xt, yt−1) =
esρt(x

t,yt)ν∗t (dyt; yt−1)∫
Yt

esρt(xt,yt)ν∗t (dyt; yt−1)
, (III.3)

where s ≤ 0 and denotes the solution of s = d
dD

−→
Rn(D).

The information rate distortion function is given by

−→
Rn(D) = sD − 1

n + 1

n∑
t=0

∫

X0,t×Y0,t−1

log

( ∫

Yt

esρt(x
t,yt)ν∗t (dyt; yt−1)

)
q̂t(dxt; yt−1, xt−1)

t−1⊗

i=0

q∗i (dyi; xi, yi−1)⊗ q̂i(dxi; yi−1, xi−1) (III.4)

Proof: Consider {qt(dyt;xt, yt−1) : t = 0, .., n} ∈ −→
Q(D).

then

1
n + 1

∫

Y0×X0

( n∑
t=0

ρt(xt, yt)
)
P (dxn, dyn) ≤ D (III.5)

which is equivalent to

1
n+1

∑n
t=0

∫
Y0,t×X0,t

ρt(xt, yt)
⊗t

i=0 qi(dyi; xi, yi−1)⊗

q̂i(dxi; yi−1, xi−1) = 1
n+1

∑n
t=0

∫
X0,t×X0,t

ρt(xt, yt)

qt(dyt; xt, yt−1)⊗ q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0

qi(dyi; xi, yi−1)⊗ q̂i(dxi; yi−1, xi−1) ≤ D.

(III.6)
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Define the relative entropy of measure P with respect to
measure Q as D(P ||Q) =

∫
log

(
dP
dQ )dP if P << Q and ∞

otherwise. Then

1
n+1I(Xn → Y n) = 1

n+1

∑n
t=0

∫
X0,t×Y0,t

log qt(dyt;x
t,yt−1)

νt(dyt;yt−1) P (dxt, dyt) = 1
n+1

∑n
t=0

∫
X0,t×Y0,t

log qt(dyt;x
t,yt−1)

νt(dyt;yt−1)

⊗t
i=0 qi(dyi;xi, yi−1)

⊗q̂i(dxi; yi−1, xi−1) = 1
n+1

∑n
t=0

∫
X0,t×Y0,t−1

D(qt(.; xt, yt−1)||νt(.; yt−1))q̂t(dxt; yt−1, xt−1)

⊗t−1
i=0 qi(dyi; xi, yi−1)⊗ q̂i(dxi; yi, xi−1)

(III.7)

Minimizing (III.7) subject to fidelity constraint (III.6)
is addressed via the Lagrangian method. The Lagrangian
associated with constraint optimization problem −→

Rn(D)|R,
is defined by

L({qt(dyt; xt, yt−1)}n
t=0, s)

4
=

{
1

n+1I(Xn → Y n)

−s
(

1
n+1

∫
Y0,n×X0,n

( ∑n
t=0 ρt(xt, yt)

)
P (dxn, dyn)−D

)}

where s ≤ 0 is the Lagrangian multiplier associated with the
fidelity constraint. The dual functional is

L({q∗t (dYt;xt, yt−1)}n
t=0, s

∗)
= sup

s≤0
inf

{qt(dyt;xt,yt−1)}n
t=0

L({qt(dyt; xt, yt−1)}n
t=0, s)

Notice that under 3.2 −→
Rn(D) =

sups≤0 inf{qt(dyt;xt,yt−1)}n
t=0

L({qt(dyt;xt, yt−1)}n
t=0, s).

Consider the Lagrangian

L({qt(dyt; xt, yt−1)}n
t=0, s) = sD + 1

n+1

∑T−1
t=0

∫
X0,t⊗Y0,t

log

(
qt(dyt;x

t,yt−1)

q∗t (dyt;xt,yt−1)

q∗t (dyt;x
t,yt−1)

νt(dyt;y
t−1)

)
qt(dyt; xt, yt−1)⊗

q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)q̂i(dxi; y

i−1, xi−1)

− s
n+1

∑n
t=0

∫
Y0,t⊗X0,t

ρt(xt, yt)qt(dyt; xt, yt−1)

⊗q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)⊗ q̂i(dxi; y

i−1, xi−1)

= sD + 1
n+1

∑n
t=0

∫
X0,t⊗Y0,t−1

D(
qt(·;xt,yt−1)

q∗t (·;xt,yt−1)
)

⊗q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)q̂i(dxi; y

i−1, xi−1)

+ 1
n+1

∑n
t=0

∫
X0,t⊗Y0,t

log

(
q∗t (dyt;x

t,yt−1)

νt(dyt;yt−1)

)
qt(dyt; xt, yt−1)

⊗q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)⊗ q̂i(dxi; y

i−1, xi−1)

− s
n+1

∑n
t=0

∫
Y0,t⊗X0,t

ρt(xt, yt)qt(dyt; xt, yt−1)

⊗q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)⊗ q̂i(dxi; y

i−1, xi−1)

≥ sD + 1
n+1

∑n
t=0

∫
X0,t⊗Y0,t

log

(
q∗t (dyt;x

t,yt−1)

νt(dyt;y
t−1)

)
qt(dyt; xt, yt−1)

⊗q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)⊗ q̂i(dxi; y

i−1, xi−1)

− s
n+1

∑n
t=0

∫
Y0,t⊗X0,t

ρt(xt, yt)qt(dyt; xt, yt−1)

⊗q̂t(dxt; yt−1, xt−1)
⊗t−1

i=0 qi(dyi; x
i, yi−1)⊗ q̂i(dxi; y

i−1xi−1)

where the last inequality holds because D( q(.;xt,yt−1)
q∗(.;xt,yt−1) ) ≥

0, P − a.s.. Moreover, the above inequality is achieved
by letting {qt(dyt; xt, yt−1) = q∗t (dyt; xt, yt−1)}n

t=0 given
bx (III.3), while s ≤ 0, is found by the rate distortion
constraint. Substituting (III.3) into L({qt(dyt; xt, yt)}n

t=0, s)
yields (III.4). Taking the derivative with respect to D of the
rate distortion function gives s.

Remark 3.4: Notice that the optimal reconstruction kernel
(III.3) is causal, hence decoding can be done without waiting
to receive the entire sequence xn before the symbol yi, i ≤
n is reconstructed. The general solution also deals with
applications in which the source is independent of the recon-
struction, that is q̂j(dxj ;xj−1, yj−1) = µj(dxj ; xj−1), P-a.s
∀i. in the above expressions. This situation corresponds to
Figure II.1 in which there is no feedback between the decoder
output and the source. Suppose the source is independent of
the reconstruction sequence, that is q̂j(dxj ; xj−1, yj−1) =
µj(dxj ;xj−1), P-a.s ∀i. Then the function spaces consid-
ering in [16] are applicable, existence of solution can be
shown using weak∗ convergence, and the constraint and
unconstraint problems are equivalent (e.g, Assumptions 3.2
hold).

IV. CONCLUSION AND FUTURE WORK

This paper investigates optimal causal data compression for
general sources. The optimal reconstruction kernel is derived,
which depends causally on the source output sequence. The
material are fundamental and may expanded for the analysis
and design of control systems in which feedback is accessible
only through a limited rate communication channel.
Future work will investigate 1) conditions under which
constrained and unconstrained problems are equivalent, 2)
operational meaning of the causal rate distortion function, 3)
and new examples of optimal quantization derived via the
optimal causal reconstruction kernel.
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