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Problems related to combinatorial configurations with applications to
P2P-user private information retrieval

Maria Bras-Amoros, Klara Stokes, Marcus Greferath

Abstract—We explain the applications that combinatorial II. ON THE EXISTENCE OF COMBINATORIAL
configurations have to peer-to-peer user-private information CONFIGURATIONS
retrieval and we analyze some problems that arise from . . ) . .
these applications. In particular we deal with the existence N the literature a combinatorial configuration [10] (or a

of combinatorial configurations, the characterization of opti- partial linear space [3]) is defined as a particular case of a
mal configurations for peer-to-peer user-private information  so-called incidence structure. Here, for simplicity, we chose
retrieval and the existence of configurations preventing collusion {5 define it as a particular case of bipartite graph. Since
attacks of dishonest users. L . . .
incidence structures and bipartite graphs are essentially the
same, our choice to use bipartite graphs does not introduce
any ambiguity. We define &, b, r, k)-combinatorial config-
uration as a connected bipartite graph witkiertices on one
side, each of them of degree andb vertices on the other

In the previous years some effort has been done for findirgde’ each of them of degréeand with no cycle of length.
systems guaranteeing private information retrieval (PIR) in There are many results on the existence of combinatorial
front of a data_base ora sear_ch engine [2].. The aim is th%nfigurations. For instance in Gropp’s papers [7], [8], [9],
the server owning the information to be retrieved should ncﬁo] and in Griinbaum’s book [11]. Gropp states in his

learn what the queries are. A major problem is the need fQgferences that the next two conditions are necessary for the
the cooperation of the server, which in most of the scenarioRsistence of dv, b, r, k)-configuration:

is not likely to occur. Pl ur—bk

Instead of hiding the queries we can try to hide the profile p, - r(k—1)+1
of the users. This is what we call user-private information -

. : In particular, fork = 3 he proves that P1 and P2 are
retrieval (UPIR). Or)e can define UPIR systems that do n%tISO sufficient. The next theorem by Gropp guarantees the
need the cooperation of the server by means of a peer

. existence of large configurations and, in fact, the existence
to-peer community [5], [6], [16]. Indeed, a peer as a user ' . e " .
of any configuration satisfying the necessary conditions with

can submit queries on behalf of other peers and get t%efficiently largev (and sob). Its limitation is the restriction
answers to her/his own queries through other peers. In [5], [otu the choice of the parametersk

users are distributed among different private communication
spaces using combinatorial configurations [10] (also callefheorem 1 (Gropp) For givenk andr with » = tk there
(r, k)-partial linear spaces). This implies that all users shaiis a v, depending onk, ¢ such that there is gv,b,r, k)-
the same number of communication spaces, each of themenfiguration for allv > v, satisfying P1 and P2.

communication space is shared by the same number of user

and, most important, no two users share more than %at for any fixedk > 2 and forany fixed r» > 2, the set of
commgmcaﬂo_n Space' _ tuples(v, b) for which a(v, b, r, k)-combinatorial configura-
In this contribution we will evaluate three problems relateq;qy exists is in bijection with a numerical semigroup. This
to P2P-UPIR and we will give some solutions. In Section '|mp|ies that, for a fixed number of users per communica-
we deal with the first problem that one has when trying t¢q, space and a fixed numberof communication spaces
use the protocol in [5], [6]. It consists not only of beingper yser, there exists a community sigesuch that there will
able to find combinatorial configurations but also to segyist configurations with parameteesr for any community

whether these objects can exist for large communities @f;e ., Jarger thanv,, provided thatk dividesvr. The proof
users. In Section Il we will deal with the problem of s phased on [1] and is constructive.

characterizing what are the optimal configurations for P2P- _ _
UPIR as for guaranteeing maximum privacy and minimurd. The submonoid dfr, k)-configurable tuples

storage. Finally in Section IV we study the existence opbefinition 1. We say that the tuple, b, r, k) is configurable
configurations that prevent from collusion attacks. if a (v,b,r, k) configuration exists.

I. INTRODUCTION

Tn this section we will generalize this result by showing

It is immediate to prove that ifv, b, r, k) is configurable
This work was partly supported by the Spanish Government througthen vr = bk and consequently there existissuch that
projects TIN2009-11689 “RIPUP” and CONSOLIDER INGENIO 2010 k _ " '
CSD2007-00004 “ARES", and by the Government of Catalonia under graft — ¢geacmy and b = dseatrmy - SO 10 each conf_lgurable
2009 SGR 1135. tuple (v, b, r, k) we can assign an integérand two different
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Fig. 1. Construction of a connecteiregular graph withl0 vertices Fig. 2. Construction of a connectegdregular graph withl0 vertices

configurable tuplesv, b, , k) will have different integersl.  edges iskb/2 this means thakb must be even and sinde
Let us callD,., the set of all possible integedscorrespond- is oddb must be even.
ing to configurable tuplegv, b, r, k). That is, Conversely, supposieis even ant > k + 1. Consider a
set of verticesey, ..., x,. Put an edge betweer;, andx;,
D, ={deNy: (dm,dm,r,k) is configurablg¢.  with ¢ < j,if j—i < (k—1)/20ri+b—j < (k—1)/2.
o _ _ Put also edges between andx;;/, for i from 1 to b/2.
Our aim is to studyD, ;. We will consider the empty This gives a connectek-regular graph withb vertices.
graph to be also a configuration and consequently D, The construction in this last proof is illutrated in Figure 2.
for all pair r, k. ObviouslyD,.;, = Dy, , and D, = {0, k}.
We will prove that if r,k > 1 then D, ; is a numerical
semigroup, that is, a subset§f containing0, closed under Dy = E+1 k+1 1 k+1 9 1
addition and with a finite complement iNy. A general 2k 2 72 2 o)
reference on numerical semigroups is [12]alf...,a; are ¢ Tnhe case > 3, k>3

Corollary 2. If k is an odd positive integer then

coprime then the sefnia; + ...+ nja; : ny,...,n; € No} . L
is a numerical semigroup and it is called the semigrouwl) Thg tshetDTv’“t's nor|1t-ttr)|V|gl. hs 113
generated by, ..., a, and denoted bya, ..., a;). e need the next result by Sachs [13].

In the next section we will give a complete description olL.emma 3. For any integem > 3 and anyy > 2 there exists
D, ;, and in the following one we will study the case> 3.  an n-regular graph with girth at leasty.

B. The case =2 Now we are ready to prove thdd, ; is non-trivial.

There is a natural bijection betweeriv,b,2,k)- | emma 4. For any pair of integers:, k, there exists at least
configurations andk-regular connected graphs with  5nhe non-zero integer i, ;, for all r, k.

vertices andv edges. Two vertices in the graph share

an edge if and only if the corresponding nodes in the Proof: The cases in whiclr <2 or k < 2 have been
configuration share a neighbor and viceversa. proved in the previous sections. So, we can assume thad

o andk > 3. Consider the complete bipartite grafil ;.. From
Lemma 1. Let k be an even positive integer. A connectegyasic graph theory we know that we can take a subset of
k-regular graph withb vertices exists if and only > k+1. ., 1 _ | edges ink,.; such that they connect all + k

Proof: By definition, anyk-regular graph must have a vertices and no cycle is formed (i.e., a generating tree). Let
number of vertices at leagt-+ 1. A be the set of thek —r — k4 1 remaining edges of, .

Conversely, suppode> k + 1. Consider a set of vertices Letn = rk —r —k + 1 be the number of edges in.
a1,..., 2. Put an edge between, and x;, with i < j, if Notice that since- andk are at leass thenn > 3. Consider

j—i<k/20ori+b—j < k/2. This gives a connected @nn-regular grapt; with girth at least as in Lemma 3 and
k-regular graph withb vertices. consider as many copies &f, ;, as vertices ini'. Associate

The construction in this last proofis illustrated in Figure 1€ach copy ofK. ;. to a different vertex inG. For each edge
i o e in G, take the copies of the graplis, ; corresponding
Corollary 1. If k£ is an even positive integer then to the ends ofe and swap one edgey in A in the first
Dop={(k+1,k+2,...,2k+1). copy and one edge’y’ in A in the second copy fary’ and
o 2’y (here we abused notation using the same lettefior
Lemma 2. Let k be an odd positive integer. A connectedyjigerent copies of it). This can be done in a way such that
k-regular graph withd vertices exists if and only if is even every time we take one edge ih corresponding to a given
andb >k + 1. copy of K, 1, the edge is different.
Proof: By definition, anyk-regular graph must have a It is easy to check that we obtain a non-trivial, k)-
number of vertices at least+ 1. Now, since the number of biregular bipartite graph with girth at least
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2) The setD, . is a numerical semigroup:

Lemma 5. Suppose we have(a, b, r, k)-configuration with
r,k > 2. There exist three edges in the configuration such
that the six ends are all different.

Proof: Since no cycle of length exists andr, k& > 2,
there exists a path with four edges with the five ends being
different. Three of these ends will be on one partition of the
graph while the other two will be in the other partition. Take
the vertex at the end of the path. It must be one of the three
in the same partition. Since its degree is at lexsthen it
will have one neighbor not in the path. So, by adding the
edge from the end of the path to this additional vertex, we
obtain a new path witth edges with all its vertices being
different. By taking the first, third, and fifth edges of this
new path we obtain the result.

This lemma tells us that the verticeey,..., 2y},
{y1,.-.,y} In a (v,b,r, k)-configuration withr > 3 can
be arranged in a way such that the edges;, z2y» and
x,yp belong to the configuration.

Suppose we have @, b, r, k)-configuration with vertices
{z1,... 2}, {y1,...,up} and a (v, V', r, k)-configuration
with vertices{z!, ..., 2}, {y1....,y;}. Consider the graph
with vertices {x1,...,x,} U {2}, ..., 20} {y1,..., o} U
{y1,...,y;} and all the edges in the original configurations.
Swap the edges,y, and z{y; for z,y) and z{y,. This Fig. 3. Construction of av + v/,b + ¥, r, k) configuration from a
gives a(v+v', b+, r, k) configuration [6]. An example of (v;b,7,k) configuration and &', ¢/, r, k) configuration.
this construction is illustrated in Figure 3. This construction
proves the next lemma.

Verticeszy, ..., ¥ yeq(rx) @NAr/ ged(r, k) further vertices
/ / T ’ . .
Lerlnma 6._ If (u,b/,v;k)bfandk(u 0 r k) are configurable i 7y;/g6d(nk). For alli < s swap the edge:sff)yff) and
tuples, S0 is(v + v', b+ ', 1 k). (i+1), (1) g0 (0, (+1) oo g (+1), ()
zy " yp o foray’y; T andzy Uy, 7. Remove the edges
Lemma 7. D, satisfies 2y ys) for all i < s. Add the edges
° 0 6 Dr,k xllyél)) 37/1952)7 cey mllyér)a

e Ifd,d € D, thend+d € D, .

x (H_l), x (TH), T (2"),

Proof: It is obvious that) € D, , and, by Lemma 6, 292 292 242

if d,d € D, thend+d € D, .
In order to have a numerical semigroup it remains to see )

that the number of elements Ny \ D, is finite. This will T geatray s T T e YS
be proved in the next theorem. In the proof of the theorerg
it is used that two coprime integers generate a numerical' 1, (2 (k)
semigroup and so, if a subset containingnd closed under 2 Jlr2 Jlrray I

iti i i i it i i k+1 k+2 2k
addition contains two coprime integers then it is a numerical 1:(2 + )y/%g:é Dy ’I(Q b,
semigroup.
Theorem 2. D, ; is a numerical semigroup.

. . . (s—k+1) (s)
Proof: Because of the results in the previous sections Lo y?/ ged(r,k)r -0 T2 y;/ ged(r,k)

we can assume thatandg are at leasg. o This construction is illustrated in Figure 4. It is easy to
By Lemma 4 and sinceD, , C N, there is a minimal cnheck that this is a new configuration with parameters+
non-zero elemente in D, ;. Let us callv = mk/ ged(r, k) k/ ged(r, k), sb + r/ ged(r, k),r, k) = (smk/ ged(r, k) +
andb = mr/ ng(T, k) Select a(v, b,r, ]{3) configuration. k/ ng(’I“, k), smr/ ng(?‘, k’) 4 ’I“/ ng(?‘, k’), r, k) _ ((sm +
Take s = rk/ ged(r, k) copies of this configuration. Let us 1)k/ ged(r, k), (sm + 1)r/ ged(r, k), r, k) and sosm + 1 €
call the vertices of théth copyxg”, o, yi”, s yl@. D, .
By Lemma 5 we can assume that”y\”, 257y{" and Sincem andsm-+1 are coprime, they generate a numerical
:c,(u”y,(f) belong to theith copy. Considek/ ged(r, k) further  semigroup and this semigroup is containedZin,. So the
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against the database, are those for which
r(k—1)=v—1. 1)

These configurations exist, as is shown in the following
example withv = 9, b = 12, r = 4 and k = 3, where the
adjacency list of the users and the communication spaces are
given.

Ci1 . Uy Uy U3
Cy: U1 Ugq U
C3 . U1 Ug U7
Cqit U1 U U9
C; . U2 Ugq Ug

uy: €1 C2 C3 Cyq
U2 : C1 Ch Cg (&4
uz: €1 cCsg Co C10
Uyq - Co Cy Cs C11 .
. Cg . U2 U U8
Uus - Co Cg C9 C12 .
Cr7 . U2 U7 U9
Cg: U3 Ug U9
Cog: U3 U5 U7
Clo © U3 U US
Ci1 ¢ Ug U7 U

Ug : €3 C5 Cio C12
ur: €3 Cr Cg (11
ug: €4 Cg Cio C11
Ug: €4 C7 Cg C12

Ci2 ¢ Uz Ug Uy

Os () In the following lemma we see what relation and k
should keep for these configurations.

L ! Lemma 8. Given a configuration with(k —1) = v —1, we
always have: < r.

Fig. 4. Construction in the proof of Theorem 2. Dashed edges are replaced

by bold faced edges. Proof: Suppose as before that the usgris assigned

the communication spaces,...,c.. From the condition

r(k—1) =v—1 we get thatus, ..., u, are assigned to one
complement ofD, , in Ny is finite andD,.;, is a numerical and only one of the communication spaass. .., c,. We
semigroup. also suppose, without loss of generality, thatis assigned

As a consequence of the fact that the necessary conditidf}¢ communication spaces andc; with j > 7. Then each
P1, P2 are also sufficient fdr= 3 it is easy to deduce that Of the otherk —1 users assigned to the spacg should
Dyg = {0} U (252 ged(3,7) + No). The computation of be assigned to another space betwegmandc,. Therefore
examples for, k > 3 is computationally very hard. k—1<r—1and the result follows.

The main conclusion of this section is that for fixed N Our scenario, it is preferable if the number of memory
and there exist configurations for all parametérs large  SECtors: as well as the number of cryptographic keys is small,

enough provided thatr = bk. In [1] there are some bounds thatf_is ifb is sn;all. iuuk)\ = vy, SO we are interested in the

for the minimum values,, v, such that for alb > by, v > v, configurations for whic

satisfyingur = bk, a (v, b, r, k)-configuration exists. r— k. )
Another important fact is that our proofs are all construc-

tive and so we can derive algorithms for constructing largl? this case we also have that= b and therefore we are
configurations. dealing with symmetric configurations. We put= v = b

andd = r = k. From the condition (1) we deduce that
n = d?> —d+ 1 and we also have that every pair of users
share one and only one communication space while every
pair of communication spaces is assigned simultaneously to

We will show here that the optimal configurations forone and only one user. In the area of finite geometry these
P2P-UPIR are exactly the finite projective planes. The pro@onfigurations are called finite projective planes [15]. The
is based on the proof in [14]. We consider the P2P-UPIBrderq of the finite projective plane corresponds to the value
protocol of [5], [6] defined on a combinatorial configurationof d — 1. Hence the number of users (and memory sectors)
with v users,b communication spaces, and withusers per in the configuration, i.e. the number of points (and lines) in
communication space andcommunication spaces per user.the finite projective plane is =d> —d+1 =¢*> + ¢+ 1.

It is proved in [5], [6] that in the P2P UPIR system, the
privacy of the users against the database is an increasing/Ne conclude that the optimal configurations for the peer to
function of r(k — 1). But by the necessary condition P2,peer user private information retrieval are, indeed, the finite
we have thatr(k — 1) < v — 1. Hence, the optimal projective planes. It is known that finite projective planes of
configurations for the P2P UPIR, considering the privacgrder ¢ exist wheneverg is a power of a prime number,

I1l. THE OPTIMAL CONFIGURATIONS FORP2P-UPIRARE
THE FINITE PROJECTIVE PLANES
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but whengq is an integer in general the existence is nothe end of the path to this additional vertex, we obtain a
guaranteed. Actually there is not a single known exampleew path with7 edges with all its vertices being different
of a finite projective plane where is not a power of a and with the first and last vertices not being connected. By
prime. In [15] it is specified that the existence of finitetaking the first, fourth, and seventh edges of this new path
projective planes of arbitrary orders is one of the mostwe obtain the result.

difficult questions within finite geometry. Now we can state the main result of this section.

A . . .
IV. TRIANGLE-FREE CONFIGURATIONS FOR Theorem 3. D, is a numerical semigroup.

COLLUSION-FREEPZP-UPIR The proof of this theorem has been ommitted since it is

One problem that the UPIR system could have is thahe same proof as for Theorem 2, except that now Lemma 9
two dishonest users connected to an honest user througlys the role of Lemma 5.
two different communication spaces, could communicate As in Section Il the main conclusion of this section is
themselves through a third communication space and infefat for fixedr andk there exist triangle-free configurations
some joint information. This can be avoided by simplyfor all parameters, v large enough provided that- = bk.
avoiding circuits of lengtht in the bipartite graph repre- Also, since our proofs are all constructive, we can derive
senting the combinatorial configuration. The combinatoriadigorithms for constructing large triangle-free configurations.
configurations with girth larger tha6 are the so-called These configurations have the nice property that they prevent
triangle-free configurations @0, 1)-geometries [3], [4], [15]. from collusion attacks.

Definition 2. We say that the tuple, b, r, k) is triangle-free REFERENCES
configurable if _a(v, b, , k) triangle-free configuration exists. [1] M. Bras-Amor6s and K. Stokes. On the existence of combinatorial
We also define configurations. arXiv:0907.4230v2, 2009.
A [2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
D, ={deNo: information retrieval.Journal of the ACM45:965-981, 1998.
K i o . [3] F. De Clerck, J. A. Thas, and H. Van Maldeghem. Generalized
(dm, datrmy ™ k) is triangle-free configurable polygons and semipartial geometries, 1996. EIDMA minicourse.
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3,k > 3, by a proof paralleling that of Lemma 4. For the Science pages 315-323. Springer, 2008.
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. ara ropp. onsymmetric configurations with natural index.
graphs of girthd.
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We can compose triangle-free configurations as we com-  (Qawra, 1990).

posed general configurations before and deduce[ﬂjat is [9] Harald Gropp. Existence and enumeration of configuratiBayreuth.

.. . . . 4 Math. Schr, (74):123-129, 2005.
a non-trivial submonoid of the non-negative integers. [10] Harald Gropp. Handbook Of Combinatorial Designs (Charles J.

For the particular case = 2, k = 2, the triangle-free Colbourn and Jeffrey H. Dinitz ed.)hapter Configurations, pages

configurations are exactly all cycles with an even number Ofl] 353_3556- ?hé\pmag a?_d Hat'_'/CRC]; Ke_”:'em c'j*-I_ROS‘T”v ZOfgé .
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2009.

. [13] H. Sachs. Regular graphs with given girth and restricted circuits.
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figuration withr > 3 or k£ > 3. Then there exist three edges[14] K. Stokes and M. Bras-Amoros. Optimal configurations for peer-to-
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there exists a path with six edges starting and ending at appear.

different vertices of degree and with the seven ends being

different. Take the vertex at the end of the path. It will have

r — 1 > 2 neighbors not in the path. From those neighbors

not in the path at least one will furthermore be not connected

to the first vertex in the path. So, by adding the edge from
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