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Abstract— We explain the applications that combinatorial
configurations have to peer-to-peer user-private information
retrieval and we analyze some problems that arise from
these applications. In particular we deal with the existence
of combinatorial configurations, the characterization of opti-
mal configurations for peer-to-peer user-private information
retrieval and the existence of configurations preventing collusion
attacks of dishonest users.

I. I NTRODUCTION

In the previous years some effort has been done for finding
systems guaranteeing private information retrieval (PIR) in
front of a data base or a search engine [2]. The aim is that
the server owning the information to be retrieved should not
learn what the queries are. A major problem is the need for
the cooperation of the server, which in most of the scenarions
is not likely to occur.

Instead of hiding the queries we can try to hide the profile
of the users. This is what we call user-private information
retrieval (UPIR). One can define UPIR systems that do not
need the cooperation of the server by means of a peer-
to-peer community [5], [6], [16]. Indeed, a peer as a user
can submit queries on behalf of other peers and get the
answers to her/his own queries through other peers. In [5], [6]
users are distributed among different private communication
spaces using combinatorial configurations [10] (also called
(r, k)-partial linear spaces). This implies that all users share
the same number of communication spaces, each of these
communication space is shared by the same number of users
and, most important, no two users share more than one
communication space.

In this contribution we will evaluate three problems related
to P2P-UPIR and we will give some solutions. In Section II
we deal with the first problem that one has when trying to
use the protocol in [5], [6]. It consists not only of being
able to find combinatorial configurations but also to see
whether these objects can exist for large communities of
users. In Section III we will deal with the problem of
characterizing what are the optimal configurations for P2P-
UPIR as for guaranteeing maximum privacy and minimum
storage. Finally in Section IV we study the existence of
configurations that prevent from collusion attacks.
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2009 SGR 1135.

II. ON THE EXISTENCE OF COMBINATORIAL

CONFIGURATIONS

In the literature a combinatorial configuration [10] (or a
partial linear space [3]) is defined as a particular case of a
so-called incidence structure. Here, for simplicity, we chose
to define it as a particular case of bipartite graph. Since
incidence structures and bipartite graphs are essentially the
same, our choice to use bipartite graphs does not introduce
any ambiguity. We define a(v, b, r, k)-combinatorial config-
uration as a connected bipartite graph withv vertices on one
side, each of them of degreer, andb vertices on the other
side, each of them of degreek, and with no cycle of length4.

There are many results on the existence of combinatorial
configurations. For instance in Gropp’s papers [7], [8], [9],
[10] and in Grünbaum’s book [11]. Gropp states in his
references that the next two conditions are necessary for the
existence of a(v, b, r, k)-configuration:

P1 vr = bk
P2 v ≥ r(k − 1) + 1

In particular, fork = 3 he proves that P1 and P2 are
also sufficient. The next theorem by Gropp guarantees the
existence of large configurations and, in fact, the existence
of any configuration satisfying the necessary conditions with
sufficiently largev (and sob). Its limitation is the restriction
on the choice of the parametersr, k.

Theorem 1 (Gropp). For given k and r with r = tk there
is a v0 depending onk, t such that there is a(v, b, r, k)-
configuration for allv ≥ v0 satisfying P1 and P2.

In this section we will generalize this result by showing
that for any fixedk ≥ 2 and forany fixed r ≥ 2, the set of
tuples(v, b) for which a(v, b, r, k)-combinatorial configura-
tion exists is in bijection with a numerical semigroup. This
implies that, for a fixed numberk of users per communica-
tion space and a fixed numberr of communication spaces
per user, there exists a community sizev0 such that there will
exist configurations with parametersk, r for any community
sizev larger thanv0, provided thatk dividesvr. The proof
is based on [1] and is constructive.

A. The submonoid of(r, k)-configurable tuples

Definition 1. We say that the tuple(v, b, r, k) is configurable
if a (v, b, r, k) configuration exists.

It is immediate to prove that if(v, b, r, k) is configurable
then vr = bk and consequently there existsd such that
v = d k

gcd(r,k) and b = d r
gcd(r,k) . So, to each configurable

tuple(v, b, r, k) we can assign an integerd and two different
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Fig. 1. Construction of a connected4-regular graph with10 vertices

configurable tuples(v, b, r, k) will have different integersd.
Let us callDr,k the set of all possible integersd correspond-
ing to configurable tuples(v, b, r, k). That is,

Dr,k = {d ∈ N0 : (d k
gcd(r,k) , d

r
gcd(r,k) , r, k) is configurable}.

Our aim is to studyDr,k. We will consider the empty
graph to be also a configuration and consequently0 ∈ Dr,k

for all pair r, k. ObviouslyDr,k = Dk,r andD1,k = {0, k}.
We will prove that if r, k > 1 then Dr,k is a numerical
semigroup, that is, a subset ofN0 containing0, closed under
addition and with a finite complement inN0. A general
reference on numerical semigroups is [12]. Ifa1, . . . , al are
coprime then the set{n1a1 + . . . + nlal : n1, . . . , nl ∈ N0}
is a numerical semigroup and it is called the semigroup
generated bya1, . . . , an and denoted by〈a1, . . . , al〉.

In the next section we will give a complete description of
D2,k and in the following one we will study the caser ≥ 3.

B. The caser = 2

There is a natural bijection between(v, b, 2, k)-
configurations andk-regular connected graphs withb
vertices andv edges. Two vertices in the graph share
an edge if and only if the corresponding nodes in the
configuration share a neighbor and viceversa.

Lemma 1. Let k be an even positive integer. A connected
k-regular graph withb vertices exists if and only ifb ≥ k+1.

Proof: By definition, anyk-regular graph must have a
number of vertices at leastk + 1.

Conversely, supposeb ≥ k + 1. Consider a set of vertices
x1, . . . , xb. Put an edge betweenxi and xj , with i ≤ j, if
j − i ≤ k/2 or i + b − j ≤ k/2. This gives a connected
k-regular graph withb vertices.

The construction in this last proof is illustrated in Figure 1.

Corollary 1. If k is an even positive integer then

D2,k = 〈k + 1, k + 2, . . . , 2k + 1〉.

Lemma 2. Let k be an odd positive integer. A connected
k-regular graph withb vertices exists if and only ifb is even
and b ≥ k + 1.

Proof: By definition, anyk-regular graph must have a
number of vertices at leastk + 1. Now, since the number of
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Fig. 2. Construction of a connected5-regular graph with10 vertices

edges iskb/2 this means thatkb must be even and sincek
is oddb must be even.

Conversely, supposeb is even andb ≥ k + 1. Consider a
set of verticesx1, . . . , xb. Put an edge betweenxi and xj ,
with i ≤ j, if j − i ≤ (k − 1)/2 or i + b − j ≤ (k − 1)/2.
Put also edges betweenxi andxi+b/2 for i from 1 to b/2.
This gives a connectedk-regular graph withb vertices.

The construction in this last proof is illutrated in Figure 2.

Corollary 2. If k is an odd positive integer then

D2,k =

〈

k + 1

2
,
k + 1

2
+ 1,

k + 1

2
+ 2, . . . , k

〉

.

C. The caser ≥ 3, k ≥ 3

1) The setDr,k is non-trivial:
We need the next result by Sachs [13].

Lemma 3. For any integern ≥ 3 and anyγ ≥ 2 there exists
an n-regular graph with girth at leastγ.

Now we are ready to prove thatDr,k is non-trivial.

Lemma 4. For any pair of integersr, k, there exists at least
one non-zero integer inDr,k for all r, k.

Proof: The cases in whichr ≤ 2 or k ≤ 2 have been
proved in the previous sections. So, we can assume thatr ≥ 3
andk ≥ 3. Consider the complete bipartite graphKr,k. From
basic graph theory we know that we can take a subset of
r + k − 1 edges inKr,k such that they connect allr + k
vertices and no cycle is formed (i.e., a generating tree). Let
A be the set of therk− r− k + 1 remaining edges ofKr,k.

Let n = rk − r − k + 1 be the number of edges inA.
Notice that sincer andk are at least3 thenn ≥ 3. Consider
ann-regular graphG with girth at least5 as in Lemma 3 and
consider as many copies ofKr,k as vertices inG. Associate
each copy ofKr,k to a different vertex inG. For each edge
e in G, take the copies of the graphsKr,k corresponding
to the ends ofe and swap one edgexy in A in the first
copy and one edgex′y′ in A in the second copy forxy′ and
x′y (here we abused notation using the same letterA for
different copies of it). This can be done in a way such that
every time we take one edge inA corresponding to a given
copy of Kr,k, the edge is different.

It is easy to check that we obtain a non-trivial(r, k)-
biregular bipartite graph with girth at least5.
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2) The setDr,k is a numerical semigroup:

Lemma 5. Suppose we have a(v, b, r, k)-configuration with
r, k ≥ 2. There exist three edges in the configuration such
that the six ends are all different.

Proof: Since no cycle of length4 exists andr, k ≥ 2,
there exists a path with four edges with the five ends being
different. Three of these ends will be on one partition of the
graph while the other two will be in the other partition. Take
the vertex at the end of the path. It must be one of the three
in the same partition. Since its degree is at least2, then it
will have one neighbor not in the path. So, by adding the
edge from the end of the path to this additional vertex, we
obtain a new path with5 edges with all its vertices being
different. By taking the first, third, and fifth edges of this
new path we obtain the result.

This lemma tells us that the vertices{x1, . . . , xv},
{y1, . . . , yb} in a (v, b, r, k)-configuration withr ≥ 3 can
be arranged in a way such that the edgesx1y1, x2y2 and
xvyb belong to the configuration.

Suppose we have a(v, b, r, k)-configuration with vertices
{x1, . . . , xv}, {y1, . . . , yb} and a (v′, b′, r, k)-configuration
with vertices{x′

1, . . . , x
′
v}, {y′

1, . . . , y
′

b}. Consider the graph
with vertices{x1, . . . , xv} ∪ {x′

1, . . . , x
′
v}, {y1, . . . , yb} ∪

{y′
1, . . . , y

′

b} and all the edges in the original configurations.
Swap the edgesxvyb and x′

1y
′
1 for xvy′

1 and x′
1yb. This

gives a(v + v′, b+ b′, r, k) configuration [6]. An example of
this construction is illustrated in Figure 3. This construction
proves the next lemma.

Lemma 6. If (v, b, r, k) and (v′, b′, r, k) are configurable
tuples, so is(v + v′, b + b′, r, k).

Lemma 7. Dr,k satisfies

• 0 ∈ Dr,k

• If d, d′ ∈ Dr,k thend + d′ ∈ Dr,k.

Proof: It is obvious that0 ∈ Dr,k and, by Lemma 6,
if d, d′ ∈ Dr,k thend + d′ ∈ Dr,k.

In order to have a numerical semigroup it remains to see
that the number of elements inN0 \Dr,k is finite. This will
be proved in the next theorem. In the proof of the theorem
it is used that two coprime integers generate a numerical
semigroup and so, if a subset containing0 and closed under
addition contains two coprime integers then it is a numerical
semigroup.

Theorem 2. Dr,k is a numerical semigroup.

Proof: Because of the results in the previous sections
we can assume thatr andg are at least3.

By Lemma 4 and sinceDr,k ⊆ N, there is a minimal
non-zero elementm in Dr,k. Let us callv = mk/ gcd(r, k)
and b = mr/ gcd(r, k). Select a(v, b, r, k) configuration.
Take s = rk/ gcd(r, k) copies of this configuration. Let us
call the vertices of theith copyx

(i)
1 , . . . , x

(i)
v , y

(i)
1 , . . . , y

(i)
b .

By Lemma 5 we can assume thatx
(i)
1 y

(i)
1 , x

(i)
2 y

(i)
2 and

x
(i)
v y

(i)
b belong to theith copy. Considerk/ gcd(r, k) further
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Fig. 3. Construction of a(v + v′, b + b′, r, k) configuration from a
(v, b, r, k) configuration and a(v′, b′, r, k) configuration.

verticesx′
1, . . . , x

′

k/ gcd(r,k) andr/ gcd(r, k) further vertices

y′
1, . . . , y

′

r/ gcd(r,k). For all i < s swap the edgesx(i)
v y

(i)
b and

x
(i+1)
1 y

(i+1)
1 for x

(i)
v y

(i+1)
1 andx

(i+1)
1 y

(i)
b . Remove the edges

x
(i)
2 y

(i)
2 for all i ≤ s. Add the edges

x′

1y
(1)
2 , x′

1y
(2)
2 , . . . , x′

1y
(r)
2 ,

x′

2y
(r+1)
2 , x′

2y
(r+2)
2 , . . . , x′

2y
(2r)
2 ,

...

x′

k/ gcd(r,k)y
(s−r+1)
2 , . . . , x′

k/ gcd(r,k)y
(s)
2

and
x

(1)
2 y′

1, x
(2)
2 y′

1, . . . , x
(k)
2 y′

1,

x
(k+1)
2 y′

2, x
(k+2)
2 y′

2, . . . , x
(2k)
2 y′

2,

...

x
(s−k+1)
2 y′

r/ gcd(r,k), . . . , x
(s)
2 y′

r/ gcd(r,k).

This construction is illustrated in Figure 4. It is easy to
check that this is a new configuration with parameters(sv +
k/ gcd(r, k), sb + r/ gcd(r, k), r, k) = (smk/ gcd(r, k) +
k/ gcd(r, k), smr/ gcd(r, k) + r/ gcd(r, k), r, k) = ((sm +
1)k/ gcd(r, k), (sm + 1)r/ gcd(r, k), r, k) and sosm + 1 ∈
Dr,k.

Sincem andsm+1 are coprime, they generate a numerical
semigroup and this semigroup is contained inDr,k. So the
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Fig. 4. Construction in the proof of Theorem 2. Dashed edges are replaced
by bold faced edges.

complement ofDr,k in N0 is finite andDr,k is a numerical
semigroup.

As a consequence of the fact that the necessary conditions
P1, P2 are also sufficient fork = 3 it is easy to deduce that
Dr,k = {0} ∪ (2r+1

3 gcd(3, r) + N0). The computation of
examples forr, k > 3 is computationally very hard.

The main conclusion of this section is that for fixedr
andk there exist configurations for all parametersb, v large
enough provided thatvr = bk. In [1] there are some bounds
for the minimum valuesb0, v0 such that for allb ≥ b0, v ≥ v0

satisfyingvr = bk, a (v, b, r, k)-configuration exists.
Another important fact is that our proofs are all construc-

tive and so we can derive algorithms for constructing large
configurations.

III. T HE OPTIMAL CONFIGURATIONS FORP2P-UPIRARE

THE FINITE PROJECTIVE PLANES

We will show here that the optimal configurations for
P2P-UPIR are exactly the finite projective planes. The proof
is based on the proof in [14]. We consider the P2P-UPIR
protocol of [5], [6] defined on a combinatorial configuration
with v users,b communication spaces, and withk users per
communication space andr communication spaces per user.

It is proved in [5], [6] that in the P2P UPIR system, the
privacy of the users against the database is an increasing
function of r(k − 1). But by the necessary condition P2,
we have thatr(k − 1) ≤ v − 1. Hence, the optimal
configurations for the P2P UPIR, considering the privacy

against the database, are those for which

r(k − 1) = v − 1. (1)

These configurations exist, as is shown in the following
example withv = 9, b = 12, r = 4 and k = 3, where the
adjacency list of the users and the communication spaces are
given.

u1 : c1 c2 c3 c4

u2 : c1 c5 c6 c7

u3 : c1 c8 c9 c10

u4 : c2 c5 c8 c11

u5 : c2 c6 c9 c12

u6 : c3 c5 c10 c12

u7 : c3 c7 c9 c11

u8 : c4 c6 c10 c11

u9 : c4 c7 c8 c12

c1 : u1 u2 u3

c2 : u1 u4 u5

c3 : u1 u6 u7

c4 : u1 u8 u9

c5 : u2 u4 u6

c6 : u2 u5 u8

c7 : u2 u7 u9

c8 : u3 u4 u9

c9 : u3 u5 u7

c10 : u3 u6 u8

c11 : u4 u7 u8

c12 : u5 u6 u9

In the following lemma we see what relationr and k
should keep for these configurations.

Lemma 8. Given a configuration withr(k− 1) = v− 1, we
always havek ≤ r.

Proof: Suppose as before that the useru1 is assigned
the communication spacesc1, . . . , cr. From the condition
r(k − 1) = v − 1 we get thatu2, . . . , uv are assigned to one
and only one of the communication spacesc1, . . . , cr. We
also suppose, without loss of generality, thatu2 is assigned
the communication spacesc1 andcj with j > r. Then each
of the otherk − 1 users assigned to the spacecj , should
be assigned to another space betweenc2 and cr. Therefore
k − 1 ≤ r − 1 and the result follows.

In our scenario, it is preferable if the number of memory
sectors, as well as the number of cryptographic keys is small,
that is if b is small. Butb = v r

k , so we are interested in the
configurations for which

r = k. (2)

In this case we also have thatv = b and therefore we are
dealing with symmetric configurations. We putn = v = b
and d = r = k. From the condition (1) we deduce that
n = d2 − d + 1 and we also have that every pair of users
share one and only one communication space while every
pair of communication spaces is assigned simultaneously to
one and only one user. In the area of finite geometry these
configurations are called finite projective planes [15]. The
orderq of the finite projective plane corresponds to the value
of d − 1. Hence the number of users (and memory sectors)
in the configuration, i.e. the number of points (and lines) in
the finite projective plane isn = d2 − d + 1 = q2 + q + 1.

We conclude that the optimal configurations for the peer to
peer user private information retrieval are, indeed, the finite
projective planes. It is known that finite projective planes of
order q exist wheneverq is a power of a prime number,
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but when q is an integer in general the existence is not
guaranteed. Actually there is not a single known example
of a finite projective plane whereq is not a power of a
prime. In [15] it is specified that the existence of finite
projective planes of arbitrary orders is one of the most
difficult questions within finite geometry.

IV. T RIANGLE-FREE CONFIGURATIONS FOR

COLLUSION-FREEP2P-UPIR

One problem that the UPIR system could have is that
two dishonest users connected to an honest user through
two different communication spaces, could communicate
themselves through a third communication space and infer
some joint information. This can be avoided by simply
avoiding circuits of length6 in the bipartite graph repre-
senting the combinatorial configuration. The combinatorial
configurations with girth larger than6 are the so-called
triangle-free configurations or(0, 1)-geometries [3], [4], [15].

Definition 2. We say that the tuple(v, b, r, k) is triangle-free
configurable if a(v, b, r, k) triangle-free configuration exists.

We also define

D△

r,k = {d ∈ N0 :

(d k
gcd(r,k) , d

r
gcd(r,k) , r, k) is triangle-free configurable}.

Using the existence of regular graphs of girth at least7
and any degree (Lemma 3) we can demonstrate the existence
of triangle-free configurations of each given parametersr ≥
3, k ≥ 3, by a proof paralleling that of Lemma 4. For the
particular caser = 2, for anyk ≥ 2 the hypercube graphQk

is k-regular and has girth4. So, it corresponds to a(2, k)-
configuration with girth8. In fact, if k ≥ 3 then Sachs’ result
(Lemma 3) already guarantees the existence ofk-regular
graphs of girth4.

We can compose triangle-free configurations as we com-
posed general configurations before and deduce thatD△

r,k is
a non-trivial submonoid of the non-negative integers.

For the particular caser = 2, k = 2, the triangle-free
configurations are exactly all cycles with an even number of
edges larger than or equal to8. So,D△

2,2 = 〈4, 5, 6, 7〉.
Now, in order to provide a version of Theorem 2

for triangle-free configurations, we need to reformulate
Lemma 5 as follows.

Lemma 9. Suppose we have a(v, b, r, k)-triangle-free con-
figuration withr ≥ 3 or k ≥ 3. Then there exist three edges
x1y1, x2y2, x3y3 in the configuration such that the six ends
are all different and such thatxiyj is not in the configuration
if i 6= j.

Proof: We can assume thatr ≥ 3 without loss of
generality. Since no cycle of length6 exists andr ≥ 2, k ≥ 2,
there exists a path with six edges starting and ending at
different vertices of degreer, and with the seven ends being
different. Take the vertex at the end of the path. It will have
r − 1 ≥ 2 neighbors not in the path. From those neighbors
not in the path at least one will furthermore be not connected
to the first vertex in the path. So, by adding the edge from

the end of the path to this additional vertex, we obtain a
new path with7 edges with all its vertices being different
and with the first and last vertices not being connected. By
taking the first, fourth, and seventh edges of this new path
we obtain the result.

Now we can state the main result of this section.

Theorem 3. D△

r,k is a numerical semigroup.

The proof of this theorem has been ommitted since it is
the same proof as for Theorem 2, except that now Lemma 9
plays the role of Lemma 5.

As in Section II the main conclusion of this section is
that for fixedr andk there exist triangle-free configurations
for all parametersb, v large enough provided thatvr = bk.
Also, since our proofs are all constructive, we can derive
algorithms for constructing large triangle-free configurations.
These configurations have the nice property that they prevent
from collusion attacks.
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