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Efficient Model Predictive Control for Linear Periodic Systems

Andreas Freuer, Marcus Reble, Christoph Bohm, and Frank Allgdwer

Abstract— This paper proposes a novel model predictive idea is to use a pre-determined feedback law and calculate
control scheme for the stabilization of constrained linear period-  gnline superimposed control moves using the current state
ically time-varying systems. The results are based on an existing jnformation along the lines of [19]. An extended state

Model Predictive Control scheme for uncertain linear systems d of th iginal t tat d fut £ trol
using linear matrix inequalities. A pre-determined periodic COMPOSEC ot the original systeém State and future iree contro

feedback control law is used in combination with superimposed MoVes is introduced. The concept of pre-determined periodic
free control moves as additional degrees of freedom. Only invariant sets in the extended state space plays a crucial
the additional free control moves are calculated online taking part in order to guarantee properties such as feasibility
advantage of pre-computed periodic invariant sets. Two simple 54 constraint satisfaction. The invariance property yields
algorithms are pr_es_ente(_j for calculz_itlng offline ellipsoidal or f ibility of fut timizati bl ided that th
polyhedral periodic invariant sets. Since only a small nhumber easibiity of Tuture optimization probiems provided that the
of free control moves is calculated online by solving a convex €xtended state is contained within the periodic invariant
optimization problem after each time period, the computational sets. Furthermore, constraint satisfaction is ensured under
cost can be reduced significantly compared to existing schemes. the assumption that these invariant sets are calculated to
be subsets of the constraint sets. As in [23], stability and
optimality are achieved by the constraint of calculating the
superimposed control moves such that the upper bound of an

Linear periodic dynamics are found in many real technicahfinite horizon objective is minimized. There are essentially
and nontechnical systems. Examples of periodic systems awo ways for calculating these sets, namely calculation
given by the rotor motion of wind-turbines [13] and heli-of ellipsoidal invariant sets [19] or polyhedral invariant
copters [1], compressors of jet engines [14], input-multirateets [20—25]. In this paper, we investigate and compare both
systems [15] and models of economical systems [10]. approaches for periodic systems.

Several different approaches for the control of linear The remainder of the paper is organized as follows: In
periodic systems have been published. Output feedback sgection Il, the considered control problem is presented. Nec-
bilization via a Riccati equation approach is addressed in [9ssary assumptions are given in Section IlI. In Section IV,
Conditions based on Linear Matrix Inequalities (LMIs) fortwo algorithms for the calculation of periodic invariant sets
state feedback and output feedback of unconstrained linege explained. The main result, a novel stabilizing MPC
periodic systems are given in [12]. The issue of robustnessdgntroller design is introduced in Section V. The main prop-
considered in [3]. Model Predictive Control (MPC) schemesrties of the presented algorithms and the MPC scheme are
for linear periodic systems are suggested in e.g. [5, 11, 1§ustrated via numerical examples in Section VI. Section VII

I. INTRODUCTION

17]. concludes with a brief summary.
In this paper, we propose a scheme for linear periodic
systems based on MPC. The primary advantage of MPC is Il. PROBLEM SETUP

its capability to deal with input and state constraints in a
natural fashion. Its main disadvantage is the computational Consider the lineatV-periodic system of the form
demand of the required online solution of a finite horizon
optimal control problem. Much effort has been made to Try1 = ApTk + Brug (1)
find problem formulations that allow a reduction of thewith initial condition zo = Z,. In (1), 2z, € R™ denotes the
online computations. For instance, [18,19] provide LMIsystem statey;, € R™ is the control inputk > 0 is the
based MPC schemes for uncertain linear systems wherefiscrete time variable, and; x = Ay € R™ ", By, n =
[4] considers periodic systems. In all of those schemes, thg, c Rm*™ are periodic matrices with time perio¥.
formulation in terms of LMis allows the use of efficient pyrthermore, we assume the state and the input of the
solvers for convex optimization problems which makes thesg;stem to be bounded by polyhedral constraint sets
schemes computationally attractive [7].

The main goal of this work is to reduce the computational U,z <1, Tuup <1 2)
load compared to the existing scheme in [4]. The main

at each time instank, in which ¢, € R=*" and ¥,
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[1l. PRELIMINARIES D. Upper Bound on the Infinite Horizon Cost
A. Recalculation Scheduling We consider the infinite horizon objective function
R R o0
Throughout this work, we assume recalculation of the Jook = sz+i|kak+i|k +u£+i\kRuk+i|k- 8)

predictive control law at the beginning of each period, i.e.
at discrete time$, N, 2N, .... Therefore, the solution for the
optimal input obtained at time instat is applied to the
system for allk 4+ ¢ with ¢ = 0,1,..., N — 1. Note that

L : T 1z .
recalculation after each discrete time step is also possib%e infinite_horizon C_OSt (8) of the fm!’% Py k- .TO th's.
as in [26], but the details are omitted in this work for theehd, we calculate offline symmetric positive definite matrices

sake of simplicity. Pp = Pf_y such that

=0
Analogue to [23] and using control parametrization (3) and
state extension (4), we derive an quadratic upper bound on

T pz z
L P > J
B. Control Parametrization e Piaw 2 Jo (2

We consider a control parametrization similar to the one = Z Zhri T Qe + T i Rl i) Zhsifre (9)
used in [19] as i=0
) in which
Wil = KitiTpti + cepae 0=0,1,.,nc—1 ® - B
¢ Kk+ixk+i 7> Ne r = [In 0]7 Fu,k+i = [Kk+i Im 0] (10)

) o . Proposition 1 provides a way to calculate matrides,
Herein KN = Kj.; denoteN-periodic feedback matri- ; _ N _ 1, such that the upper bound condition (9)

ces calculated offline such that the linear feedbacki = 5|45 for anyz; and such that the trace &%; is minimized

K714, Stabilizes system (1) in the absence of constraintgnd therefore giving a preferably small upper bound.
Furthermore,c;,;, € R™ are n. superimposed control

moves calculated online after each period in order to impro‘@roposition 1 ChooseQ = QT > 0 andR = RT > 0 in
performance and restore contraint satisfaction. Note that §}4er to weight the state and the input in objective function
contrast to the MPC scheme in [4], the feedback matric 8). The matricesP? = X>~!, i =0,1,..., N — 1, obtained
K.,; are calculated offline and therefore the computationq.jy solving the conv L L '

LT ex optimization problem
demand is significantly reduced.

P
min of, s.t. [a 4 *} > 0, (11)

C. State Extension oP Xz I X§
We introduce the extended states R™*"" X7 * ok

;X7 Xiq * > g 12

_[r 1 T T r @) oir,x: o 1 « = 0 (12

2k = Tk Ckik o Cry1lk Chtne—1lk il !

R3l,, X7 0 0 I

composed of the state;, and the superimposed control X5 =Xz, (13)

moves ¢y ¢ = 0,1,..,n. — 1. Using the control

parametrization from (3), the dynamics of system (1) anaatisfy(Q) for any z; and the trace ofFg’ is minimized.

the superimposed control moves can be defined by the pygof: Substituting?? = X>~* and applying Schur

autonomous periodic system complement to LMI condition (11) yieldg§ = oI P} >
0. Since F§ is required to be positive semidefinite, its trace
Zht1 = P2k,  Pp = Py, ) satisfies 0 q P
in which _ ninem
. . trace P; )= Z o’ = Fj. =(n+nem)a’” — tracg F§)>0.
Art Bl By 0 i=1 ’
i = 0 g —8— T {@(%C:Q - ©  Thus, minimizinga” implies minimization of the trace of
SR P
T pz
Here I,,,(,_1) denotes then(n. — 1) x m(n. — 1) identity Next, we provez, Fjz to be an upper bound on the
matrix. Using the control parametrization from (3), the inpuPPiective for anyz; as in (9). LMI (12) implies
and state constraints in (2) can be rewritten as the following p? —1TQr, —17,Rl,; — T P7,®, > 0. (14)

periodic polyhedral constraint sets o
From (14) it directly follows that

. v, |
Sou = {Z | { Vo Ky, W, 0 } 2= 1} ' @ St P zerion — 25 P 2k

N : < =2 (CEQT, + T R i) 2es: (15
Note the periodicity of the constraint se$§, , = S& ;v S =24 (Lo QT + L0 i Rwa)zes - (19)

Kt .
because of the periodicity of the pre-determined feedbadkr i = 0,1,..., N — 1 and for anyz4;. Summation of (15)
matricesKy ;v = K. from i = 0 to i = oo yields 2} P§z; > JZ 1 (2k)- ]
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Algorithm 1 (Ellipsoidal Periodic Invariant Sets)

V. PERIODIC INVARIANT SETS SR
Solve the semidefinite program

The notion of periodic invariance plays a crucial role . x ¢ aXT  * | > 0.(18
in our MPC scheme. Hence, the formal definition is given e @ St roxz| = 018
and techniques to calculate periodic invariant ellipsoidal and Xz .

lyhedral sets are presented 4 : > 0,(19)
poly ' QX7 X T 7

1 * ]
z z z Z 0) 20
Definition 1 (Periodic Invariance) Consider the extended [(ec‘l’c,iXi )" X7 (20)
autonomous periodic syste(d) and the setsS; satisfying Xy =X§ (21)
Sitn = Si. Iffori=0,1,....N —1 i=01,....N=1,¢=1,2,... ¢y + Cu,
Vze S = iz € Sip (16) whereT = [I,, 0,,xn.m] @nde. denotes the-th row of the

¢o + ¢, order identity. Returrs?; = {z|z"X7 'z <1},
i=0,1,...,N—1.

_ Proof:  Applying Schur complement to (18) yields
&0 = Xg7—-1 > 0. SinceX{* is required to be positive
semidefinite, its trace satifies

n

then the setsS; are called periodic invariant.

Figure 1 illustrates exemplary periodic invariant sets an
corresponding trajectories for periof = 3. Note that
trajectories might well leave each st and only have to s ; 1 s n
enter the sets after a complete time period. trace Xy”%) = ZXOU,I») X trace Xg”) — x =0

i=1
Thus, minimizing X implies maximization of the trace
of X§*. For the proof of periodic invariance, LMI condi-
tions (19) are rewritten fof =0,1,..., N — 1 as

T z—1 T yz—1
Zi1 X ziv1 — 2 X772 <0,

Hence,forzy € Sz and X7~ = X7\
1>l X 20 > 2T X7 e > o> 20 X ey

T yvz—1 T z—1
=2nXy AN > 2Ny X] ANy > ..

what shows the periodic invariance. LMI conditions (20)
ensureS?, € S¢,,1=0,1,...,N —1, for details cf. [8]. In

combination with the periodic invariance property, constraint
satisfaction follows for all times. ]

Fig. 1. Periodic Invariant Sets and Corresponding Trajegsori

In the following, two algorithms are given in order to B. Polyhedral Periodic Invariant Sets

calf:ulate periodic invar_iant sets. EIIipsoida] invariz?mt sets, |n this section, we present an algorithm to calculate offline

which are also used in [4,26], are considered in IV-Anqyhedral periodic invariant sets of maximum size satisfying

Since the constraint sets are given in the form of polyhedrgle constraints. The algorithm is based on the results in [22]

sets, polyhedral invariant sets might be significantly larggp, polyhedral invariant sets for uncertain systems. Con-

than ellipsoidal ones. Hence, the calculation of polyhedr@yer the extended autonomous periodic system (5) which is

invariant sets is explained in IV-B. bounded by the polyhedral constraint sets (7). Algorithm 2
returns the periodic invariant sets

A. Ellipsoidal Periodic Invariant Sets St ={zIz <1}, Sf,=5Sfiin (22)
Algorithm 1 calculates periodic invariant ellipsoidal sets satisfying Sf; ; € Sg,;, i =0,1,..., N — L.
Algorithm 2 (Polyhedral Periodic Invariant Sets)

@ forj=0,1,....N —1
setll? = V¢

sz={z 17X e <1}, S5 =St (D)

which are subsets of the constraint $¢t, C Sz ,, i = (i) setc=0

0,1,..,N — 1. Furthermore, the size of the s&{’y = whilec < N

{z | 2TXg* e <1}, with Xg=~! = TXz'TT, which setj = j+1

is the projection ofS? ; ontoR", is maximized in the sense setll; =1I5_y

of maximum trace of matrixX3=. setr = number of rows il _y
setp =1
whilep < r
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sete, as thep-th row of ther-th order identity Consider control parametrizatiofB) and state exten-
B . . sion (4) and derive the extended autonomous periodic sys-
f=max epllj_y 1 ®jz, st Gz <1 (23) oy (5) which is bounded by the polyhedral constraint

if 3 > 1 or problem(23) is unbounded sets(7). _ _
z For objective function(8) with Q = QT > 0 andR =
setily = | 1= 7 . RT > 0, apply Proposition 1 to calculate; satisfying the
setp=p+1 PrImNA upper bound conditiofB).
if Iz =11 Application of Algorithm 1 or Algorithm 2 returns periodic
sjetc :,70 +1 invariant sets which are contained within the imposed con-
else straint sets of7).
setc = 0 A. Online Part for Ellipsoidal Invariant Sets. Take
(i) rename and soft_,,i = 0,1,..., N — 1, by applying P} and Xi obtained in the offline part. Defingdy, =
moduloN to the index I, Onxnom) @ndTas = [Opxn  Lnxn.m] in order to select
returnSg , = {z|ll?z < 1},i=0,1,...,N — 1. the blocks

z -1 __ z—=1T
Proof: In the first step of the algorithm, the polyhedral Xo’ufl —T11X071T11}7
sets are set to the constraint $gt, = Sz, i =0,1,...,N— Xg12 =TeXg Th, (26)
1. In the following steps, on_ly new constraints are added but X§722‘1 :T22X§‘1T2T2.
none are removed. This directly prove§ , C S&,. The
algorithm’s inner 'whilep < r’-loop adds new constraints
to the setSf ;_y in the j-th iteration to generate séif ;

Solve at discrete timek = O,N,...,rN, r € Ny, and
for measured state, = x;, the semidefinite optimization

such that problem
P
Vze Sf ., = ®,z2€ S5 . 24 min ol S.t. s *Z} >0, (27
ILj j I,j— N+1 (24) opmn ol &L, T P Z (27)

Note the similarity between (24) and (16). An abortion I R
Y (24) (16) il_x;}FXo,u 1$k_2$;€X0,12 1Qk+-\k

criterion to stop the algorithm in the case that the periodi Xj } > 0. (28)
invariant sets are found is deposited in the outer while-loop. Stk 0,22
Accordingly, the algorithm has to be stopped when Until the next recalculation instant, apply the control law

Stij+i =St j-nyi for i=0,1,.,N—1 (25) Uprilk = BrtiThti + Chtilk (29)

is found. Periodic invariance in the sense of Definition X0 the system.

is directly proven for the achieved sets when substituting B- Online Part for Polyhedral Invariant Sets. Take P
Sz JoN+1 by Sz i1 in the argument of (24). m andllj obtained in the offline part. Solve at discrete times

k=0,N,..,rN,r € Ny, and for measured statg = xy;,

V. MPC USING FIXED DETERMINED INVARIANT SETS the quadratic optimization problem

In this section, we present the outline for the proposed . T T ST T T
MPC scheme for periodic systems. The scheme is divided gr,ff?k o5 G Wl P02 Gl St (30)
into an offine and an online part. In the offline part, a
periodic linear feedback law is determined first. Then, using 115 {
the control parametrization (3) and the extended state (4),
a quadratic upper bound on the infinite horizon cost (8§Jntil the next recalculation instant, apply the control law
and periodic invariant sets in extended state coordinates are
calculated. In the online part, at each recalculation instant,
the quadratic upper bound on the infinite horizon cost (& the system.

is minimized. For this purpose, only the free superimposed , ) ) ,
control moves are optimization variables and have to ben€orem 2 Assume the online part of Algorithm 3 is feasi-

calculated such that the extended state is contained in tR at the initial timek = 0. The model predictive controller
first set of the offline calculated periodic invariant sets. f§iVeN by(29) or (32), respectively, in Algorithm 3 for the

the following, the offline part and two variants of the onlingnear periodic systen{l) has the following properties(i)
part are presented. The first variant uses ellipsoidal invariahf'€ free control moves;, ,;,, minimize the upper bound of
sets and the second one uses polyhedral invariant sets. ©Pi€ctive function(9) at time instantk for initial condition

z, (i7) the corresponding optimization in the online part
Algorithm 3 (Periodic MPC using fixed determined sets) of Algorithm 3 is feasible at all future recalculation times
Offline Part. Calculate for periodic systeifl) a linear peri- & > 0, (iii) the closed loop system is asymptotically stable,
odic feedbacky, = Kz, with K), = K}, y which stabilizes (iv) the constraint42) are satisfied for all time¢ > 0.
the system in absence of constraints.

Choose the number of superimposed control MOV&dndition (27) in combination with Proposition 1 gives

Tk } <1. (31
Crt 1k

Uptilk = KietiTeri + Chyk (32)

Proof: (i.A.) Applying Schur complement to LMI

_ 1. T T T ;
Crt b = [k Cotr i - Chin.—1)k) as a multiple of the N .. P .
period, i.en. = n,N withn, € N_. o >z Wl B[ Gyl = Joo ke (33)
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Hence, minimizinga), implies minimization of the upper Due to the positive definiteness ¢f and R and using (38),

boundz] Pz, on cost function/Z . the following sequence of inequalities holds
(i.B.) The proof follows directly from Proposition 1. S - ;
(i) Provided feasibility at recalculation instarit, the 2P 2kl > 21 Per1 Zrge > -
i i i T T
online algorithms return the superimposed control moves > 2 N PN 2R Nk 2 Zig N e N PE 2R N e N
T z
ik = [Chk Choalk -+ Chine—1k) - (34) > Zt N1k NP1 2t N1 v > e

Further, we assume no disturbances and model plafhus, the sequence! Pz, PZ = P7,_, is strictly de-
mismatches. Therefore;, v = ;1) When the control creasing along the trajectories of the extended system and
input calculated in Algorithm 3 is applied at discrete timed/(z;) = 2] P¢z;, is a periodic Lyapunov function of the
k+1i fori = 0,1,...,N — 1. Then, the extended state extended system. This directly shows asymptotic stability via

prediction at discrete timé + N reads the periodic Lyapunov lemma [2, 6].
- - . (iv) Constraint satisfaction follows immediately from the
ZhiN = [Thyn  Chynk] (35) requirement ofz, € SZ, and z, € Sf,, respectively, in
in which combination with the fact that the periodic invariant sets
calculated offline are contained within the imposed constraint
T T T T T
Sk N+ |k = [Ck+N|k CktN+1|k = Chtn.—1|k ONmx1] (36) sets. u
Itis now shown that,, v, ., is a feasible solution to the op- VI. SIMULATION RESULTS

timization problem at timé: + . At discrete time + IV the In this section, the benefits of the presented MPC scheme

online algorithms constraints (28) and (31) demapdy € for periodic systems are illustrated. In Subsection VI-A, the

. . . A L
Séo andzy € SHVO.’ rgsp_ectw_ely. This is directly sat|sf|ed MPC scheme is compared to the existing scheme in [4]
because of the periodic invariance property. It remains tg

. . . S . regarding computation time and performance. In Subsec-
show satisfaction of (27) at t N, whichiis equivalent to tion VI-B, the ellipsoidal set and the polyhedral set approach

P T T 2T T T i

@ > |z c FPglx c . Since ; ; X
v 2 | AN fk+N+'|k] Gl7hen  Coinpl _ _are compared with respect to the sizes of the resulting
the scalara;, y is a non-bounded problem variable, it ariant sets

is always possible to find suchkpﬂv. Using induction
feasibility follows for all future times. This completes the 5 Computation Time and Performance
proof of (ii).

(iii) At recalculation instank: and for measured statg, = For the simulations in this subsection, we use the con-
a4k, the online algorithm returns the optimal superimposegirained periodic system from [4]. The pre-determined feed-
control movesy, ;. Applying the online algorithm at next backuy = Ky is chosen as
recalc_ulatlondlnstatnt,I i.e. at + N, returns the optimal o 20133 —09221 —0.073]
superimposed control moveg, y .\ v- 1= 0268 —0.454 —0.143]°

As was shown in (i), the control moves - -
—0.067 —0.180 —0.137
Cop N4k = [CZ?;NM CZIJ;NHUC CZIJJ;NJranl\k ONmsxil ;_0'175 —0.468 _0'363:

(37) —0.302 —0.276 —0.186
|—0.134 —0.114 —0.089]

obtained at recalculation instahtare a feasible solution at
recalculation instan + N. However, this solution is in The weights in the infinite horizon cost (8) are chosen as
general non-optimal. Assuming no model plant mismatct) = 0.1 - I3 and R = 5 - I,. The initial condition is given

I.€. Thy N = Thy N|k+N = Tht-N|k» by zo = [10 10 0]7. Sincez, has to be contained within the
T oT T appropriate projectiob§* of the invariant sets, the number
ZhaNlk = [Tipn 9k+N+-\k] of superimposed control moves has to be chosen.as 9

for the ellipsoidal sets and. = 3 for the polyhedral sets.

In Figure 2, the results for performance and computation
time for the presented MPC scheme using ellipsoidal and
polyhedral invariant sets and the existing scheme by Boéhm
when utilizing the optimal solution. Consequently,:as v\ et al. [4] are shown. Note performance is evaluated using the
is feasible, but not necessarily optimal, objective functions = 3°,° 7 Quxy, + ul Ruy.

The new MPC scheme using polyhedral sets clearly shows
the best results. It achieves best performance and a signif-
Proposition 1 yields for any > 0 icantly reduced computation time compared to the existing
scheme in [4]. The scheme using ellipsoidal sets achieves
a slightly worse performance but still reduced computation
7 7 T time compared to [4]. These demonstrate the benefits of the
< =2k (U QUa + Ty i RU w o) 20 - pre-computed control law in the MPC scheme.

when using the non-optimal solution (37) whereas

_ .7 oT T
Zk+N|k+N = [Thin Qk+N+-\k+N]

T z T z
2 N0 2kt Nk 2 Zg NN EO 2kt N BN (38)

T z T z
Ztit1 |k Piit1 Zhtit 1k — oo D 2+l k
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Polyhedral Sets === Ellipsoidal Scts wmm Béhm et al. (2009)

700 200

650

cost J

= 1500
100f

501

in a periodic invariant set, which is also calculated offline.
Two types of invariant sets have been investigated, ellipsoidal
and polyhedral sets. A numerical example shows the effec-
tiveness of the proposed scheme and a significant reduction
in computational demand compared to the existing MPC
scheme in [4]. Furthermore, the advantages of the polyhedral
set approach compared to the use of ellipsoidal sets has been

=
)
=
s
H
=
<
g

600 0 . -
0 5 10 15
discrete time k

Fig. 2. Performance and Computation Times.

(1]

[2]
B. Sizes of Invariant Sets
For a better visualization of the invariant sets, we considefs)
a second order system defined by the matrices

1 0.1 0 1 0.2 0 4
Ao—{o 1}730—{1],141—{0 1}731—{1'5}, )

which is input constrained by-1 < u < 0.5. The pre-
determined stabilizing feedback is chosenwas= Kz

with K, = [-0.646 — 0704], K» = [-0.405 — 0.62].  [5]
The sizes of the invariant sets are investigated for different
numbersn,. of superimposed control moves by application
of Algorithml1 and Algorithm 2, respectively. Figure 3 illus- [6]
trates the projections§* of the ellipsoidal and polyhedral
sets ontoR™. As can be expected, the polyhedral sets arg]

15 (8]

10

1 El

[20]

z2

(11]

[12]

-10

-20 10

o [13]

Fig. 3. Invariant Sets for Different Number of Control Moves.

[14]

significantly larger than the corresponding ellipsoidal sets. [|§5]
is especially noticeable that the ellipsoidal sets are not able

to cope with the non-symmetric constraints. Furthermore, a

considerable enlargement of the sets by inreasing the numlt;fg]
of available control moves can be observed.

VII. CONCLUSIONS

In this paper a novel model predictive control scheme
for the stabilization of constrained linear dicrete-time pef7]
riodic systems is presented. Similar to the work in [19], a
linear periodically time-varying feedback law is calculated;g
offline. Superimposed control moves are calculated online
as a solution of a convex optimization problem in order t
achieve constraint satisfaction and improve performance. T
superimposed control moves are required to be contained

19
<]

1408

] M. Kothare, V. Balakrishnan, and M. Morari.

demonstrated.
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