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Abstract— This paper proposes a novel model predictive
control scheme for the stabilization of constrained linear period-
ically time-varying systems. The results are based on an existing
Model Predictive Control scheme for uncertain linear systems
using linear matrix inequalities. A pre-determined periodic
feedback control law is used in combination with superimposed
free control moves as additional degrees of freedom. Only
the additional free control moves are calculated online taking
advantage of pre-computed periodic invariant sets. Two simple
algorithms are presented for calculating offline ellipsoidal or
polyhedral periodic invariant sets. Since only a small number
of free control moves is calculated online by solving a convex
optimization problem after each time period, the computational
cost can be reduced significantly compared to existing schemes.

I. I NTRODUCTION

Linear periodic dynamics are found in many real technical
and nontechnical systems. Examples of periodic systems are
given by the rotor motion of wind-turbines [13] and heli-
copters [1], compressors of jet engines [14], input-multirate
systems [15] and models of economical systems [10].

Several different approaches for the control of linear
periodic systems have been published. Output feedback sta-
bilization via a Riccati equation approach is addressed in [9].
Conditions based on Linear Matrix Inequalities (LMIs) for
state feedback and output feedback of unconstrained linear
periodic systems are given in [12]. The issue of robustness is
considered in [3]. Model Predictive Control (MPC) schemes
for linear periodic systems are suggested in e.g. [5, 11, 15–
17].

In this paper, we propose a scheme for linear periodic
systems based on MPC. The primary advantage of MPC is
its capability to deal with input and state constraints in a
natural fashion. Its main disadvantage is the computational
demand of the required online solution of a finite horizon
optimal control problem. Much effort has been made to
find problem formulations that allow a reduction of the
online computations. For instance, [18, 19] provide LMI-
based MPC schemes for uncertain linear systems whereas
[4] considers periodic systems. In all of those schemes, the
formulation in terms of LMIs allows the use of efficient
solvers for convex optimization problems which makes these
schemes computationally attractive [7].

The main goal of this work is to reduce the computational
load compared to the existing scheme in [4]. The main
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idea is to use a pre-determined feedback law and calculate
online superimposed control moves using the current state
information along the lines of [19]. An extended state
composed of the original system state and future free control
moves is introduced. The concept of pre-determined periodic
invariant sets in the extended state space plays a crucial
part in order to guarantee properties such as feasibility
and constraint satisfaction. The invariance property yields
feasibility of future optimization problems provided that the
extended state is contained within the periodic invariant
sets. Furthermore, constraint satisfaction is ensured under
the assumption that these invariant sets are calculated to
be subsets of the constraint sets. As in [23], stability and
optimality are achieved by the constraint of calculating the
superimposed control moves such that the upper bound of an
infinite horizon objective is minimized. There are essentially
two ways for calculating these sets, namely calculation
of ellipsoidal invariant sets [19] or polyhedral invariant
sets [20–25]. In this paper, we investigate and compare both
approaches for periodic systems.

The remainder of the paper is organized as follows: In
Section II, the considered control problem is presented. Nec-
essary assumptions are given in Section III. In Section IV,
two algorithms for the calculation of periodic invariant sets
are explained. The main result, a novel stabilizing MPC
controller design is introduced in Section V. The main prop-
erties of the presented algorithms and the MPC scheme are
illustrated via numerical examples in Section VI. Section VII
concludes with a brief summary.

II. PROBLEM SETUP

Consider the linearN -periodic system of the form

xk+1 = Akxk + Bkuk (1)

with initial condition x0 = x̄0. In (1), xk ∈ R
n denotes the

system state,uk ∈ R
m is the control input,k ≥ 0 is the

discrete time variable, andAk+N = Ak ∈ R
n×n, Bk+N =

Bk ∈ R
n×m are periodic matrices with time periodN .

Furthermore, we assume the state and the input of the
system to be bounded by polyhedral constraint sets

Ψxxk ≤ 1, Ψuuk ≤ 1 (2)

at each time instantk, in which Ψx ∈ R
cx×n and Ψu ∈

R
cu×m are approriate matrices in order to definecx con-

straints on the state andcu constraints on the input.
In the following, the goal is to design a model predic-

tive controller which asymptotically stabilizes the origin of
system (1) such that the state and input constraints defined
above are satisfied at every time instantk.
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III. PRELIMINARIES

A. Recalculation Scheduling

Throughout this work, we assume recalculation of the
predictive control law at the beginning of each period, i.e.
at discrete times0, N, 2N, .... Therefore, the solution for the
optimal input obtained at time instantk is applied to the
system for allk + i with i = 0, 1, ..., N − 1. Note that
recalculation after each discrete time step is also possible
as in [26], but the details are omitted in this work for the
sake of simplicity.

B. Control Parametrization

We consider a control parametrization similar to the one
used in [19] as

uk+i|k =

{

Kk+ixk+i + ck+i|k i = 0, 1, ..., nc − 1

Kk+ixk+i i ≥ nc

. (3)

HereinKk+i+N = Kk+i denoteN -periodic feedback matri-
ces calculated offline such that the linear feedbackuk+i =
Kk+ixk+i stabilizes system (1) in the absence of constraints.
Furthermore,ck+i|k ∈ R

m are nc superimposed control
moves calculated online after each period in order to improve
performance and restore contraint satisfaction. Note that in
contrast to the MPC scheme in [4], the feedback matrices
Kk+i are calculated offline and therefore the computational
demand is significantly reduced.

C. State Extension

We introduce the extended statez ∈ R
n+mnc

zk =
[

xT
k cT

k|k cT
k+1|k · · · cT

k+nc−1|k

]T

(4)

composed of the statexk and the superimposed control
moves ck+i|k, i = 0, 1, ..., nc − 1. Using the control
parametrization from (3), the dynamics of system (1) and
the superimposed control moves can be defined by the
autonomous periodic system

zk+1 = Φkzk, Φk = Φk+N , (5)

in which

Φk =





Ak + BkKk Bk 0

0
0 Im(nc−1)

0 0



 . (6)

HereIm(nc−1) denotes them(nc − 1)×m(nc − 1) identity
matrix. Using the control parametrization from (3), the input
and state constraints in (2) can be rewritten as the following
periodic polyhedral constraint sets

Sz
C,k =

{

z |

[

Ψx 0
0

ΨuKk Ψu

]

z ≤ 1

}

. (7)

Note the periodicity of the constraint setsSz
C,k = Sz

C,k+N

because of the periodicity of the pre-determined feedback
matricesKk+N = Kk.

D. Upper Bound on the Infinite Horizon Cost

We consider the infinite horizon objective function

J∞,k =

∞
∑

i=0

xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k . (8)

Analogue to [23] and using control parametrization (3) and
state extension (4), we derive an quadratic upper bound on
the infinite horizon cost (8) of the formzT

k P z
k zk. To this

end, we calculate offline symmetric positive definite matrices
P z

k = P z
k+N such that

zT
k P z

k zk ≥ Jz
∞,k(zk)

=
∞
∑

i=0

zT
k+i|k(ΓT

x QΓx + ΓT
u,k+iRΓu,k+i)zk+i|k (9)

in which

Γx = [In 0], Γu,k+i = [Kk+i Im 0]. (10)

Proposition 1 provides a way to calculate matricesP z
i ,

i = 0, 1, ..., N − 1, such that the upper bound condition (9)
holds for anyzk and such that the trace ofP z

0 is minimized
and therefore giving a preferably small upper bound.

Proposition 1 ChooseQ = QT > 0 and R = RT > 0 in
order to weight the state and the input in objective function
(8). The matricesP z

i = Xz−1
i , i = 0, 1, ..., N − 1, obtained

by solving the convex optimization problem

min
αP ,Xz

i

αP , s.t.

[

αP I ∗
I Xz

0

]

≥ 0, (11)









Xz
i ∗ ∗ ∗

ΦiX
z
i Xz

i+1 ∗ ∗

Q
1
2 ΓxXz

i 0 I ∗

R
1
2 Γu,iX

z
i 0 0 I









≥ 0, (12)

Xz
0 = Xz

N , (13)

satisfy(9) for any zk and the trace ofP z
0 is minimized.

Proof: SubstitutingP z
i = Xz−1

i and applying Schur
complement to LMI condition (11) yields̃P z

0 = αP I−P z
0 ≥

0. SinceP̃ z
0 is required to be positive semidefinite, its trace

satisfies

trace(P̃ z
0 )=

n+ncm
∑

i=1

αP −P z
0(i,i)

=(n + ncm)αP − trace(P z
0 )≥0.

Thus, minimizingαP implies minimization of the trace of
P z

0 .
Next, we provezT

k P z
0 zk to be an upper bound on the

objective for anyzk as in (9). LMI (12) implies

P z
i − ΓT

x QΓx − ΓT
u,iRΓu,i − ΦT

i P z
i+1Φi ≥ 0. (14)

From (14) it directly follows that

zT
k+i+1P

z
i+1zk+i+1 − zT

k+iP
z
i zk+i

≤ −zT
k+i(Γ

T
x QΓx + ΓT

u,iRΓu,i)zk+i (15)

for i = 0, 1, ..., N − 1 and for anyzk+i. Summation of (15)
from i = 0 to i = ∞ yields zT

k P z
0 zk ≥ Jz

∞,k(zk).
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IV. PERIODIC INVARIANT SETS

The notion of periodic invariance plays a crucial role
in our MPC scheme. Hence, the formal definition is given
and techniques to calculate periodic invariant ellipsoidal and
polyhedral sets are presented.

Definition 1 (Periodic Invariance) Consider the extended
autonomous periodic system(5) and the setsSi satisfying
Si+N = Si. If for i = 0, 1, ..., N − 1

∀z ∈ Si ⇒ Φiz ∈ Si+1 , (16)

then the setsSi are called periodic invariant.

Figure 1 illustrates exemplary periodic invariant sets and
corresponding trajectories for periodN = 3. Note that
trajectories might well leave each setSi and only have to
enter the sets after a complete time period.

S0

S1

S2

z1
Φ0z0

Φ2z2 Φ1z1

z3

z0

z2

Fig. 1. Periodic Invariant Sets and Corresponding Trajectories.

In the following, two algorithms are given in order to
calculate periodic invariant sets. Ellipsoidal invariant sets,
which are also used in [4, 26], are considered in IV-A.
Since the constraint sets are given in the form of polyhedral
sets, polyhedral invariant sets might be significantly larger
than ellipsoidal ones. Hence, the calculation of polyhedral
invariant sets is explained in IV-B.

A. Ellipsoidal Periodic Invariant Sets

Algorithm 1 calculates periodic invariant ellipsoidal sets

Sz
ε,i =

{

z | zT Xz
i
−1

z ≤ 1
}

, Sz
ε,i = Sz

ε,i+N , (17)

which are subsets of the constraint setSz
ε,i ⊆ Sz

C,i, i =
0, 1, ..., N − 1. Furthermore, the size of the setSxz

ε,0 =
{

x | xT Xxz
0

−1x ≤ 1
}

, with Xxz
0

−1 = TXz
0
−1T T , which

is the projection ofSz
ε,0 ontoR

n, is maximized in the sense
of maximum trace of matrixXxz

0 .

Algorithm 1 (Ellipsoidal Periodic Invariant Sets)
Solve the semidefinite program

min
αX ,Xz

i

αX , s.t.

[

αXI ∗
T T Xz

0

]

≥ 0, (18)
[

Xz
i ∗

ΦiX
z
i Xz

i+1

]

≥ 0, (19)
[

1 ∗
(ecΨ

z
C,iX

z
i )T Xz

i

]

≥ 0, (20)

Xz
N = Xz

0 (21)

i = 0, 1, . . . , N − 1, c = 1, 2, . . . , cx + cu,

whereT = [In 0n×ncm] andec denotes thec-th row of the
cx + cu order identity. ReturnSz

ε,i =
{

z | zT Xz
i
−1z ≤ 1

}

,
i = 0, 1, ..., N − 1.

Proof: Applying Schur complement to (18) yields
X̃xz

0 = Xxz
0 − 1

αX I ≥ 0 . SinceX̃xz
0 is required to be positive

semidefinite, its trace satifies

trace(X̃xz
0 ) =

n
∑

i=1

Xz
0(i,i)

−
1

αX
= trace(Xxz

0 ) −
n

αX
≥ 0.

Thus, minimizing αX implies maximization of the trace
of Xxz

0 . For the proof of periodic invariance, LMI condi-
tions (19) are rewritten fori = 0, 1, ..., N − 1 as

zT
i+1X

z−1
i+1 zi+1 − zT

i Xz−1
i zi ≤ 0.

Hence,forz0 ∈ Sz
ε,0 andXz−1

i = Xz−1
i+N

1 ≥ zT
0 Xz−1

0 z0 > zT
1 Xz−1

1 z1 > . . . > zT
NXz−1

N zN

= zT
NXz−1

0 zN > zT
N+1X

z−1
1 zN+1 > . . .

what shows the periodic invariance. LMI conditions (20)
ensureSz

ε,i ⊆ Sz
C,i, i = 0, 1, ..., N − 1, for details cf. [8]. In

combination with the periodic invariance property, constraint
satisfaction follows for all times.

B. Polyhedral Periodic Invariant Sets

In this section, we present an algorithm to calculate offline
polyhedral periodic invariant sets of maximum size satisfying
the constraints. The algorithm is based on the results in [22]
for polyhedral invariant sets for uncertain systems. Con-
sider the extended autonomous periodic system (5) which is
bounded by the polyhedral constraint sets (7). Algorithm 2
returns the periodic invariant sets

Sz
Π,i = {z|Πz

i z ≤ 1} , Sz
Π,i = Sz

Π,i+N , (22)

satisfyingSz
Π,i ⊆ Sz

C,i, i = 0, 1, ..., N − 1.

Algorithm 2 (Polyhedral Periodic Invariant Sets)
(i) for j = 0, 1, ..., N − 1

setΠz
j = Ψz

C,j

(ii) setc = 0
while c < N

setj = j + 1
setΠz

j = Πz
j−N

setr = number of rows inΠz
j−N+1

setp = 1
while p ≤ r
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setep as thep-th row of ther-th order identity

β = max
z

epΠ
z
j−N+1Φjz, s.t. Πz

jz ≤ 1 (23)

if β > 1 or problem(23) is unbounded

setΠz
j =

[

Πz
j

epΠ
z
j−N+1Φj

]

setp = p + 1
if Πz

j = Πz
j−N

setc = c + 1
else

setc = 0
(iii) rename and sortΠz

j−i, i = 0, 1, ..., N − 1, by applying
moduloN to the index
returnSz

Π,i = {z|Πz
i z ≤ 1}, i = 0, 1, ..., N − 1.

Proof: In the first step of the algorithm, the polyhedral
sets are set to the constraint setSz

Π,i = Sz
C,i, i = 0, 1, ..., N−

1. In the following steps, only new constraints are added but
none are removed. This directly provesSz

Π,i ⊆ Sz
C,i. The

algorithm’s inner ’whilep ≤ r’-loop adds new constraints
to the setSz

Π,j−N in the j-th iteration to generate setSz
Π,j

such that

∀z ∈ Sz
Π,j ⇒ Φjz ∈ Sz

Π,j−N+1. (24)

Note the similarity between (24) and (16). An abortion
criterion to stop the algorithm in the case that the periodic
invariant sets are found is deposited in the outer while-loop.
Accordingly, the algorithm has to be stopped when

Sz
Π,j+i = Sz

Π,j−N+i for i = 0, 1, ..., N − 1 (25)

is found. Periodic invariance in the sense of Definition 1
is directly proven for the achieved sets when substituting
Sz

Π,j−N+1 by Sz
Π,j+1 in the argument of (24).

V. MPC USING FIXED DETERMINED INVARIANT SETS

In this section, we present the outline for the proposed
MPC scheme for periodic systems. The scheme is divided
into an offline and an online part. In the offline part, a
periodic linear feedback law is determined first. Then, using
the control parametrization (3) and the extended state (4),
a quadratic upper bound on the infinite horizon cost (8)
and periodic invariant sets in extended state coordinates are
calculated. In the online part, at each recalculation instant,
the quadratic upper bound on the infinite horizon cost (8)
is minimized. For this purpose, only the free superimposed
control moves are optimization variables and have to be
calculated such that the extended state is contained in the
first set of the offline calculated periodic invariant sets. In
the following, the offline part and two variants of the online
part are presented. The first variant uses ellipsoidal invariant
sets and the second one uses polyhedral invariant sets.

Algorithm 3 (Periodic MPC using fixed determined sets)
Offline Part. Calculate for periodic system(1) a linear peri-
odic feedbackuk = Kkxk with Kk = Kk+N which stabilizes
the system in absence of constraints.

Choose the number of superimposed control moves
ck+·|k = [cT

k|k cT
k+1|k ... cT

k+nc−1|k]T as a multiple of the
period, i.e.nc = npN with np ∈ N+.

Consider control parametrization(3) and state exten-
sion (4) and derive the extended autonomous periodic sys-
tem (5) which is bounded by the polyhedral constraint
sets(7).

For objective function(8) with Q = QT > 0 andR =
RT > 0, apply Proposition 1 to calculateP z

0 satisfying the
upper bound condition(9).

Application of Algorithm 1 or Algorithm 2 returns periodic
invariant sets which are contained within the imposed con-
straint sets of(7).

A. Online Part for Ellipsoidal Invariant Sets. Take
P z

0 and Xz
0 obtained in the offline part. DefineT11 =

[In 0n×ncm] andT22 = [0n×n In×ncm] in order to select
the blocks

Xz
0,11

−1 =T11X
z
0
−1T T

11,

Xz
0,12

−1 =T22X
z
0
−1T T

11,

Xz
0,22

−1 =T22X
z
0
−1T T

22.

(26)

Solve at discrete timesk = 0, N, ..., rN , r ∈ N+, and
for measured statexk = xk|k the semidefinite optimization
problem

min
αP

k
,ck+·|k

αP
k , s.t.

[

αP
k ∗

[xT
k cT

k+·|k]T P z
0

]

≥ 0, (27)

[

1 − xT
k Xz

0,11
−1xk − 2xT

k Xz
0,12

−1ck+·|k ∗
ck+·|k Xz

0,22

]

≥ 0. (28)

Until the next recalculation instant, apply the control law

uk+i|k = Kk+ixk+i + ck+i|k (29)

to the system.
B. Online Part for Polyhedral Invariant Sets. TakeP z

0

and Πz
0 obtained in the offline part. Solve at discrete times

k = 0, N, ..., rN , r ∈ N+, and for measured statexk = xk|k

the quadratic optimization problem

min
ck+·|k

[xT
k cT

k+·|k]P z
0 [xT

k cT
k+·|k]T s.t. (30)

Πz
0

[

xk

ck+·|k

]

≤ 1. (31)

Until the next recalculation instant, apply the control law

uk+i|k = Kk+ixk+i + ck+i|k (32)

to the system.

Theorem 2 Assume the online part of Algorithm 3 is feasi-
ble at the initial timek = 0. The model predictive controller
given by(29) or (32), respectively, in Algorithm 3 for the
linear periodic system(1) has the following properties.(i)
The free control movesck+i|k minimize the upper bound of
objective function(9) at time instantk for initial condition
xk, (ii) the corresponding optimization in the online part
of Algorithm 3 is feasible at all future recalculation times
k ≥ 0, (iii) the closed loop system is asymptotically stable,
(iv) the constraints(2) are satisfied for all timesk ≥ 0.

Proof: (i.A.) Applying Schur complement to LMI
condition (27) in combination with Proposition 1 gives

αP
k ≥ [xT

k cT
k+·|k]P z

0 [xT
k cT

k+·|k]T ≥ Jz
∞,k. (33)
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Hence, minimizingαP
k implies minimization of the upper

boundzT
k P z

0 zk on cost functionJz
∞,k.

(i.B.) The proof follows directly from Proposition 1.
(ii) Provided feasibility at recalculation instantk, the

online algorithms return the superimposed control moves

ck+·|k = [cT
k|k cT

k+1|k ... cT
k+nc−1|k]T . (34)

Further, we assume no disturbances and model plant
mismatches. Therefore,xk+N = xk+N |k when the control
input calculated in Algorithm 3 is applied at discrete times
k + i for i = 0, 1, ..., N − 1. Then, the extended state
prediction at discrete timek + N reads

zk+N = [xT
k+N cT

k+N+·|k]T (35)

in which

ck+N+·|k = [cT
k+N |k cT

k+N+1|k ... cT
k+nc−1|k 0T

Nm×1]
T .

(36)
It is now shown thatck+N+·|k is a feasible solution to the op-
timization problem at timek+N . At discrete timek+N the
online algorithms constraints (28) and (31) demandzk+N ∈
Sz

ε,0 andzk+N ∈ Sz
Π,0, respectively. This is directly satisfied

because of the periodic invariance property. It remains to
show satisfaction of (27) at timek+N , which is equivalent to
αP

k+N ≥ [xT
k+N cT

k+N+·|k]P z
0 [xT

k+N cT
k+N+·|k]T . Since

the scalarαP
k+N is a non-bounded problem variable, it

is always possible to find suchαP
k+N . Using induction

feasibility follows for all future times. This completes the
proof of (ii).

(iii) At recalculation instantk and for measured statexk =
xk|k, the online algorithm returns the optimal superimposed
control movesco

k+·|k. Applying the online algorithm at next
recalculation instant, i.e. atk + N , returns the optimal
superimposed control movesco

k+N ·|k+N
.

As was shown in (ii), the control moves

co
k+N+·|k = [coT

k+N |k coT
k+N+1|k ... coT

k+N+nc−1|k 0T
Nm×1]

(37)

obtained at recalculation instantk are a feasible solution at
recalculation instantk + N . However, this solution is in
general non-optimal. Assuming no model plant mismatch,
i.e. xk+N = xk+N |k+N = xk+N |k,

zk+N |k = [xT
k+N coT

k+N+·|k]T

when using the non-optimal solution (37) whereas

zk+N |k+N = [xT
k+N coT

k+N+·|k+N ]T

when utilizing the optimal solution. Consequently, aszk+N |k

is feasible, but not necessarily optimal,

zT
k+N |kP z

0 zk+N |k ≥ zT
k+N |k+NP z

0 zk+N |k+N . (38)

Proposition 1 yields for anyi ≥ 0

zT
k+i+1|kP z

k+i+1zk+i+1|k − zT
k+i|kP z

k+izk+i|k

≤ −zT
k+i|k(ΓT

x QΓx + ΓT
u,k+iRΓu,k+i)zk+i|k.

Due to the positive definiteness ofQ andR and using (38),
the following sequence of inequalities holds

zT
k|kP z

k zk|k > zT
k+1|kP z

k+1zk+1|k > ...

> zT
k+N |kP z

k+Nzk+N |k ≥ zT
k+N |k+NP z

k zk+N |k+N

> zT
k+N+1|k+NP z

k+1zk+N+1|k+N > ....

Thus, the sequencezT
k P z

k zk, P z
k = P z

k+N , is strictly de-
creasing along the trajectories of the extended system and
V (zk) = zT

k P z
k zk is a periodic Lyapunov function of the

extended system. This directly shows asymptotic stability via
the periodic Lyapunov lemma [2, 6].

(iv) Constraint satisfaction follows immediately from the
requirement ofzk ∈ Sz

ε,0 and zk ∈ Sz
Π,0, respectively, in

combination with the fact that the periodic invariant sets
calculated offline are contained within the imposed constraint
sets.

VI. SIMULATION RESULTS

In this section, the benefits of the presented MPC scheme
for periodic systems are illustrated. In Subsection VI-A, the
MPC scheme is compared to the existing scheme in [4]
regarding computation time and performance. In Subsec-
tion VI-B, the ellipsoidal set and the polyhedral set approach
are compared with respect to the sizes of the resulting
invariant sets.

A. Computation Time and Performance

For the simulations in this subsection, we use the con-
strained periodic system from [4]. The pre-determined feed-
backuk = Kkxk is chosen as

K1 =

[

−0.133 −0.221 −0.073
−0.268 −0.454 −0.143

]

,

K2 =

[

−0.067 −0.180 −0.137
−0.175 −0.468 −0.363

]

,

K3 =

[

−0.302 −0.276 −0.186
−0.134 −0.114 −0.089

]

.

The weights in the infinite horizon cost (8) are chosen as
Q = 0.1 · I3 and R = 5 · I2. The initial condition is given
by x̄0 = [10 10 0]T . Sincex̄0 has to be contained within the
appropriate projectionSxz

0 of the invariant sets, the number
of superimposed control moves has to be chosen asnc = 9
for the ellipsoidal sets andnc = 3 for the polyhedral sets.
In Figure 2, the results for performance and computation
time for the presented MPC scheme using ellipsoidal and
polyhedral invariant sets and the existing scheme by Böhm
et al. [4] are shown. Note performance is evaluated using the
objective functionJ =

∑15
k=0 xT

k Qxk + uT
k Ruk.

The new MPC scheme using polyhedral sets clearly shows
the best results. It achieves best performance and a signif-
icantly reduced computation time compared to the existing
scheme in [4]. The scheme using ellipsoidal sets achieves
a slightly worse performance but still reduced computation
time compared to [4]. These demonstrate the benefits of the
pre-computed control law in the MPC scheme.

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

1407



Polyhedral Sets Ellipsoidal Sets Böhm et al. (2009)
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Fig. 2. Performance and Computation Times.

B. Sizes of Invariant Sets

For a better visualization of the invariant sets, we consider
a second order system defined by the matrices

A0 =

[

1 0.1
0 1

]

, B0 =

[

0
1

]

, A1 =

[

1 0.2
0 1

]

, B1 =

[

0
1.5

]

,

which is input constrained by−1 ≤ u ≤ 0.5. The pre-
determined stabilizing feedback is chosen asuk = Kkxk

with K1 = [−0.646 − 0704], K2 = [−0.405 − 0.62].
The sizes of the invariant sets are investigated for different
numbersnc of superimposed control moves by application
of Algorithm1 and Algorithm 2, respectively. Figure 3 illus-
trates the projectionsSxz

0 of the ellipsoidal and polyhedral
sets ontoR

n. As can be expected, the polyhedral sets are

x1

x
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nc = 0

nc = 6

nc = 0

nc = 2

nc = 4

nc = 6

-20 -10 0 10
-10

-5

0

5

10

15

Fig. 3. Invariant Sets for Different Number of Control Moves.

significantly larger than the corresponding ellipsoidal sets. It
is especially noticeable that the ellipsoidal sets are not able
to cope with the non-symmetric constraints. Furthermore, a
considerable enlargement of the sets by inreasing the number
of available control moves can be observed.

VII. C ONCLUSIONS

In this paper a novel model predictive control scheme
for the stabilization of constrained linear dicrete-time pe-
riodic systems is presented. Similar to the work in [19], a
linear periodically time-varying feedback law is calculated
offline. Superimposed control moves are calculated online
as a solution of a convex optimization problem in order to
achieve constraint satisfaction and improve performance. The
superimposed control moves are required to be contained

in a periodic invariant set, which is also calculated offline.
Two types of invariant sets have been investigated, ellipsoidal
and polyhedral sets. A numerical example shows the effec-
tiveness of the proposed scheme and a significant reduction
in computational demand compared to the existing MPC
scheme in [4]. Furthermore, the advantages of the polyhedral
set approach compared to the use of ellipsoidal sets has been
demonstrated.
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[4] C. Böhm, T. Raff, M. Reble, and F. Allgöwer. LMI-based model pre-
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