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Purity Filtration and the Fine Structure of Autonomy

MOHAMED BARAKAT

This paper is dedicated to ProfessdLRICH OBERST
on the occasion of his 70th birthday.

Abstract— This paper announces a constructive setup for The torsion submodule gives rise to the short exact se-
homological algebra (of categories of finitely presented modules) quence
in which the CARTAN -EILENBERG resolution of complexes and
a particular G ROTHENDIECK spectral sequence can be used to 0—torM - M — M/torM — 0

compute the purity filtration of a module M (associated to a - .
systemY)). The purity filtration yields the fine structure of the ~ describing the (system) module as anextensionof the

torsion submodule of M, which corresponds to the autonomous torsion-free factor (or controllable part) A//tor M by
part of the system X obstructing its controlability. the torsion submodule (or autonomous paxj M. This
extension defines a-step filtration 0 < tor M < M of
the modulel.

The idea of viewing a linear system of PDEs as a mod- |n the case wherD is a commutative METHERan ring
ule over an appropriate ring of differential operators wagne can see in an elementary, geometrically motivated way,
emphasized by B. MLGRANGE" in the late 1960’s. But how this 2-filtration can be refined into 41 + dim D)-
it wasn’t until the early 90's until it became clear (see fostep filtration, called thepurity filtration , where dim D
example [Obe9(], [Fli90], [Mou95], [Zer00], to name a few)is the KruLL dimensiord of D. More precisely, the torsion
how a linear control system (without boundary conditions) submodule further admits al{m D)-step filtration.
can be studied in terms of associatedmodule My, over Recall that theK RULL dimension dim D of a commu-
some suitable ring. This insight allowed an extensive usetative ring D with 1 is defined to be the supremum of the
of homological algebra (see for example [Qua99], [PQ99keights of all prime ideals oD, where theheight htp of
[CQRO5], [QRO8]) to characterize and clarify various systema prime idealp is the supremum of all integerssuch that
theoretic properties. there exists chain of prime idegls> pg > --- > py [Har77,

In caseD is an QRE domain it is by now well-known Def. on p. 6]. For example, theRULL dimension of a field
that theautonomous partof a system: corresponds to the k is zero,dimZ = 1, anddim R[z1,...,7,] = dim R +n
torsion submodule tor M of the associated system modulefor R NOETHERan.

M := My, wheretor M is classically defined as The definition of the KkuLL dimension is then extended

tor M= {m & M |3d € D\ {0} : dm = 0}. to nontrivial D-modules using

I. INTRODUCTION

D
m-—-——-—-——-m-m:.
Annp (M)
Define thecodimensionof a nontrivial moduleM as

If D is commutative then dropping “domain” means replac- dim M = di

ing “3d € D\ {0}” by “3d not a zero divisor”.

For a finitely generatedD-module M the torsion sub-
module coincides with the kernel of tlewaluation map codimM := min{ht(p)|p € Supp M}
= min{ht(p) |p € Ass M }.

and set the codimension of the zero module toobeFor
dim D < oo the definition simplifies to

codim M := dim D — dim M.

e:M — M*™:=Homp(Homp(M,D),D)
moe (e e(m)).

Taking
tor M = kereg,

as E{hi?dDef'mt'gnl o]f\/[the t(_)c55|_0n supmofdulﬁ of ﬂ'ratt_eli/_ gen- Remark 1.1:Let D be a commutative NETHERIAN do-
erated D-module) awids imposing further restrictions on i “Then 17 is torsion (i.e., M = tor M)

the ring: D is an associativent necessarily commutative) Annp (M) %0 codim M > 1

][.'n.(;:: \I’V'th L. Fr?rg nowDon all modules will be assumed Definition 1.2 (Geometric definition)Let D be a com-

initely generated over L. mutative NDETHERan ring with 1 and M a D-module.
Department of mathematics, University of Kaiserslautern, 67653 KaiseP€fine the submoduleor_. M as the biggest submodule

slautern, Germanyyarakat@mathematik.uni-kl.de of M of codimension> c. The ascendindfiltration
1... and according to him goes back tovEY NOETHER
2Recall, Homz (M, Z) = 0 for M divisible, even if M is torsion-free, s < tor_(eq1) M <tor_M <---<torg M :=M

e.g. M = Q. Modules with injective evaluation map are calledlsionless
So Q is a torsion-freeZ-module, which isnot torsionless. Both notions SNAGATA constructed a NETHERan ring with infinite KrRuLL dimen-
coincide for finitely generated modules over©domains. sion.
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is called thepurity filtration of M [HL97, Def. 1.1.4]. The filtration on M is the one induced by the bidualizing spectral
graded part sequence.
M. :=tor_. /tor_(.q1) | am not aware of a “geometric” definition in this gener-

. . . . . ality.
is pure of codimensior, i.e. any nontrivial submodule of 4

M. has codimensior. tor_; M is nothing but the torsion I1l. HOW TO COMPUTE THE PURITY FILTRATION?
submoduletor M. This suggests callingor_. M the c-th A Spectral sequences
(higher) torsion submodule of M.

. . . Definition 2.1 characterizes the purity filtration using the
For a fixed codimensior > 1 the full subcategory of purty 9

: _ . - ? bidualizing spectral sequence. This homological description
modules of codimensiol ¢ is alocalizing categoryin the would be useless from the constructive point of view, if
sense of GBRIEL (cf. [Obel0]). one were not able to effectively compute spectral sequences.

Il. HISTORY OF THE PURITY FILTRATION The latter are usually introduced in the context of module
categories, where diagram chasing of elements is used to
establish their existence. But it is known that spectral se-
guences exist even in the more general context BEdan
categories, where diagram chasing of elements cannot be
M forp+q=0, used, since objects of such categories are not necessarily sets
0 otherwise. (at least a priori; see the discussion in [Har77, 8lll.1, p. 203]).

For the bidualizing spectral sequence to be bounded one odl§€ allclgonlghmu;treatment of spectral seﬂgence_s In [E@Zr] was
needs to assume that either the left or right global dimefsiof{1€réfore based on operations on morphisms in agLfan
of D is finite. The most powerful aspect of this constructiorfategory rather than chasing elements through diagrams. The

is that it works without the commutativity assumption on thé<ey nc_)tlon introduced in [Bar_] is that 9f @enerallzed
fing D. morphism. It used to turn various algorithms into closed

The bidualizing spectral sequence is a special case Off%rmulas and to algorithmically solve_the extension problem
GROTHENDIECK spectral sequence of spectral sequences at abutmen'F. Finally, in [BLH]_ |tlshown
that the computability of the BELian category of finitely
Ef)q = (RPFoRIG)(M) = L,14(F o G)(M) presented modules over a ring follows from the computability
of the ring, where a ring is calledomputable if one
can algorithmically solve one-sided (in)homogenous linear
systems with entries in the ring.

It is known since the pioneering work of J.-EOBS
[Ro062] that thepurity filtration of the moduleM can be
computed using theidualizing spectral sequence

2 _
E2, = Ext ?(Ext'(M, D), D) = {

of two composable contravariant functafsand G' applied
to a left D-module M: Take F' := Homp(—,Dp) and
G := Homp(—, pD). It was introduced five years earlier
in GROTHENDIECKS seminal Téhuku paper [Gro57]. B. CARTAN-EILENBERG resolution

Other early references to the purity filtration are |nfact, the purity filtration can indeed be computed with-
M. KASHIWARA's master thesis (December 1970) [Kas95qt performing a complete spectral sequence algorithm. The
Theorem 3.2.5] on algebrai®-modules and J.-E. Bjork's aim of this subsection is to clarify this point, while the next
standard reference [Bj679, Chap. 2, Thm. 4.15]. All thesgection indicates why a complete spectral sequence algorithm
references address the construction of this filtration frong still indispensable for extracting more information about
a homologicél point of view, where the assumption of the graded parts of the purity filtration and hence about the
commutativity of the ringD can be dropped. module) itself. Moreover, spectral sequences were invented

Definition 2.1 (Homological definition)Let D be a ring g process large (co)homology computations by chopping
(associative withl) with finite left or right global dimension them into several smaller pieces.
and M a finitely generatedD-module. Then, the purity  The first step of computing the bidualizing spectral se-

“Recall, theleft global (homological) dimensionis the supremum over q.uence of a modulé/ is to compute the BOTHENDIECK
all projective dimensions deft D-modules. IfD is left NoETHERan, then ~ PicOmplex (see below) for the two composable functors
the left global dimension oD coincides with thewveak global (homologi- F' := Homp(—,Dp) and G := Homp(—, pD) using

cal) dimension, which is the largest integgrsuch thatTor? (M, N) # 0 the so-called GRTAN-EILENBERG resolution. This goes as
for some right modulé\/ and left moduleV, otherwise infir;llity (cf. [MRO1, ' 9

7.1.9]). This last definition is obviously left-right symmetric. The same istIIOWS:

valid if “left” is replaced by “right”. 1) Compute a projective (or free) resolutidd, := PM

5Although a speciahyper-derived functor spectral sequence of M

WE2 = R-PF(HI(M®)) H,y(R™IF(M®)) = 'E2, 2) Appl_y the contravariant (inner) funct@r to A/, and

ra ey obtain the cocomplex (M, ).
RPTAR(M?) 3) Compute theCARTAN -EILENBERG resolution of the
(take M*® := G(PM), where PM is a projective resolution of\f), it cocomplexG(M,) [Wei94, 8§5.7], [Bar, 8§7]. Using
turned out that most hyper-derived functor spectral sequences discussed in  the sign-trick this resolution (which is a cocomplex
[CE99] are indeed BOTHENDIECK spectral sequences. , of complexes) can be viewed as fourth quadrant co-
KASHIWARA did not use spectral sequences: “Instead of using spectral h logical bi lexC E*° lled theC

sequences, Sato devised [...] a method using associated cohomology”, omologica .'Compe » called the CARTAN -
[Kas95, Section 3.2]. EILENBERG hicomplex.
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4) Finally, apply the contravariant (outer) functbrto the o Spectral sequences were invented to compute the
bicomplexC E*® and obtain the fourth quadrant homo- (co)homology objects of a filtered compl&% by an
logical bicomplexB,,, called the GROTHENDIECK approximation process consisting of sevesahaller
bicomplex of M (or M,), F, andG. steps. These steps successively take deeper inter-level

Denote by7, := Tot(B..) the total complex of the interaction between the graded parts of the complex

bicomplex B, with objects Tot,,(Bes) := D, 4 Bpa- into account [Bar09, §3]. Spectral sequences thus offer
T. has remarkable properties: a computational advantage when dealing with large

examples.
« Spectral sequences typically become intrinsic from a

the collapsing of the (first) spectral sequence associated f:ertai_n page on. The objects and morphisms appearing
to the GROTHENDIECK bicomplex Be. (cf. [Wei94 in all intrinsic pages of the spectral sequence can serve
§5.8], [Bar, §8]) ’ as invariants of the original data. In our context this

means that all modules and maps in the pagés

for a > 2, of the bidualizing spectral sequence are
invariants of the original modul&/ (or M,). Numerical
invariants can now be easily extracted. [Bar, §9.1.5] in-
troduces such a numerical invariant called tioelegree

of purity . It is in this sense that spectral sequences can
be seen as a goal rather than merely a means.

« Spectral sequences lead to very simple proofs of various
results. See [Bar, §9.1.4] for some results related to the
purity of a module.

o Spectral sequences are one of the unifying principles
in homological algebra. There range of application
goes far beyond a specific application [Rot09, §10]. In
particular, they offer a unified way to describe a lot of
important filtrations in algebra and geometry. A general
implementation is thus highly desirable. See [Bar, §9.2]
for another algorithmic application.

a) T, is exact except in degrde where its homology is
naturally isomorphic tolM. This follows easily from

b) T, is the total complex ofB,, but also of thetrans-
posed bicomplex*B,. (with objects®B,, := B,),
and is thus filtered in two different ways. It is elemen-
tary to see that a filtered complex induces filtrations
on all its homology objects [Bar09]. While the first
filtration of T, induces the trivial filtration od/ (being
the 0-th homology ofT,), the second filtration induces
the desired purity filtration od/.

Steps 1)-4) and the construction of the total complex
describe the analog of passing frod/ to its D-double
dual M** = F(G(M)) in the derived category Although
the module-theoretic evaluation map is generally neither
surjective nor injective, its analog in the derived category
is due to the first mentioned property 6§ anisomorphism

Summing up, the purity filtration ol = Hy(T,) is
induced by the second filtration df} and can be computed

as such, without a complétspectral sequence algorithm.
RoTMAN ends his book [Rot09] with the words:

C. Primary decomposition “The reader should now be convinced that using spectral
It is also obvious that a primary decomposition algorithnsequences can prove interesting theorems. Moreover, even if
of ideals over a polynomial rin@ = k[z1,...,z,] would there are “elementary” proofs of these results (i.e., avoiding

suffice to compute the purity filtration of a (cyclic) modulespectral sequences), these more “sophisticated” proofs offer
M over D. Conversely, the (doublellxt modules of M  a systematic approach in place of sporadic success.”

with values inD, which appear in the second page of the

bidualizing spectral sequence, can be used to compute an

equidimensional decompositiorof the support ofd. This V. EXAMPLES

was indeed utilized in [EHV92] as the first step of a primary

decomposition algorithm. The examples listed below are not of any physical sig-
nificance. They are chosen to accumulate many algorithmic

D. QUADRAT’s recent approach difficulties

QUADRAT recently introduced another constructive ap- Example 5.1:Let D = Q|z,y, 2] and M := coker A =
proach to the purity filtration [Qual0a], [QualOb]. His ap-p1x5/p1x6 4 for A € D65,
proach is simpler in the sense that it does not make use of
spectral sequences.

Ty Yz z 0

3 2.2 2 2
IV. WHY SPECTRAL SEQUENCES Tz Tz 0 Tz —z

zt 28z 0 x2z -z

3
Spectral sequences have the reputation of being extremely = 0 0 2y g2 21
complex and difficult to comprehend. The relatively big 0 0 2s _zyz Yz
amount of data entering their definition is probably one of the 0 0 2 gy vy
reasons for this reputation. Below is an attempt to summarize
some of the advantages of spectral sequences relevant to o
particular context:

2%y —x

e triangulation algorithmIsomorphism0fFiltration,
described in [Bar, Appendix A], applied to thestep fil-

7Computing B is Of course part of computing the bidualizing spectraltrat'on 0 < torM < .JV[ retums_an |somorph|smc3 :
sequence. coker B — coker A with an equivalent block triangular
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; By | Bo
matrle_< 0 [ B >_

0 0 = —y 0 -1 0
zy yz =z 0 0 0 0
2 xz 0 2z 0 0 -1
0 z Y

yz xz 0 c D9x7
—22 0 Tz
-y zy—z O
z? -1 y 0
—xz 0 z?

(i.e., M = coker B with My = M/ tor M = coker By and
tor M = coker B;y). The isomorphismu g is represented by

a matrix

There exists a matriX/p satisfyingA = UgBVp. Finding
the “coordinate change” matri¥ is the involved part of
the computation, whereas the matrixz can always be

0 0 0
-1 0 0
0 -1 0
0 0 -1
0 0 0
0 ]
—xz 0 —z

computed a posteriori.
The triangulation algorithmsomorphism0fFiltration

applied to thet-steppurity filtration now yields an isomor-

c D7><5

phism a¢ : coker C' — coker A with an equivalentl2 x 9
block triangular matrixC' =
0 0 r -y |0 1 0 0 0
zy —yz —z 0 [0 O 0 0 0
22 —xzz 0 —z|1 0 0 0 |0
y —z 0 0 |0
z 0 —z 0 1
0 = —y -1 |0
0 —y z°=—-1 0 0
y—110
. z
Y
x
This means thatM = cokerC with M, = coker By,
Yy —z
M, = coker | § 2 :Z , My = coker( Z1>, and
0 —y xz2-1 y=
z
M3 = coker | y |, for the higher torsion modules. The
X
1-pure

V(Annp(M;)) = V(y? —

(a?

— x)), ruled over an elliptic

curve. The isomorphism is represented by a matrix

1

o OO

c ooy

8
w

0 0 0
-1 0 0
0 —1 0
0 0 -1
—xz 0 —z
0 x —y
0 0 0
0 -
2%z 0 Tz

c D9><5
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There exists a matriX/ satisfying A = UoCV¢, which
can now be easily computed.

Example 5.2:Let D = Q[z,y, 2](0x, 0y, 0;) denote the
3-dimensional VYL algebra. Consider the finitely presented
D-module M := coker A = D'*2/D'*8A for A € D3%2,
A=

Oy0: — 302 + 102 + 9y — 30- 9y0z — 502
azaz + a + 0, azaz + 82
82 -0, 40, 30,0y + 82
820y 0
82 -0, 40, 82 — 392
o2 0
202 —x0; + 20, +20. + 30. + 2 202+ 30, + 30.

92 +202 + 0, 03 4+ 0:0. + 02

The 2-step filtration0 < tor M < M s trivial since M =
tor M is a torsion module (i.e., purely autonomous).

The purity filtration of M unveils the fine structure of
autonomy and yields an isomorphigm coker T — coker A
with an equivalent block triangular matrix

0y

ol

Oy
6

i.e., M = coker T with My =0 (02), My =

coker <g > and M3 = coker , for the higher torsion

modules. The isomorphism i resented by a matrix
_1 1
3
—0,

—0,
—30,0, — 30, —30,0.

There exists a matriXU satisfying A = UTV, which can
now be easily computed. Finally, it is easy to see that the first
generator otoker T' = M is cyclic, yielding, by composition
with «, an isomorphismy from the cyclic module

C = D/(0? + 0,0y, 02,0, 0,07)

onto M. The isomorphismy is represented by the matrix
(1 1) € D2 and its inversey™ : M — C is
represented by the matrix

L 2(178m8y — 8m — 3Z 2% 1
L= (—2xazay + 0, + 0. + 1) e

V.= e D3%2,

subfactor modulé//; is supported on the surface The easy-to-compute general solution

u(z,y,z) =

_ 22 + 2zy + 3>
Ci(y,2) + (x + y)Ca(z) + Ca(2) + f%

of the simpleconstant coefficient scalaystemu,, + ugy =

Ugyz = Uzyy = 0 (COrresponding to the relations of the cyclic

module C') can now be transformed by to the general

solutiont) = Lu of the complicated systéfmd«y = 0.

8The matricesL. and A act as matrices of differential operators on the
sectionsu and ), respectively.



All the above examples were computed using a spe@@bel0]
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tral sequence implementation in tAP packagehomalg

[Bar10], [hpal0]. The algorithms are described in [Bar]. Se@,Qgg]

also [Qual0c] for an implementation ofURDRAT’s recent

approach to the purity filtration, which does not make use of
spectral sequences.
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