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Abstract— This contribution addresses the development of a
Linear Quadratic Regulator (LQR) for a set of time-varying
hyperbolic PDEs coupled with a set of time-varying ODEs
through the boundary. The approach is based on an infinite-
dimensional Hilbert state-space realization of the system and
operator Riccati equation (ORE). In order to solve the optimal
control problem, the ORE is converted to a set of differential and
algebraic matrix Riccati equations. The feedback gain can then
be found by solving the resulting matrix Riccati equations. The
control policy is applied to a system of continuous stirred tank
reactor (CSTR) and a plug flow reactor (PFR) in series and the
controller performance is evaluated by numerical simulation.

I. INTRODUCTION

Mathematical modelling of chemical processes commonly
involves lumping assumption to covert to ordinary differ-
ential equations (ODEs); however, this cannot be the case
for some unit operations, such as plug-flow reactors and
packed bed columns in which space variations are important.
These systems are called distributed parameter systems and
modelled by partial differential equations (PDEs). Some
complicated chemical systems involve both lumped and
distributed parameter parts (LPS-DPS) and are described by
a combination of ODEs and PDEs. For instance, a jacket-
equipped fixed-bed reactor is lumped on the jacket side and
is distributed on the reactor side.

Despite the importance and inherent complexities in the
structure of composite lumped and distributed parameter
systems, research in the area of feedback control for these
systems is scarce. By using the maximum principle for
parabolic partial differential equations, Wang ([1]) derived
sufficient conditions for stability and asymptotic stability for
a mixed parabolic PDE and ODE system. Tzafestas ([2])
used classical calculus of variations to solve the optimal
control problem for non-linear, mixed lumped and distributed
parameter systems. He also found necessary optimality con-
ditions for the optimal final-value problem for these systems
by applying Green’s identity and functional analysis tech-
niques ([3]). Dynamic programming was used in [4] and [5]
to solve discrete-time optimal feedback control problem for
a class of linear composite systems.

LQR control plays a significant role in optimal control
literature. The main objective of this control policy is to reg-
ulate a linear system by minimizing a quadratic performance
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index. In solving a LQR problem for an infinite-dimensional
(distributed) system, two common methods are available
in the literature. The first approach is based on frequency
domain description and known as spectral factorization.
In this method the control law is obtained via solving an
operator Diophantine equation ([6]). This technique is ap-
plied in [7] to control the temperature and the concentration
in a plug flow reactor. The second methodology involves
solving an operator Riccati equation for a given state-space
model ([8]). This method was used for a particular class
of hyperbolic PDEs ([9]). This work was then extended to a
more general class of hyperbolic system by using an infinite-
dimensional Hilbert state-space setting with distributed input
and output([10]).

In our previous work [11], LQR control for a set of cou-
pled linear hyperbolic PDEs and ODEs was achieved by solv-
ing an operator Riccati equation for the infinite-dimensional
Hilbert state-space description of the system. The designed
control policy was applied to a process containing a CSTR in
series with a PFR and tested via numerical simulation. This
work assumed time-invariant systems. The aim of this paper
is to generalize the previous work to the time-varying case.
The time-varying case is an important problem in chemical
reactor operations; due to catalyst deactivation phenomenon.
Several models for catalyst deactivation were proposed in
[12] and the simple exponential decay model is used in this
paper.

The paper is organized as follows. In section 2, general
formulation for a system including a set of composite linear
time-varying first-order hyperbolic PDEs and linear ODEs
is given. The system is described as an infinite-dimensional
Hilbert state-space. A state transformation is then used to
convert the related boundary condition to a homogeneous
one. Section 3 focuses on formulating and solving the LQR
problem for the mentioned system. To this end, the operator
Riccati equation is computed. This results in four matrix
Riccati equations, which should be solved to obtain state
feedback gain. In order to evaluate the performance of the
proposed method, in section 4, the designed control policy is
applied to a system containing a CSTR and a PFR in series
in which a time-varying Van de Vusse reaction is taking
place . First, the system is linearized around the equilibrium
point. Then, the feedback control gain is obtained by solving
the related matrix Riccati equations. Finally, the designed
control policy is applied to the original non-linear system
and simulation results are discussed.
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II. PROBLEM STATEMENT

This paper focuses on composite linear time-varying LPS-
DPS, where the control variable affects the boundary of
the distributed parameter system directly or indirectly, and
through the lumped parameter system. In addition, the DPS
is assumed to be described by a set of first-order hyperbolic
PDEs. The general mathematical formulation for these sys-
tems is as follows:

∂xd
∂t

(t, z) = V
∂xd
∂z

(t, z) +M(t, z)xd(t, z)+

Bd0(t, z)u(t) (1)
dxl
dt

(t) = A(t)xl(t) +B(t)u(t) (2)

with the following boundary and initial conditions:

xd(t, 0) = xl(t) (3)
xd(0, z) = xd,0(z) (4)
xl(0) = xl,0 (5)

where, xd(., t) ∈ L2(0, 1)n and xl(t) ∈ Rn denote the
state variables for the distributed and the lumped parameter
systems, respectively, z ∈ [0, 1] is the spatial coordinate,
t ∈ [0,∞] is the time, u(t) ∈ Rm is the input variable,
V = −υI ∈ Rn×n with υ > 0 is a symmetric matrix,
M(t, z) and Bd0(t, z) are real continuous space and time-
varying matrices, A(t) ∈ Rn×n and B(t) ∈ Rn×m are real
time-varying matrices, xd,0 is a real continuous space varying
vector, and xl,0 is a constant vector.

The above system can be stated as an infinite-dimensional
state-space in the Hilbert space H = L2(0, 1)n ([8]):

ẋd(t) = A (t)xd(t) +Bd(t)u(t) (6)
ẋl(t) = A(t)xl(t) +B(t)u(t) (7)
Bxd(t) = xl(t) (8)

Here A (t) is a linear time-varying operator defined as:

A (t)h(z) = V
dh(z)
dz

+M(t, z)h(z) (9)

where h(z) is a smooth function on [0, 1], with the following
domain:

D(A (t)) = {h(z) ∈H : h(z) and
dh(z)
dz

are abs. cont.,

and
dh(z)
dz

∈H } (10)

B is a linear boundary operator defined as:

Bh(z) = h(0) (11)
D(B) = {h(z) ∈H : h(z) is abs. cont.} (12)

Bd(t) is given by Bd(t) = Bd0(t, z)I , where I is the identity
operator.

The infinite-dimensional state-space system (6) to (8) with
inhomogeneous boundary condition can be transformed to
a new system with homogenous boundary condition using
boundary control transformation (see [8] and [13]). We

assume that there is a function B(z) such that for all xl(t),
Bxl(t) ∈ D(A (t)) and:

BB(z)xl(t) = xl(t) (13)

By assuming that xl(t) is sufficiently smooth and using the
state transformation ω(t) = xd(t)−B(z)xl(t) ([8]), we have:

ω̇(t) = ẋd −B(z)ẋl

Then:

ω̇(t) = F (t)ω(t) + A (t)B(z)xl(t) +Bd(t)u(t)−B(z)ẋl
ω(0) = ω0 (14)

where ω0 = xd,0 −B(z)xl,0 ∈ D(F ) and:

F (t)h(z) = A (t)h(z)

The domain of F (t) is defined as:

D(F (t)) = D(A (t)) ∩ ker(B) = {h(z) ∈H :

h(z) and
dh(z)
dz

are abs. cont.,
dh(z)
dz

∈H ,

and h(0) = 0}
(15)

By combining (7) and (14) we obtain the new infinite-
dimensional Hilbert state-space representation of the time-
varying DPS-LPS as:[

ω̇(t)
ẋl(t)

]
=
[
F (t) A (t)B(z)−B(z)A(t)

0 A(t)

] [
ω(t)
xl(t)

]
+[

Bd(t)−B(z)B(t)
B(t)

]
u(t)

ω(0) = ω0, xl(0) = xl,0 (16)

We define state and output variables of the above system as
x(t) = [ω(t), xl(t)]T and y(z, t) = [yd(z, t), yl(t)]T , where
yd(., t) ∈ Y := L2(0, 1)p is the output variable for the
distributed parameter system and yl(t) ∈ Rp is the output
variable for the lumped parameter system. Then the output
equation will be

y(t) = Cx(t) (17)

where C is given by C = C0I with I is the identity operator.

Here C0 is given by C0 =
[
S0 0
0 S0

]
with S0 ∈ Rp×n.

In [14], it is proven that given V < 0, operator
F (t) generates an exponentially stable C0−semigroup.
Therefore, If matrix A(t) is stable, operator[
F (t) A (t)B(z)−B(z)A(t)

0 A(t)

]
provides a stable

C0−semigroup.

III. OPTIMAL CONTROL DESIGN

In this section we are interested in LQR control synthesis
for the time-varying DPS-LPS system according to the
infinite-dimensional state-space representation of (16). The
design is based on the minimization of an infinite-horizon
quadratic objective function that requires the solution of
an operator Riccati equation ([8], [15]). Solution of the
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operator Riccati equation for the time-varying DPS-LPS
results in a set of algebraic, ordinary differential and partial
differential matrix Riccati equations. The optimal feedback
gain can then be found by solving the equivalent matrix
Riccati equations.

Let us consider the following quadratic objective function:

J(x0, u) =
∫ ∞

0

(〈Cx(t), PCx(t)〉+ 〈u(t), Ru(t)〉)dt

(18)

where x0 ∈ H is an initial condition, P = P0I ∈ L(Y ),

P0 =
[
P11 P12

P21 P22

]
∈ R2p×2p is a positive semi-definite

symmetric matrix, and R ∈ Rm×m is a positive symmetric
matrix. The minimization of the above objective function
subject to the system of (16) results in solving the following
operator Riccati equation ([14] and the references therein):

[Q̇0 +A(t)∗Q0 +Q0A(t) + C∗PC−
Q0B(t)R−1B(t)∗Q0]x = 0 (19)

where A(t) =
[
F (t) A (t)B(z)−B(z)A(t)

0 A(t)

]
, B(t) =[

Bd(t)−B(z)B(t)
B(t)

]
and Q0 ∈ L(H ) is non-negative self-

adjoint operator. The above operator Riccati equation has a
unique solution Q0. The minimum cost function is given
by J(x0, uopt) = 〈x0, Q0x0〉 (see [14]). For any initial
condition x0 ∈H the unique optimal control variable uopt,
which minimizes the objective function of (19), is obtained
on t ≥ 0 as:

uopt(t) = K(t)x(t) (20)

where

K(t) = −R−1B(t)∗Q0(t) (21)

Under this condition, A(t) + B(t)K(t) generates an expo-
nentially stable C0−semigroup ([14]).

Let the solution of the operator Riccati equation (19) be:

Q0(t) :=
[
Φ(t, z)I 0

0 Ψ(t)I

]
(22)

where Φ(t, z),Ψ(t) ∈ Rn×n are positive self-adjoint matri-
ces and I is the identity operator. By substituting for A(t),
B(t), C, and Q0 in (19), we have:

Φ̇ + F ∗Φ + ΦF + S∗0P11S0−
Φ(Bd −BB)R−1(Bd −BB)∗Φ = 0 (23)

Φ(A B−BA) + S∗0P12S0−
Φ(Bd −BB)R−1B∗Ψ = 0 (24)

(A B−BA)∗Φ + S∗0P21S0−
ΨBR−1(Bd −BB)∗Φ = 0 (25)

Ψ̇ +A∗Ψ + ΨA+ S∗0P22S0 −ΨBR−1B∗Ψ = 0 (26)

Equation (23) is a differential matrix Riccati equation. We
assume that the matrix V = −υI, υ > 0 is diagonal with

identical entries. In this condition, (23) can be solved by the
following set of PDEs (see [14] for proof):

∂Φ
∂t

= −V dΦ
dz

+M∗Φ + ΦM + S∗0P11S0−

Φ(Bd −BB)R−1(Bd −BB)∗Φ
Φ(1) = 0 (27)

Equation (26) is an ordinary differential matrix Riccati
equation, which can be integrated over time to find Ψ.
Equation (25) is the adjoint of (24) and, therefore, these two
equations are the same. Equation (24) can be satisfied by
using elements of matrix P12 such that matrix P0 remains
positive semi-definite. We can derive the following equation
from (24):

S∗0P12S0 = −ΦM + ΦA+ Φ(Bd −BB)R−1B∗Ψ (28)

In order to get the above equation, first we obtain B(z) from
(13) as:

BB(z) = I (29)

Then:

[B(z)]z=0 = I,B(z) = I ∈ D(A ) (30)

By using (9) we have:

A (t)B(z) = V
dB(z)
dz

+M(t, z)B(z) (31)

Let us substitute expression for B into (31), which yields:

A B = MB (32)

By substituting for A B in (24), we obtain (28).
Therefore, the solution procedure for the LQR problem

can be stated as:
• Choose weighting matrices P11, P22, and R
• Find Ψ(t) and Φ(t, z) via solving (26) and (27) (differ-

ential matrix Riccati equations)
• Obtain P12 from (28) and check whether matrix P0 is

positive semi-definite or not
• In the case that P0 is not positive semi-definite choose

new P11 and P22 and resolve (26) and (27)
• Calculate the feedback gain from (21)

It should be noticed that in the case of state LQR where
S0 = I the left hand side of (28) reduces to P12.

IV. CASE STUDY

In this section we consider a CSTR-PFR configuration
shown in Fig. 1 as a composite lumped and distributed pa-
rameter system. This reactor configuration is recommended
for some types of chemical reactions (e.g., [16] and [17]) and
may be used to carry out Van de Vusse reaction to achieve
maximum conversion to the desired product ([17]). Here, we
assume reactions and kinetics:

A −→ B, −r1 = k1e
−E1/RTCA (33)

B −→ C, −r2 = k2e
−E2/RTCB (34)

2A −→ D, −r3 = k3e
−E3/RTC2

A (35)
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where: k1, k2 and k3 are pre-exponential constants; E1, E2

and E3 are the activation energy and R is the universal gas
constant. The exothermic reactions take place in both CSTR
and PFR and component B is the desired component. The
reaction kinetics are considered to be time-varying according
to the following exponential decay model (see [12]):

ki = k0,i + k1,ie
−αit (36)

where subscripts i = 1, 2, 3 denote number of reactions and
k0,i, k1,i and αi are the decay model parameters.

The objective is to control the concentration of the com-
ponents and the temperature within both reactors by using
inlet flow rate (Fin) and cooling rate from the CSTR (Q) as
manipulated variables. With the assumptions of negligible
diffusion in the PFR, perfect level control in the CSTR,
no transportation lags in the connecting lines, constant fluid
velocity in the PFR with respect to spatial coordinate and
constant physical properties, the mathematical model of the
system will be:

dCA
dt

=
Fin
Vs

(CinA − CA)− k1e
−E1/RTCA−

k3e
−E3/RTC2

A (37)
dCB
dt

= −Fin
Vs

CB + k1e
−E1/RTCA−

k2e
−E2/RTCB (38)

dT

dt
=

1
ρcp

[k1e
−E1/RTCA(−∆H1)+

k2e
−E2/RTCB(−∆H2) + k3e

−E3/RTC2
A(−∆H3)]+

Fin
Vs

(Tin − T ) +
Q

ρcpVs
(39)

∂CpA
∂t

= −υ
∂CpA
∂z
− k1e

−E1/RTCpA−

k3e
−E3/RTCpA

2 (40)
∂CpB
∂t

= −υ
∂CpB
∂z

+ k1e
−E1/RTCpA−

k2e
−E2/RTCpB (41)

∂Tp
∂t

= −υ∂Tp
∂z

+
k1

ρcp
e−E1/RTCpA(−∆H1)+

k2

ρcp
e−E2/RTCpB(−∆H2)+

k3

ρcp
e−E3/RTCpA

2(−∆H3) (42)

CpA(t, 0) = CA (43)
CpB(t, 0) = CB (44)
Tp(t, 0) = T (45)

where: CA and CB are the concentration of the components
A and B in the CSTR, respectively; T is the temperature
in the CSTR; CpA and CpB are the concentration of the
components A and B in the PFR, respectively; Tp is the
temperature in the PFR; z ∈ [0, L] is the spatial coordinate;
t ∈ [0,∞] is the time; Fin, CinA and Tin are the volumetric

Fig. 1. CSTR-PFR system

TABLE I
MODEL PARAMETERS

Parameter Value
k0,1 225.2250× 106 sec−1

k0,2 225.2250× 106 sec−1

k0,3 1.583× 106 sec−1

k1,1 25.025× 106 sec−1

k1,2 25.025× 106 sec−1

k1,3 1.759× 105 sec−1

α1, α2, α3 1.389× 10−3 sec−1

Fin,ss 174.845× 10−6 m3/sec
Qss −1.36 kJ/sec
Cin

A 5.1 kmol/m3

Tin 403.15 K
∆H1 −4200 kJ/kmol
∆H2 −11000 kJ/kmol
∆H3 −41850 kJ/kmol
E1/R 9758.3 K
E2/R 9758.3 K
E3/R 8560.0 K
Vs 0.01 m3

Vp 0.005 m3

ρ 934.2 kg/m3

cp 3.01 kJ/kgK

flow-rate, concentration and temperature of the feed to the
CSTR; Vs and Vp are the volumes of the CSTR and the PFR,
respectively; υ is the fluid velocity in the PFR which is given
by υ = FinL

Vp
, ∆H1, ∆H2 and ∆H3 are the heat of reaction

for the reactions 1, 2 and 3, respectively; and ρ and cp are
the average fluid density and specific heat.

The model parameters used in this case study are given
in Table I. In order to find the equilibrium condition for
the system, the modelling equations (37) to (45) have been
solved at steady-state in gPROMS R© ([18]). Simulation yields
the steady-state values for CA, CB and T of 2.71 kmol/m3,
1.07 kmol/m3 and 409.79 K, respectively. The steady-
state profiles for CpA and CpB are shown in Fig. 2 and the
steady-state profile for Tp is shown in Fig. 3. The model
equations can be linearized around the steady-state condition
to describe the system as the general formulation of (1) to
(5).

A. LQR Control Design

We use the proposed optimal control policy to control the
concentration of the components and also the temperature in
both CSTR and PFR. S0 is selected to be the identity matrix
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Fig. 2. Steady-state concentration profiles in the PFR

Fig. 3. Steady-state temperature profile in the PFR

to yield a state LQR problem. In order to solve the LQR
control problem for this system, we follow the procedure
discussed in Section III. The matrix Riccati equations (26)
and (27) are solved numerically in gPROMS. By choosing

P11 = 100I , P22 = 250I and R =
[
0.01 0

0 0.0001

]
the

matrix P0 is positive semi-definite. The feedback gain can
be obtained using (21).

B. Simulation Results

In order to assess the performance of the control policy, the
designed feedback gain is implemented to the original non-
linear system (37) to (45). The coupled non-linear and time-
vatying LPS-DPS is solved using orthogonal collocation
on finite element method in gPROMS. We use CA(0) =
10 kmol/m3, CB(0) = 10 kmol/m3, T (0) = 406 K,
CpA(0, z) = 1 kmol/m3, CpB(0, z) = 1 kmol/m3 and
Tp(0, z) = 403 K as initial conditions. Open-loop and
closed-loop responses for the concentration of the com-
ponents and the temperature in the CSTR are compared
in Fig. 4 and Fig. 5, respectively. As can be seen, the
closed-loop response is significantly better than the open-
loop response. The response time of the closed-loop system
is more than two times faster and the deviations from the
operating condition is much less. In Fig. 6 and Fig. 7 open-

Fig. 4. Concentration responses in the CSTR

loop and closed-loop responses for the concentration of the
components and temperature at the outlet of the PFR are
shown. As can be observed, the inverse-response for the
open-loop concentrations have disappeared and again, the
closed-loop responses are much faster than open-loop ones.
Finally, the variations of the control inputs are shown in Fig.
8. The control efforts are not particularly aggressive and are
physically realizable.

V. CONCLUSIONS

In this work LQR control problem for a class of time-
varying composite lumped and distributed parameter system
is formulated and solved. In this mixed system, the lumped
parameter system interacts with the hyperbolic distributed
parameter system through its boundary. The control variables
can affect the boundary of the distributed parameter system
directly or indirectly, and through the lumped parameter
system. The LQR control problem is formulated based on an
infinite-dimensional state-space representation of the system,
which is obtained via a state transformation from the original
system using the idea of boundary control problem. The
solution of the LQR control problem is achieved by solving
the matrix Riccati equations that results from the opera-
tor Riccati equation of the infinite-dimensional state-space
representation. The designed optimal control policy was
implemented on an interacting CSTR-PFR system with time-
varying reaction kinetics. The performance of the controller
was assessed by implementing the controller on the original
non-linear system and resulted in a high performance closed-
loop system.
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