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Abstract— Reflectometry is a technology frequently used
for the diagnosis of failures in wired electric networks. For
the purpose of developing advanced diagnosis methods, a
reduced mathematical model of reflectometry is proposed in
this paper. Based on the telegrapher’s equations and on the
Kirchhoff’s laws, this model leads to a simple algorithm for the
computation of frequency domain reflection coefficients from
the characteristic parameters of the transmission lines and
their connections in a star-shaped or a tree-shaped network.
This algorithm implemented in a digital computer can easily
simulate networks composed of different and inhomogeneous
transmission lines. Comparisons between simulated reflection
coefficients and real reflectometry measurements confirm the
validity of the proposed model.

I. INTRODUCTION

With the fast development of electric and electronic com-
ponents in modern engineering systems, the reliability of
electric transmissions lines is becoming a crucial issue. The
increasing number of electric connection failures requires re-
search on diagnosis technologies. For example, reflectometry
is one of such technologies. It consists in injecting electric
signals into the monitored network and in analyzing the
reflection of electric waves observed at one or more network
terminals [1], [2]. Nowadays, this technology provides an
efficient solution for the diagnosis of hard faults (open or
short circuits) in a single transmission line or in a network,
whereas the diagnosis of soft faults in wired electric networks
is still an open problem [3]. The purpose of this paper is to
propose a mathematical model of wired electric networks
intended for the diagnosis of both hard and soft faults. As
soft faults may result in spatially continuous characteristic
variations of transmission lines, the proposed model will
cover networks composed of spatially inhomogeneous trans-
mission lines. This new model will remain simple to be a
tool convenient to fault diagnosis, as it is entirely based on
the telegraphers equations for transmission lines and on the
Kirchhoff’s laws for network nodes. A method for numerical
solution of the model equations (in the frequency domain)
will be elaborated, so that the new model can serve as a
numeric simulator of wired networks. While the model pre-
sented in this paper is being used as a theoretic basis in our
current study for fault diagnosis in lossy and inhomogeneous
wired networks, this model has already been used in [4] for
studying lossless networks of simple topological structure.

In the next section, we recall the model of a single
transmission line and we present a simple method to calculate
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the reflection coefficient. Next, in section III, we extend this
theory to star-shaped and tree-shaped networks. Numerical
simulation results are then presented in section IV, before
the conclusion section.

II. MODELING A SINGLE TRANSMISSION LINE

A. Telegrapher’s Equations and Zakharov-Shabat Equations.

Vl

Zl

R(z) L(z)

G(z) C(z)

Vr

Zr

Fig. 1. A transmission line connected to a voltage source Vl with its internal
impedance Zl and to a voltage source Vr with its internal impedance Zr .

Consider a transmission line of length l. The left end
and the right end of the line correspond respectively to the
coordinate values along the line z = 0 and z = l. This line is
connected to an alternating voltage source Vl(k) of frequency
k with real internal impedance Zl(k) at the left end, and a
voltage source Vr(k) with real internal impedance Zr(k) at
the right end (see Fig 1).

The voltage and current waves along a transmission line
driven by an alternating source of frequency k are of the
form V (k,z)exp(− jkt) and I(k,z)exp(− jkt) (t and z being
the time and the line coordinate) and are solutions of the
following frequency-domain telegrapher’s equations [5],

∂V (k,z)
∂ z

− jkL(z)I(k,z)+R(z)I(k,z) = 0

∂ I(k,z)
∂ z

− jkC(z)V (k,z)+G(z)V (k,z) = 0
(1)

with the boundary conditions{
V (k,0) = −Zl(k)I(k,0)+Vl(k)
V (k, l) = Zr(k)I(k, l)+Vr(k)

(2)

where R(z),L(z),C(z) and G(z) are respectively the dis-
tributed resistance, inductance, capacitance and conductance
per unit length along the line.

For a reflectometry experiment, the boundary conditions
of (1) are related to a source connected to one end of the line
and a passive load connected to the other end. In order to
reformulate the telegrapher’s equations in terms of incident
and reflected waves, some transformations are applied in
what follows.
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The first step is to replace the space coordinate z by the wave
propagation time x through the Liouville transformation [6]:

x(z) =
∫ z

0

√
L(s)C(s)ds (3)

After this coordinate change from z to x, by abuse of notation,
L(z(x)) will be simply written as L(x), and similarly for
C(x), R(x), G(x), V (k,x) and I(k,x). Then the telegrapher’s
equations become,

∂V (k,x)
∂x

=

(
jk− R(x)

L(x)

)
H(x)I(k,x)

∂ I(k,x)
∂x

=

(
jk− G(x)

C(x)

)
H−1(x)V (k,x)

(4)

with:

H(x) =

√
L(x)
C(x)

(5)

which is the high frequency limit of the characteristic
impedance and which would coincide with the characteristic
impedance if the transmission line was lossless. For a line
of length l, the wave traveling time over the line is τ = x(l),
and for all point z ∈ [0, l], the corresponding x(z) ∈ [0,τ].

In the new coordinate system, define the reflected and the
incident waves:

ν1(k,x) =
1√
2

(
H−

1
2 (x)V (k,x)−H

1
2 (x)I(k,x)

)
ν2(k,x) =

1√
2

(
H−

1
2 (x)V (k,x)+H

1
2 (x)I(k,x)

) (6)

this change of variables leads to the Zakharov-Shabat equa-
tions,

∂ν1(k,x)
∂x

+ jkν1(k,x)= q3(x)ν1(k,x)−q+(x)ν2(k,x)
∂ν2(k,x)

∂x
− jkν2(k,x)=−q3(x)ν2(k,x)−q−(x)ν1(k,x)

(7)

with the corresponding boundary conditions obtained by
rewritting (2) with (6) and where:

q±(x) =
1
4

∂

∂x

[
ln

L(x)
C(x)

]
± 1

2

(
R(x)
L(x)

− G(x)
C(x)

)
q3(x) =

1
2

(
R(x)
L(x)

+
G(x)
C(x)

)
The passage of telegraphers’s equations to Zakharov-

Shabat equations will allow to study the inverse problem
through the inverse scattering approach [6].

B. The reflection coefficient governed by a Differential Ric-
cati Equation.

In the inverse scattering theory, reflection coefficients
are usually related to the limiting behavior of Jost solu-
tions of the Zakharov-Shabat equations. For the left Jost
solution(ν1(k,x) = fl1(k,x) and ν2(k,x) = fl2(k,x)) satisfying
the limiting behavior,{

lim
x→+∞

fl1(k,x) = 0

lim
x→−∞

fl2(k,x)e
− jkx = 1

(8)

the left reflection coefficient is expressed as

rl(k) = lim
x→−∞

fl1(k,x)
fl2(k,x)

e2 jkx (9)

where the factor e2 jkx demodulates the waves fl1(k,x) and
fl2(k,x).

A simple method for solving the Zakharov-Shabat equa-
tions is to define a local reflection coefficient r [7] by the
invariant embedding method

r(k,x) =
ν1(k,x)
ν2(k,x)

(10)

For any point x ∈ [0,τ], this coefficient satisfies the Differ-
ential Riccati Equation (DRE) with a boundary condition at
the load end of the line:

∂ r(k,x)
∂x

= q−(x)r2(k,x)+2q3(x)r(k,x)

−2 jkr(k,x)−q+(x)
r(k,τ) = ρr(k)

(11)

the coefficient ρr(k) is defined as follows:

ρr(k) =
Zr(k)−H(τ)

Zr(k)+H(τ)
(12)

The quantity r(k,x) can be viewed as a generalization of the
reflection coefficient , which is usually defined at one end of
a transmission line instead of being a function of x. When
r(k,x) is evaluated at the source end, it coincides with the
reflection coefficient rl(k) which can be measured in practice
with a network analyzer.

After numerically solving the DRE (11) for r(k,x), the
Zakharov-Shabat equations can be easily solved for ν1(k,x)
and ν2(k,x) with the aid of r(k,x). The solution of (1) is then
obtained by simply converting ν1(k,x) and ν2(k,x) back to
V (k,z) and I(k,z).

V (k,x) =
H

1
2
√

2
(ν1(k,x)+ν2(k,x))

I(k,x) =
−H−

1
2

√
2

(ν1(k,x)−ν2(k,x))
(13)

III. MODELING A STAR-SHPED OR TREE SHAPED
NETWORK

A. Description of a star-shaped network.

Now, we consider a star-shaped network of lossy trans-
mission lines, as in Fig 2, formed by N + 1 branches bi
for i ∈ {0, . . . ,N} connected together through a central node
(junction) J. A source is connected at the end of branch b0
(x0 = τ0), and at the end of each branch bi for i∈ {1, . . . ,N}
a load is connected (including the particular cases of open
or short circuits). Each branch bi is parameterized by its
per-unit-length parameters Ri(xi), Li(xi), Gi(xi) and Ci(xi).
In what follows, each function related to the branch bi is
indexed by i.
The voltage and the current in each branch of the network
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Fig. 2. Star-shaped network Fig. 3. Example of tree-shaped network

are modeled by (1) with boundary conditions at the terminal
nodes and with the Kirchhoff’s law (14) at the central node:

N

∑
i=0

Ii(k,0) = 0

Vi(k,0) =Vj(k,0) ∀(i, j) ∈ {1, . . . ,N}
(14)

Extending the local reflection coefficient introduced in
Section 1 to each branch, we have N +1 DRE of the form



∂ ri(k,xi)

∂xi
= q−i(xi)r2

i (k,xi)+2q3i(xi)ri(k,xi)

−2 jkri(k,xi)−q+i(xi)

r0(k,0) = ρr0(k)
ri(k,τi) = ρri(k) ∀ i ∈ {1, . . . ,N}

(15)

There is no source at the junction node J (xi = 0),
consequently, the voltages Vr0 and Vli for i ∈ {1, . . . ,N}
are zero. After applying the Kirchhoff rules, the apparent
impedances verify:

1
Z0(k,0)

=
N

∑
i=1

1
Zi(k,0)

(16)

where Zi(k,x) =
Vi(k,x)
Ii(k,x)

is the apparent impedance of each

branch bi.

B. The reflection coefficient for a star-shaped network.

The reflection coefficient for a star-shaped network viewed
from terminal-0 can be computed as follows . First compute
ri(k,xi) along each branch bi for i ∈ {1, . . . ,N}, by solving
the governing DRE (15) from terminal-i to the central node.
The value of r0(k,x0) on branch b0 close to the central node
is equal to ρr0(k). This quantity can be determined from
ri(k,x) on the other branches through the Kirchhoff’s law.
At the junction node J, the reflection coefficient ri(k,0) can
be expressed with the apparent impedance as follows:

ri(k,0) =
Zi(k,0)−Hi(0)
Zi(k,0)+Hi(0)

(17)

where

Hi(xi) =

√
Li(xi)

Ci(xi)
∀i ∈ {0, . . . ,N} (18)

Applying the identity (16), the expression of Z0(k,0) writes

Z0(k,0) =
1

∑
N
i=1

1−ri(k,0)
Hi(0)(1+ri(k,0))

(19)

The function ρr0(k) verifies:

ρr0(k) =
Z0(k,0)−H0(0)
Z0(k,0)+H0(0)

(20)

Finally, solve the DRE for r0(k,x0) along branch b0 towards
terminal-0 to obtain the reflection coefficient at that point.

We can solve the Zakharov-Shabat equations for ν1i(k,xi)
and ν2i(k,xi) with the aid of ri(k,xi) and we calculate the
solutions the tension Vi and the current Ii of each branch bi
with the relation applied (13) at each branch.

Now let us consider a particular case that will be use-
ful for verifying numerical simulation results. If the high
frequency characteristic impedance as defined in (18) Hi
for i ∈ {1, . . . ,N} is continuous at the junction node J, in
the sense that Hi(0) = H j(0) ∀(i, j) ∈ {0, . . . ,N}, then the
expression of ρr0(k) can be simplified as follows:

ρr0(k) =
1−N +2∑

N
i=1

ri(k,0)
1+ri(k,0)

1+N−2∑
N
i=1

ri(k,0)
1+ri(k,0)

(21)

Moreover, if

A1 the star-shaped network is composed of lossless
branches,

A2 the terminal of each branch bi, for i ∈ {1, . . . ,N},
is connected to a matched load,

A3 branch b0 is homogeneous (H0(x0) is constant for
all x0 ∈ [0,τ0]),

A4 Hi(xi) is continuously differentiable in xi for all
xi ∈ [0,τi], i ∈ {1, . . . ,N},

then the asymptotic behavior of reflection coefficient satisfies

lim
k→+∞

|r0(k)|=
N−1
N +1

(22)

where |r0(k)| is the modulus of the reflection coefficient for
a star-shaped network. See the appendix of this paper for a
proof of this result.
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Fig. 4. Simulated reflection coefficient for a star shaped network

Fig. 5. Characteristic impedance profil.

C. Generalization to tree-shaped network.

The results of star-shaped network can be generalized to
the tree-shaped network as in (Fig 3). The principle of the
method is to treat the root level of a tree-shaped network as
a star-shaped network with its branches composed of sub-
networks, and each of the sub-networks (of tree-shape) is in
turn treated as a star-shaped network, and so on. Conversely,
a star-shaped network can be extended to a tree-shaped
network by replacing each of its branches, except the branch
b0, by another star-shaped network. Each branch of the newly
added star-shaped network can in turn be replaced by a star-
shaped network, and so on.

To compute the reflection coefficient at the root terminal,
the local reflection coefficient, ri(k,xi) is computed along
each branch directly connected to a leaf terminal, then prop-
agated to branches of higher level, to finish by computing
the reflection coefficient at the root terminal.
This algorithm can be implemented very easily in Matlab or
similar softwares.
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Fig. 6. Example of a star-shaped and tree-shaped networks

IV. SIMULATION STUDY
A numerical simulator of tree-shaped network has been

implemented in Matlab based on the mathematical model
presented in this paper. Results of simulation examples will
be presented in this section. The comparison of these results
with real measurements provides a validation of the model
and the simulator.

A. Generation the reflection coefficient for an inhomoge-
neous star-shaped network.

we consider a star-shaped network of lossless transmission
lines composed of 4 identical branches and a homogeneous
branch b0. The capacitance of each branch is kept to
a constant value Ci(xi) = 0.1nF/m and the characteristic
impedance Zci =

√
Li(xi)/Ci(xi) for i∈ {1, . . . ,4} is depicted

in Figure (5), in both zi and xi coordinates. At the end of
branches 1, 2, 3 and 4 a matched load is connected. The
simulated reflection coefficient r(k) (modulus and phase) is
shown in Figure (4). Remark that, in the high frequency
regime, the modulus of reflexion coefficient converges to 0.6,
this value is in agreement with the relation (22).

B. Comparison of simulations with measurements.

The purpose of this subsection is to compare simulated re-
flection coefficients with real reflection coefficients measured
on two networks made of coaxial cables with the character-
istic impedance Zc = 50Ω and velocity γ = 2.478.108 m/s.

For the first example, we consider a star-shaped network
made up of 4 branches, as illustrated in Figure 6-A. The
branches 1, 2, 3 are open-circuited. The reflection coeffi-
cient profile computed through the mathematical model is
compared to the real reflection coefficient in Figure (6-A).

For the second example, we consider a tree-shaped net-
work, that is shown in Figure (6-B). Two leaf branches of
the tree are open-circuited, and another one is short-circuited.
To obtain these results, we added the constant ohmic loss
Ri(xi) = 1.7Ω/m to each branch in the numerical simulator.

Figure (7) and Figure (8) present a good agreement
between measures and simulations, both for modulus and
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Fig. 7. Measured reflection coefficient compared to simulated reflection
coefficient for a star shaped network.

Fig. 8. Measured reflection coefficient compared to simulated reflection
coefficient for a star shaped network.

phase of the reflection coefficient. The small difference in the
modulus may come from measurements noises and losses in
the connectors.

V. CONCLUSIONS AND FUTURE WORKS

A reduced mathematical model of reflectometry for char-
acterizing complex wired electric networks with distributed
RLCG parameters has been introduced in this paper. This
model constitutes a first step for developing advanced meth-
ods for the diagnosis of failures in wired networks. It’s also
useful for numerical simulation of the studied networks, by
computing reflection coefficients, as well as voltage and
current waves. The comparison of simulations with real
measurements provides a validation of the model and the
simulator.
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APPENDIX

Now, we prove (21) and (22). In this particular case, the
high frequency characteristic impedance as defined in (18),
is continuous at the junction node J. Therefore,

H0(0) = Hi(0) ∀ i ∈ {1, . . . ,N} (23)

Applying this identity in (19), the apparent impedance
Z0(k,0) can be expressed as follows

Z0(k,0) =
H0(0)

∑
N
i=1

1−ri(k,0)
1+ri(k,0)

(24)

The value of ρr0(k) then verifies

ρr0(k) =
1−∑

N
i=1

1−ri(k,0)
1+ri(k,0)

1+∑
N
i=1

1−ri(k,0)
1+ri(k,0)

(25)

A simple computations imply the equation (21).

For a homogeneous branch b0, the Riccati equation (15)
satisfied by r0(k,x0) reduces to the linear equation with a
boundary condition at the load end of the branch b0

∂ r0(k,x0)

∂x0
=−2 jkr0(k,x0)

r0(k,0) = ρr0(k)
(26)

the solution of this equation writes

r0(k,x0) = ρr0(k)e
−2 jkx0 (27)

Under the assumptions A1 through A4, we have

lim
k→+∞

ri(k,0) = 0 ∀ i ∈ {1, . . . ,N} (28)

The two relations (21) and (28) imply

lim
k→+∞

r0(k,x0)e2 jkx0 =
1−N
1+N

∀x0 ∈ [0,τ0] (29)

Take the absolute value at both sides of this equation, while
noticing that r0(k) = r0(k,τ0) and N ≥ 1, then the result of
(22) is obtained.
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