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Abstract— This paper extends the Bounded Real Lemma of
the H∞-control theory to stochastic systems under random
disturbances with imprecisely known probability distributions.
The statistical uncertainty is measured in entropy theoretic
terms using the mean anisotropy functional. The disturbance
attenuation capabilities of the system are quantified by the
anisotropic norm which is a stochastic counterpart of the H∞-
norm. We develop a state-space criterion for the anisotropic
norm of a linear discrete time invariant system to be bounded
by a given threshold value. The resulting Anisotropy-based
Bounded Real Lemma involves an inequality on the determinant
of a matrix associated with a parameter-dependent algebraic
Riccati equation.

I. INTRODUCTION

The main concept of the anisotropy-based approach to

robust stochastic control, originated in the mid 1990’s in

[8], [9], [10], is the anisotropic norm of systems which

builds on the anisotropy of random signals. Enhancing the

qualitative meaning of this term as it is used in Physics, the

anisotropy functional, considered here, is an entropy theo-

retic measure of the deviation of a probability distribution

in Euclidean space from Gaussian distributions with zero

mean and scalar covariance matrices. The isotropic Gaussian

distributions (whose importance was first recognised in linear

regression analysis for justifying the least squares method)

are customary models of noise in Linear Quadratic Gaussian

(LQG) filtering and control.

The transition from finite-dimensional random vectors to

stationary random sequences is carried out in a standard way

by defining the mean anisotropy of such a sequence as the

anisotropy production rate per time step for long segments

of the sequence. In application to random disturbances, the

mean anisotropy describes the amount of statistical uncer-

tainty which is understood as the discrepancy between the

imprecisely known actual noise distribution and the family

of nominal models which consider the disturbance to be

a Gaussian white noise sequence with a scalar covariance

matrix.

The a-anisotropic norm quantifies the disturbance attenu-

ation capabilities of a linear discrete time invariant (LDTI)

system by the largest ratio of the power norm of the system

output to that of the input, provided that the mean anisotropy

of the input disturbance does not exceed a given nonnegative

parameter a.
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In the context of robust stochastic control design, which is

concerned with suppressing the potentially harmful effects of

statistical uncertainty, the anisotropy-based approach offers

an important alternative to those control design procedures

that are “fine-tuned” for a specific probability law of the

disturbance.

As a performance criterion, the minimization of the

anisotropic norm of the closed-loop system provides con-

trollers that are less conservative than the H∞-controllers

and more efficient for correlated disturbance attenuation than

the LQG controllers. A state-space solution to the optimal

control problem by the minimum anisotropic norm criterion

was obtained in [11]. This control design procedure, which

yields an internally stabilizing dynamic feedback controller,

involves the solution of three cross-coupled algebraic Riccati

equations, an algebraic Lyapunov equation and a mean

anisotropy equation on the determinant of a related matrix.

A natural extension of this approach is the suboptimal

anisotropic controller design. The requirement to internally

stabilize the closed-loop system still applies. However, in-

stead of minimizing the anisotropic norm of the system, a

suboptimal controller is only required to keep it below a

given threshold value. Rather than singling out a unique con-

troller, the suboptimal design yields a family of controllers,

thus providing freedom to impose additional specifications

on the closed-loop system. One of such specifications, for

example, is a particular pole placement to achieve desirable

transient characteristics.

The suboptimal anisotropic control design requires a state-

space criterion for verifying whether the anisotropic norm

of a system does not exceed a given value. The well-known

Bounded Real Lemma of the H∞-control theory relates an

upper bound on the H∞-norm with the solvability of an

algebraic Riccati equation associated with the state-space

realization of the system. In extending this result, the present

paper develops an Anisotropy-based Bounded Real Lemma

(ABRL) for the anisotropic norm as a stochastic counterpart

of the H∞-norm for LDTI systems under statistically uncer-

tain stationary Gaussian random disturbances with limited

mean anisotropy. The resulting criterion has the form of an

inequality on the determinant of a matrix associated with

an algebraic Riccati equation which depends on a scalar

parameter.

The paper is organized as follows. Section II provides

the necessary background on the anisotropy of signals and

anisotropic norm of systems. Section III establishes ABRL,

which constitutes the main result of the paper. Section IV

provides an illustrative numerical example. Concluding re-

marks are given in Section V.
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II. ANISOTROPY OF SIGNALS AND

ANISOTROPIC NORM OF SYSTEMS

We now provide a background material on the anisotropy

of signals and anisotropic norm of systems. An extended

exposition of the anisotropy-based robust performance anal-

ysis, developed originally in [9], [10], can be found in [2];

see also [12].

A. Anisotropy of Random Vectors

Recall that for two probability measures P and M on a

measurable space (Ω,F), the Kullback-Leibler informational

divergence (or relative entropy) of P with respect to M is

defined by

D(P‖M) ,

{
E ln dP

dM if P ≪ M
+∞ otherwise

, (1)

where the expectation E is taken over the measure P , and

dP/dM : Ω → R+ is the Radon-Nikodym derivative in the

case of absolute continuity of P with respect to M denoted

as P ≪ M ; see [1], [3]. The quantity D(P‖M), which is

always nonnegative, is equal to zero if and only if P = M .

In application of the relative entropy (1) to describing the

amount of statistical uncertainty, P is interpreted as the true

probability measure (which is usually unknown), while M
represents its nominal model.

For any λ > 0, let pm,λ denote the Gaussian probability

density function (PDF) on R
m with zero mean and scalar

covariance matrix λIm, so that

pm,λ(w) , (2πλ)−m/2 exp

(
−|w|2

2λ

)
, w ∈ R

m. (2)

Denote by L
m
2 the class of square integrable R

m-valued

random vectors distributed absolutely continuously with re-

spect to the m-dimensional Lebesgue measure mesm. For

any W ∈ L
m
2 with PDF f : R

m → R+, the relative entropy

of its distribution with respect to the Gaussian PDF in (2) is

computed as

D(f‖pm,λ) = E ln
f(W )

pm,λ(W )

=
m

2
ln(2πλ) +

E(|W |2)
2λ

− h(W ), (3)

where

h(W ) , E ln f(W ) = −
∫

Rm

f(w) ln f(w)dw

denotes the differential entropy [1] of W with respect to

mesm. The anisotropy A(W ) is defined as the minimal

value of the relative entropy (3) with respect to the Gaussian

distributions in R
m with zero mean and scalar covariance

matrices described by (2):

A(W ) , min
λ>0

D(f‖pm,λ)

=
m

2
ln

(
2πe

m
E(|W |2)

)
− h(W ), (4)

where the minimum is achieved at λ = E(|W |2)/m; see

[12]. Let G
m(µ,Σ) denote the class of R

m-valued Gaussian

random vectors with mean EW = µ and nonsingular

covariance matrix cov(W ) , E((W − µ)(W − µ)T) = Σ,

so that the corresponding PDF is

p(w) , (2π)−m/2(det Σ)−1/2 exp

(
−1

2
‖w − µ‖2

Σ−1

)
,

where ‖w‖M ,
√

wTMw is the Euclidean norm generated

by a positive definite matrix M . Basic properties of the

anisotropy of a random vector are as follows (see, for

example, [12]):

1) The anisotropy A(W ), defined by (4), is invariant

under rotation and scaling of W , that is, A(σUW ) =
A(W ) for any orthogonal matrix U ∈ R

m×m and any

σ ∈ R \ {0};

2) For any positive definite symmetric matrix Σ ∈
R

m×m,

min
{
A(W ) : W ∈ L

m
2 , E(WWT) = Σ

}

= −1

2
ln det

mΣ

tr Σ
, (5)

where the minimum is only achieved at W ∈
G

m(0,Σ);
3) A(W ) > 0 for any W ∈ L

m
2 , and A(W ) = 0 if and

only if W ∈ G
m(0, λIm) for some λ > 0.

B. Mean Anisotropy of Gaussian Random Sequences

Let W , (wk)−∞<k<+∞ be a stationary sequence of

square integrable random vectors with values in R
m which

is interpreted as a discrete-time random signal. Assembling

the elements of W , associated with a time interval [s, t], into

a random vector

Ws:t ,




ws

...

wt


 , (6)

we assume that W0:N is absolutely continuously distributed

for every N > 0. The mean anisotropy of the sequence W
is defined as the anisotropy production rate per time step by

A(W ) , lim
N→+∞

A(W0:N )

N
. (7)

It is shown in [12] that

A(W ) = A(w0) + I(w0; (wk)k<0), (8)

where I(w0; (wk)k<0) , lims→−∞ I(w0;Ws:−1) is the

Shannon mutual information [3] between w0 and the past

history (wk)k<0 of the sequence W .

Now suppose the stationary random sequence W is Gaus-

sian. Then

I(w0; (wk)k<0) =
1

2
ln det

(
cov(w0) cov(w̃0)

−1
)
, (9)

where

w̃0 , w0 − E(w0 | (wk)k<0) (10)

is the error of the mean-square optimal prediction of w0

by the past history (wk)k<0 provided by the conditional

expectation. Furthermore, let V , (vk)−∞<k<+∞ be an
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m-dimensional Gaussian white noise sequence, so that vk

are independent Gaussian random vectors with zero mean

Evk = 0 and identity covariance matrix cov(vk) = Im.

Suppose W = GV is generated from V by a shaping filter

G as

wj =

+∞∑

k=0

gkvj−k, −∞ < j < +∞. (11)

The impulse response of the filter gk ∈ R
m×m is assumed

to be square summable over k > 0, thus ensuring the mean

square convergence of the series in (11). The spectral density

of W is given by

S(ω) , Ĝ(ω)Ĝ(ω)∗, −π 6 ω < π, (12)

where (·)∗ = (·)T denotes the complex conjugate transpose

of a matrix, and Ĝ(ω) , limr→1− G(reiω) is the boundary

value of the transfer function G(z) ,
∑+∞

k=0 gkzk. The latter

encodes all the properties of the filter as an input-output

operator and belongs to the Hardy space Hm×m
2 of (m×m)-

matrix-valued functions, analytic in the disc |z| < 1 of the

complex plane. The space is equipped with the H2-norm

using (12) by

‖G‖2 ,

√
1

2π

∫ π

−π

tr S(ω)dω. (13)

The covariance matrix of the prediction error (10) and the

spectral density (12) are related by the Szegö-Kolmogorov

formula [7]

1

2π

∫ π

−π

ln detS(ω)dω = ln det cov(w̃0). (14)

By using (8)–(10), the Szegö limit theorem [4] and (14),

it follows that the mean anisotropy (7) of the stationary

Gaussian random sequence W = GV can be computed in

terms of the spectral density (12) and the associated H2-norm

of the shaping filter (13) as

A(W ) = − 1

4π

∫ π

−π

ln det
mS(ω)

‖G‖2
2

dω

= − 1

4π
ln det

mcov(w̃0)

‖G‖2
2

; (15)

see [10], [2] for details. Since the probability law of the

sequence W is completely determined by the shaping filter

G or by the spectral density S, the alternative notations A(G)
and A(S) will also be used instead of A(W ).

The mean anisotropy functional (15), which is always

nonnegative, takes a finite value if the shaping filter G
is of full rank, that is, if rankĜ(ω) = m for almost all

ω ∈ [−π, π). Otherwise, A(G) = +∞; see [10], [2]. The

equality A(G) = 0 holds true if and only if G is an all-

pass system up to a nonzero constant factor. In this case,

the spectral density (12) is described by S(ω) = λIm,

−π 6 ω < π, for some λ > 0, so that W is a Gaussian

white noise sequence with zero mean and a scalar covariance

matrix.

C. Anisotropic Norm of Linear Systems

Let F ∈ Hp×m
∞ be a system with an m-dimensional input

W = GV and a p-dimensional output Z = FW , where, as

before, V is a m-dimensional Gaussian white noise sequence

with zero mean and identity covariance matrix. Let

Ga ,
{
G ∈ Hm×m

2 : A(G) 6 a
}

(16)

denote the set of shaping filters G which generate Gaussian

random sequences W with mean anisotropy (15) bounded

by a given parameter a > 0. The a-anisotropic norm [10],

[2] of the system F is defined by

|||F |||a , sup
G∈Ga

‖FG‖2

‖G‖2
. (17)

The fraction on the right-hand side of (17) can also be

interpreted as the ratio of the power (semi-) norms [13] of

the output Z = FW and input W = GV of the system F .

Indeed, by the strong law of large numbers (which involves

ergodicity of the signals), and in view of the shorthand

notation (6),

lim
N→+∞

|W0:N |2
N

= ‖G‖2
2, lim

N→+∞

|Z0:N |2
N

= ‖FG‖2
2.

Note that, in application to ergodic Gaussian stationary

random sequences, the power semi-norm becomes a norm.

The quantity ‖FG‖2/‖G‖2, which describes a “stochastic

gain” of the system F with respect to W = GV , will also

be referred to as the power norm ratio. The a-anisotropic

norm (17) of a given system F ∈ Hp×m
∞ is a nondecreasing

continuous function of the mean anisotropy level a which

satisfies

1√
m
‖F‖2 = |||F |||0 6 lim

a→+∞
|||F |||a = ‖F‖∞. (18)

These relations show that the H2 and H∞-norms are the

limiting cases of the a-anisotropic norm as a → 0,+∞,

respectively.

III. ANISOTROPIC NORM BOUNDED REAL

LEMMA

Let F ∈ Hp×m
∞ be a LDTI system with an m-dimensional

input W , n-dimensional internal state X and p-dimensional

output Z governed by
[
xk+1

zk

]
=

[
A B
C D

] [
xk

wk

]
, (19)

where A, B, C, D are appropriately dimensioned matrices,

and A is asymptotically stable (that is, its spectral radius

satisfies ρ(A) < 1). Suppose W is a stationary Gaussian

random sequence whose mean anisotropy does not exceed

a > 0. That is, W is generated from the m-dimensional

Gaussian white noise V (with zero mean and identity covari-

ance matrix) by an unknown shaping filter G which belongs

to the family Ga defined by (16).

Theorem 1: Let F ∈ Hp×m
∞ be a system with the state-

space realization (19), where ρ(A) < 1. Then the a-

anisotropic norm (17) is bounded by a given threshold

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

2393



γ > 0, that is, |||F |||a 6 γ, if and only if there exists

q ∈ [0,min(γ−2, ‖F‖−2
∞ )) such that the inequality

−1

2
ln det((1 − qγ2)Σ) > a (20)

is satisfied for the matrix Σ associated with the stabilizing

(ρ(A + BL) < 1) solution R < 0 of the algebraic Riccati

equation

R = ATRA + qCTC + LTΣ−1L, (21)

L , Σ(BTRA + qDTC), (22)

Σ , (Im − BTRB − qDTD)−1. (23)

Proof: The power norm ratio ‖FG‖2/‖G‖2 on the

right-hand side of (17) and the mean anisotropy A(G) in

(15) are both invariant under the scaling of the shaping filter

G. Moreover, assuming the system F to be fixed, they are

completely specified by the normalized spectral density

Π(ω) , mS(ω)/‖G‖2
2 =

2πmS(ω)∫ π

−π
trS(v)dv

, (24)

where use has been made of the representation (13). Indeed,

A(G) = α(Π) , − 1

4π

∫ π

−π

ln det Π(ω)dω, (25)

‖FG‖2

‖G‖2
= ν(Π) ,

√
1

2πm

∫ π

−π

tr(Λ(ω)Π(ω))dω, (26)

where the function Π, defined on the interval [−π, π) by

(24), takes values in the set of positive definite Hermitian

matrices of order m and satisfies
∫ π

−π
tr Π(ω)dω = 2πm.

Let Π denote the set of normalised spectral densities Π,

described above. The system F enters the power norm ratio

in (26) only through

Λ(ω) , F̂ (ω)∗F̂ (ω). (27)

Note that the squared functional ν(Π)2 is linear, and α(Π) is

strictly convex with respect to Π. The strict convexity of α
follows from the strict concavity of ln det(·) considered on

the convex cone of positive definite matrices [6]. The strict

convexity of the functional α, defined by (25), can also be

obtained directly from the positive definiteness of its second

variation

δ2α(Π) =
1

4π

∫ π

−π

tr(δΠ(ω)Π(ω)−1δΠ(ω)Π(ω)−1)dω

=
1

4π

∫ π

−π

‖Π(ω)−1/2δΠ(ω)Π(ω)−1/2‖2dω,

where δΠ is the variation of Π, and ‖M‖ ,
√

tr(M∗M)
denotes the Frobenius norm of a matrix. Here, we have

used the Frechet derivative d ln |det Σ|/dΣ = Σ−1 and

the first variation of the inverse of a nonsingular matrix

δ(Σ−1) = −Σ−1(δΣ)Σ−1. Thus, the minimum value of the

mean anisotropy of the disturbance W required to achieve a

given level γ > 0 for the power norm ratio of the system is

min
Π∈Π: ν(Π)>γ

α(Π)

= − 1

4π
max

Π∈Π: ν(Π)2>γ2

∫ π

−π

ln det Π(ω)dω

= min
06q<‖F‖−2

∞ :N (q)>γ
A(q). (28)

This is a linearly constrained convex optimization problem.

By using the method of Lagrange multipliers, the first

minimum in (28) is shown to be achieved at a spectral density

which is proportional to

Sq(ω) := (Im − qΛ(ω))−1, (29)

where q is a subsidiary variable satisfying 0 6 q < ‖F‖−2
∞ .

Accordingly, the functions

A(q) , α(Πq), N (q) , ν(Πq), (30)

are defined by evaluating the functionals α and ν from (25)

and (26) at the normalized spectral density

Πq(ω) ,
2πmSq(ω)∫ π

−π
trSq(v)dv

, (31)

associated with (29) by (24). Now, excluding from considera-

tion the trivial case where the function Λ in (27) is a constant

scalar matrix, A(q) and N (q) are both strictly increasing in

q; see [10], [2] for details. This allows the minimum required

mean anisotropy in (28) to be computed as A(N−1(γ)),
where N−1 denotes the functional inverse of N . Therefore,

the inequality |||F |||a 6 γ is equivalent to A(N−1(γ)) > a.

Now, (29) implies that Λ(ω) = (Im−Sq(ω)−1)/q and hence,

1

2πm

∫ π

−π

tr(Λ(ω)Sq(ω))dω

=
1

q

(
1

2πm

∫ π

−π

trSq(ω)dω − 1

)
, (32)

which, in combination with the definition of the function N
via (30), (31) and (26), yields

1

2πm

∫ π

−π

trSq(ω)dω = 1/(1 − qN (q)2). (33)

By substituting the last identity into the definition of A
in (30), (31) and (25), it follows that the function can be

represented as

A(q) = A(q,N (q)) (34)

in terms of

A(q, γ) , − 1

4π

∫ π

−π

ln detSq(ω)dω

− m

2
ln(1 − qγ2). (35)

Since − ln(1 − qγ2) is monotonically increasing in γ ∈
[0, 1/

√
q), then so is A(q, γ). A remarkable property of the

function A(q, γ) is that it achieves its maximum with respect
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to q at the point q = N−1(γ) where, in view of (34), it

coincides with the function A. More precisely,

max
06q<‖F‖−2

∞

A(q, γ) = A(N−1(γ), γ) = A(N−1(γ)). (36)

The significance of this property for establishing a criterion

for the inequality |||F |||a 6 γ is explained by that (36) implies

the equivalence between A(N−1(γ)) > a and the existence

of q ∈ [0, ‖F‖−2
∞ ) satisfying A(q, γ) > a. Therefore,

|||F |||a 6 γ ⇐⇒ A(q, γ) > a for some q. (37)

Now, the property (36) is verified by differentiating the

function A from (35) with respect to its first argument:

∂A(q, γ)/∂q =
1

4π

∫ π

−π

∂ ln det(Im − qΛ(ω))/∂qdω

+
mγ2

2(1 − qγ2)

= − 1

4π

∫ π

−π

tr(Λ(ω)Sq(ω))dω +
mγ2

2(1 − qγ2)

− mN (q)2

2(1 − qN (q)2)
+

mγ2

2(1 − qγ2)

=
m(γ2 −N (q)2)

2(1 − qγ2)(1 − qN (q)2)
, (38)

where (29), (32) and (33) are used. Since the function N
is strictly monotonic, the representation (38) implies that

∂A(q, γ)/∂q is positive for q < N−1(γ) and negative for

q > N−1(γ), which indeed establishes (36). It now remains

to represent the inequality A(q, γ) > a for the function (35)

in (37) in terms of the state-space dynamics (19) of the

underlying system F . To this end, we note that (29) describes

the parametric family of the worst-case spectral densities of

the input disturbance W for admissible values of q. Since the

subsidiary variable q will be fixed for the rest of the proof,

we use the notation

S⋆(ω) , Sq(ω) = (Im − qΛ(ω))−1. (39)

We will now obtain a state-space representation of the worst-

case disturbance W⋆ with the spectral density S⋆. In view

of (27), the relation (39) is equivalent to

Θ̂(ω)∗Θ̂(ω) = Im, −π 6 ω < π, (40)

where Θ̂ is the boundary value of the transfer function of

the system

Θ ,

[√
qF

G⋆

]
. (41)

Here, G⋆ is a shaping filter which, in accordance with

(12), factorizes the worst-case spectral density (39) as S⋆ =
Ĝ⋆Ĝ

∗
⋆. The property (40) means that the system Θ is inner,

that is, the ℓ2-norm of its output coincides with that of the

input, as soon as the latter is square summable (note that,

except for a trivial zero case, the square summability does

not hold for stationary random sequences). Now, the worst-

case input disturbance W⋆ = G⋆V with the spectral density

(39) can be generated as

w⋆
k = Lxk +

√
Σvk, (42)

where L ∈ R
m×n satisfies ρ(A+BL) < 1, and Σ ∈ R

m×m

is positive definite. The matrices L and Σ can be found as

follows. Substitution of (42) into (19) yields the state-space

representation of the worst-case shaping filter

G⋆ =

[
A + BL B

√
Σ

L
√

Σ

]
. (43)

Since Σ ≻ 0, then G⋆ is invertible, and its inverse is

described by

G−1
⋆ =

[
A B

−Σ−1/2L Σ−1/2

]
. (44)

Since F and G−1
⋆ share the matrices A and B, then sub-

stitution of (19) and (44) into (41) gives the state-space

realization

Θ =

[
A B
Γ ∆

]
, (45)

where the matrices Γ ∈ R
(p+m)×n and ∆ ∈ R

(p+m)×m are

defined by

Γ ,

[ √
qC

−Σ−1/2L

]
, ∆ ,

[ √
qD

Σ−1/2

]
. (46)

Now, let R denote the observability gramian of the system

Θ which is the unique solution of the algebraic Lyapunov

equation

R = ATRA + ΓTΓ. (47)

By applying the state-space criterion of innerness [5], [14]

for LDTI systems to (45), it follows that the conditions

BTRA + ∆TΓ = 0, BTRB + ∆T∆ = Im, (48)

are sufficient for the system Θ to be inner in sense of (40),

and are necessary if the pair (A,B) is controllable. From

(46), it follows that

ΓTΓ = qCTC + LTΣ−1L,

∆TΓ = qDTC − Σ−1L,

∆T∆ = qDTD + Σ−1.

Hence, substitution of these expressions into (47)–(48) shows

that the matrix R is a stabilizing solution to the Riccati

equation (21)–(23), with the assumption ρ(A + BL) < 1
ensuring the asymptotic stability of the worst-case filter G⋆

in (43). Now, since the worst-case input is governed by

(42) and V is a white noise sequence with the identity

covariance matrix, then the prediction error (10) takes the

form w̃0 =
√

Σv0 and hence, cov(w̃0) = Σ. Therefore, in

combination with the Szegö-Kolmogorov formula (14), this

implies
1

2π

∫ π

−π

ln detS⋆(ω)dω = ln det Σ.

Substituting this representation into (35) yields

A(q, γ) = −1

2
ln det((1 − qγ2)Σ)

and hence, the condition A(q, γ) > a is equivalent to

the inequality (20) on the matrix Σ associated with the q-

dependent Riccati equation (21)–(23).
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Remark 1: The proof of Theorem 1 shows that its asser-

tion remains valid if the inequality (20) is required to hold as

an equality. This, however, does not ensure uniqueness of the

pair (q,R) described in the theorem for a given system F and

given parameters a and γ, though the stabilizing solutions

R of the Riccati equation (21)–(23) are indeed unique for

admissible values of the subsidiary variable q, so that there

is a well-defined map q 7→ Rq. In fact, the analysis of an

auxiliary function A in (35), carried out in the proof, shows

that the set of those values of q for which the pair (q,Rq)
satisfies the inequality (20), form an interval [q∗, q

∗] whose

endpoints, for a given system F , are functions of a and γ.

This interval becomes a singleton q∗ = q∗ = N−1(γ) if

and only if γ = |||F |||a. Furthermore, for any γ > |||F |||a,

the pair (q∗, Rq∗) is a well-defined function of a and γ,

which satisfies (20) as an equality, and it is this pair whose

behaviour is illustrated in the next section.

Remark 2: From Theorem 1 and its proof it follows that

the strict inequality

|||F |||a < γ

holds if and only if there exists q ∈ [0,min(γ−2, ‖F‖−2
∞ ))

such that the inequality

−1

2
ln det((1 − qγ2)Σ) > a

is satisfied for the matrix Σ associated with the stabilizing

(ρ(A + BL) < 1) solution R ≻ 0 of the algebraic Riccati

equation (21)–(23).

IV. NUMERICAL EXAMPLE

To illustrate application of Theorem 1, we consider an

asymptotically stable second-order system F with the state-

space realization

F =

[
A B
C D

]
=




0.01 0 1 0

0.3 0.7 0 1

1 0 1 0

0 1 0 1


 . (49)

By (18), the a-anisotropic norm |||F |||a of this system varies

from |||F |||0 = ‖F‖2/
√

2 = 1.6031 (for a = 0) to ‖F‖∞ =
4.4454 (as a → +∞). Since it makes sense to look for

a solution of (20)–(23) only for γ ∈ [|||F |||a, ‖F‖∞], we

chose the threshold γ, for testing purposes, as γ = (|||F |||a +
‖F‖∞)/2. The Riccati equation (21)–(23) was solved using

the Matlab Robust Control Toolbox, with the subsidiary

variable q gradually increased (starting from q = 0), so that

a varied from 0 to 5. The numerical results are presented

in Figs. 1 and 2. The test threshold value γ, the anisotropic

norm |||F |||a and the H∞-norm γ∞ = ‖F‖∞ are shown in

the upper half of Fig. 1. The lower half of Fig. 1 depicts the

subsidiary variable q. Fig. 2 shows the eigenvalues of the

matrices R (upper diagram) and A + BL (lower diagram)

as functions of the mean anisotropy level a. In accordance

with positive semi-definiteness of R, its eigenvalues are both

nonnegative, and the matrix A+BL remains asymptotically

stable, so that R is indeed a stabilizing solution of the

algebraic Riccati equation (21)–(23) for all a ∈ [0, 5]. Fig. 3
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Fig. 1. The a-anisotropic norm γa = |||F |||
a

and the subsidiary variable q
as functions of the input mean anisotropy level a for the system (49). Also
shown is the H∞-norm γ∞ = ‖F‖∞.
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Fig. 2. The eigenvalues of the matrices R and A + BL as functions of
the input mean anisotropy level a.

shows the dependence of the subsidiary variable q and the

eigenvalues of the matrices R and A+BL on the parameter

γ which varies from γa to γ∞ for a fixed mean anisotropy

level a. The results of the test computations demonstrate

consistency with predictions of Theorem 1.

V. CONCLUSION

We have established an Anisotropy-based Bounded Real

Lemma (ABRL) which provides a state-space criterion for

verifying if the anisotropic norm of a linear discrete-time

invariant system is bounded by a given threshold value.

This extends the Bounded Real Lemma of the H∞-control

theory to stochastic systems where the statistical uncertainty

present in the random disturbances is quantified by the mean

anisotropy level.

The criterion involves the stabilizing solution of an al-

gebraic Riccati equation, which depends on a subsidiary

scalar parameter, and an inequality on the determinant of

an associated matrix.

ABRL is applicable to the design of suboptimal controllers
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Fig. 3. The subsidiary variable q and the eigenvalues of the matrices R
and A + BL as functions of the threshold γ ∈ [|||F |||

a
, ‖F‖∞], computed

for the input mean anisotropy level a = 0.4.

which ensure a specified upper bound on the anisotropic

norm of the closed-loop system, possibly combined with

additional specifications which may include a particular pole

placement to provide desirable transient characteristics of the

system.
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