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Abstract— This paper studies dissipativity for a class of
infinite-dimensional systems, called pseudorational, in the be-
havioral context. First a basic equivalence condition for aver-
age nonnegativity of quadratic differential forms induced by
distributions is established as a generalization of the finite-
dimensional counterpart. For its proof, we derive a new
necessary and sufficient condition for entire functions of ex-
ponential type (in the Paley-Wiener class) to be symmetrically
factorizable. Utilizing these results we then study dissipativity
of pseudorational behaviors. An example is given to illustrate
results.

I. Introduction

The notion of dissipativity [9], [10] is one of the most
important property in system theory. It can be viewed as a
natural generalization of Lyapunov stability to open systems
and most of robust stability conditions can be deduced from
this property [11].

It is well known that quadratic differential forms induced
by two-variable polynomial matrices [12] play an important
role in describing dissipativity for linear time-invariant finite-
dimensional systems. For example, the theory of analysis and
synthesis of dissipative systems are developed in [7], [13]
using the quadratic differential forms. Small gain theorems
or the celebrated Popov criterion can be deduced using such
forms [11].

Extending the existing quadratic differential forms, the
latter author and Willems [15] have introduced new quadratic
differential forms induced by distributions having compact
support. The quadratic differential forms can deal with,
for example, time delays which cannot be expressed by
the existing quadratic differential forms. Based on the new
quadratic differential forms, they have also studied Lyapunov
stability of a class of behavior, called pseudorational [14].

The aim of this paper is to study dissipativity of pseudo-
rational behaviors with respect to the quadratic differential
forms induced by distributions. First, as an extension of
the finite-dimensional counterpart [12, Proposition 5.4], we
establish a basic characterization of average nonnegativity
for the quadratic differential forms in terms of storage or dis-
sipation functions. For its proof, we derive a new necessary
and sufficient condition for entire functions of exponential
type (in the Paley-Wiener class) to be symmetrically factor-
izable. Utilizing these results we then study dissipativity of
pseudorational behaviors. An example is given to illustrate
results.

A. Notation and Convention

R and C denote real and complex fields, respectively. Let
C+ := {s ∈ C : Re s > 0} and C− := {s ∈ C : Re s < 0}. When
X is a vector space, Xn and Xn×m denote, respectively, the
space of n products of X and that of n × m matrices with
entries in X. When a specific dimension is immaterial, we
will simply write X•, Xn×•, X•×m, and so forth.

C∞(R,Rq) (often abbreviated as (C∞)q) denotes the space
of Rq-valued C∞ functions on R. The space of those func-
tions with compact support is denoted by D(R,Rq) (Dq

for short). By E ′(R) we denote the space of distributions
having compact support in R. E ′(R) is a convolution al-
gebra and every p ∈ E ′(R) acts on C∞(R,R) by the
action C∞(R,R)→ C∞(R,R) : w 7→ p ∗ w. The image and
kernel of the mapping are denoted by im p and ker p,
respectively. For τ ∈ R, δτ denotes the Dirac’s delta placed
on τ. The subscript τ is omitted when τ = 0. Finally E ′(R2)
denotes the space of distributions in two variables having
compact support in R2.

The Laplace transform of p ∈ E ′(R) is defined by

L [p](ζ) = p̂(ζ) := 〈p, e−ζt〉t
where the distribution action is taken with respect to t.
Similarly, for p ∈ E ′(R2), its Laplace transform is defined
by

p̂(ζ, η) := 〈p, e−(ζs+ηt)〉s,t
where the action is taken with respect to two variables s
and t. For example, L [δ′s ⊗ δ′′t ] = ζ · η2.

By the well-known Paley-Wiener theorem [5], a distribu-
tion p belongs to E ′(R) if and only if its Laplace transform p̂
is an entire function of exponential type satisfying the Paley-
Wiener estimate

| p̂(ξ)| ≤ C(1 + |ξ|)mea |Re ξ| (1)

for some C ≥ 0, a ≥ 0, and a nonnegative integer m. We
denote by PW the class of entire functions satisfying the
estimate above. In other words, PW = L [E ′(R)].

Likewise, for p ∈ E ′(R2), there exist C ≥ 0, a ≥ 0,
and a nonnegative integer m such that its Laplace transform
satisfies

| p̂(ζ, η)| ≤ C(1 + |ζ | + |η|)mea(|Re ζ |+|Re η|). (2)

This is also a sufficient condition for a function p̂(·, ·) to be
the Laplace transform of a distribution in E ′(R2).

Let Φ ∈ E ′(R2)n×m. In the Laplace transform domain,
define Φ∗ ∈ E ′(R2)m×n by (Φ∗)ˆ(ζ, η) := Φ̂(η, ζ)> [15]. Φ
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is said to be symmetric if Φ = Φ∗. The quadratic differential
form [15] induced by symmetric Φ is denoted by QΦ.

Let F be a C•×•-valued function defined on a subset
of C. Its para-Hermitian conjugate F ˜ is given by F ˜(ξ) :=
F(−ξ̄)

>
. F is said to be entire if its each entry is entire. If F

is entire, it is said to be of exponential type if its each entry
is of exponential type.

For x ≥ 0 let log+(x) := max{0, log x}. For real-valued
functions f and g defined on R, we write f ≥ g ( f ≤ g) if,
for all t ∈ R, f (t) ≥ g(t) ( f (t) ≤ g(t), respectively). Let A
be a complex matrix. Its maximal singular value is denoted
by ‖A‖. When A is nonnegative (positive) definite we write
A ≥ 0 (A > 0, respectively).

II. Characterization of Average Nonnegativity
In this section, following [12], we study average non-

negativity of the quadratic differential forms defined by
distributions with compact support [15]. First we introduce
the notion of average nonnegativity:

Definition 2.1: Let Φ ∈ E ′(R2)q×q be symmetric. The
quadratic differential form QΦ is said to be average non-
negative if ∫ ∞

−∞
QΦ(w) dt ≥ 0 (3)

for all w ∈ Dq.
Then we define storage functions and dissipation functions

as follows:
Definition 2.2: Let Φ, Ψ, and ∆ belong to E ′(R2)q×q and

be symmetric.
• QΨ is said to be a storage function for QΦ if

d
dt

QΨ(w) ≤ QΦ(w) (4)

for all w ∈ (C∞)q

• Q∆ is said to be a dissipation function for QΦ if

Q∆(w) ≥ 0 (5)

for all w ∈ (C∞)q and∫ ∞
−∞

QΦ(w) dt =
∫ ∞
−∞

Q∆(w) dt (6)

for all w ∈ Dq.

The purpose of this section is to show a basic equivalence
condition for average nonnegativity, as a generalization of
the finite-dimensional counterpart [12, Proposition 5.4]:

Theorem 2.3: Let Φ ∈ E ′(R2)q×q be symmetric. The
following conditions are equivalent:

(i) QΦ is average nonnegative;
(ii) Φ̂(− jω, jω) ≥ 0 for all ω ∈ R;

(iii) QΦ admits a storage function;
(iv) QΦ admits a dissipation function.

In this theorem, the proofs of (iv) ⇒ (iii), (iii) ⇒ (i),
and (i) ⇒ (ii) can be done in the same way as in the
finite-dimensional case [12]. However, to show the impli-
cation (ii) ⇒ (iv), we need a special type of factorization
of the matrix-valued function Φ̂(−ξ, ξ), called symmetric
factorization.

It is well-known [2] that, when Φ̂(−ξ, ξ) is a polyno-
mial, the condition (ii) ensures the existence of such a
factorization. However, in Theorem 2.3, Φ̂(−ξ, ξ) is not a
polynomial but an entire function. In the next section we
derive a new necessary and sufficient condition for matrix-
valued entire functions having entries in PW to admit a
symmetric factorization.

III. Symmetric Factorization overPW

We can naturally introduce the symmetric factorization
over PW q×q as follows:

Definition 3.1: Let Γ ∈PW q×q. We say that F ∈PW q×q

induces a symmetric factorization of Γ if

Γ(ξ) = F ˜(ξ)F(ξ). (7)

The aim of this section is to prove the next theorem:
Theorem 3.2: Let Γ ∈ PW q×q. Γ allows a symmetric

factorization if and only if

Γ( jω) ≥ 0, ∀ω ∈ R. (8)

The necessity is trivial in this theorem. For the sufficiency,
we begin by quoting a basic result from the factorization
theory of operator valued entire functions [4]:

Proposition 3.3 ([4, Theorem 3.6]): Let Γ be a Cq×q-
valued entire function of exponential type. Suppose that (8)
holds and the integral∫ ∞

−∞

log+ ‖Γ( jω)‖
1 + ω2 dω (9)

is finite. Then there exists a Cq×q-valued entire function F
of exponential type such that (7) holds and the determinant
of F has no zeros in C+.

To make use of this proposition in proving Theorem 3.2,
we additionally need to show that

(i) the integral (9) always exists for every Γ ∈PW q×q;
(ii) in Proposition 3.3, if Γ ∈PW q×q then F ∈PW q×q.
First, using the Paley-Wiener estimate (1), we can show

the existence of the integral (9) for every Γ ∈PW q×q:
Proposition 3.4: The integral (9) is finite if Γ belongs

to PW q×q.
Proof: Let Γ belong to PW q×q. Then each entry of Γ

satisfies the Paley-Wiener estimate (1). From this we can
easily check that ‖Γ(ξ)‖ as a function of ξ also satisfies the
Paley-Wiener estimate; i.e., there exist C > 0, a > 0, and a
nonnegative integer m such that

‖Γ(ξ)‖ ≤ C(1 + |ξ|)mea |Re ξ|.

Substituting jω into ξ we have, since Re( jω) = 0,

‖Γ( jω)‖ ≤ C(1 + |ω|)m, ∀ω ∈ R. (10)

Therefore the integral (9) can be bounded from above by a
constant as

(9) ≤
∫ ∞
−∞

log+C
1 + ω2 dω + m

∫ ∞
−∞

log(1 + |ω|)
1 + ω2 dω

≤ π log+C + 3m.

This completes the proof.
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We then show that, in Proposition 3.3, if Γ belongs
to PW q×q then the function F also belongs to PW q×q:

Proposition 3.5: Let Γ and F be Cq×q-valued entire func-
tions of exponential type. Suppose that (7) holds. If Γ belongs
to PW q×q, then F also belongs to PW q×q.

For the proof of this proposition we need the next lemma,
which states that the growth rate of holomorphic functions
of exponential type can be governed by those on the real and
imaginary axises:

Lemma 3.6 ([1, Theorem 6.2.4]): Let f be a complex-
valued function defined on a subset of C. Assume that f
satisfies the following conditions:

(i) f is holomorphic on C+.
(ii) f is of exponential type on C+; i.e., there exist K ≥ 0

and τ ≥ 0 such that | f (ξ)| ≤ Keτ|ξ| for all ξ ∈ C+.
(iii) There exist M > 0 such that

| f ( jω)| ≤ M, ∀ω ∈ R.
Then | f (ξ)| ≤ MeτRe ξ for all ξ ∈ C+.

Using this lemma we prove the next lemma that enables us
to judge whether or not a given entire function of exponential
type belongs to PW , from the growth rate of the function
on the imaginary axis:

Lemma 3.7: Assume that an entire function f satisfies the
following conditions:

(i) f is of exponential type;
(ii) There exist M > 0 and a nonnegative integer m such

that
| f ( jω)| ≤ M(1 + |ω|)m, ∀ω ∈ R. (11)

Then f belongs to PW .
Proof: Let f be an entire function that satisfies the two

conditions above. Define a meromorphic function f0 by

f0(ξ) :=
f (ξ)

(ξ + 1)m .

Since f is an entire function of exponential type, clearly
f0 is holomorphic and of exponential type on C+. From (11)
we can check that f0 is bounded on the imaginary axis.
Then by Lemma 3.6 there exist M > 0 and τ > 0 such
that | f0(ξ)| ≤ MeτRe ξ for all ξ ∈ C+. Therefore

| f (ξ)| = | f0(ξ)| · |(1 + ξ)m| < M(1 + |ξ|)meτ|Re ξ|

for all ξ ∈ C+. Note that this inequality is nothing but the
Paley-Wiener estimate (1) on the closed right half plane. In
the similar way, we can show the Paley-Wiener estimate on
the closed left half plane using the left half plane version of
Lemma 3.6. Combining these estimates we obtain a Paley-
Wiener estimate of f on the entire complex plane. Hence f
belongs to PW .

Then we can prove Proposition 3.5:
Proof of Proposition 3.5: Let Γ and F be Cq×q-valued

entire functions of exponential type satisfying (7). Suppose
that Γ belongs to PW q×q. Let f be any entry of F. We show
that f belongs to PW .

Since F is of exponential type, f is also of exponential
type. Hence, by Lemma 3.7, it is sufficient to show that there
exist C > 0 and a nonnegative integer m satisfying (11).

From the definition of maximal singular values there exists
a constant M > 0 such that

| f ( jω)| ≤ M‖F( jω)‖, ∀ω ∈ R. (12)

Since Γ( jω) = F( jω)∗F( jω) by (7), we have

‖F( jω)‖2 = ‖Γ( jω)‖, ∀ω ∈ R. (13)

From inequalities (12), (13), and (10), we can obtain the
estimate of type (11) as

| f ( jω)| ≤ MC1/2(1 + |ω|)m/2, ∀ω ∈ R.

This completes the proof.
We are now ready to prove Theorem 3.2:

Proof of Theorem 3.2: The necessity is obvious. We
prove the sufficiency. Let Γ ∈ PW q×q satisfy the inequal-
ity (8). Because the integral (9) is finite by Proposition 3.4,
Proposition 3.3 ensures the existence of a Cq×q-valued entire
function F of exponential type that satisfies (7). By Propo-
sition 3.5 this function F actually belongs to PW q×q.

Before closing this section, we refer to a more special type
of symmetric factorizations, called symmetric (anti-)Hurwitz
factorization. These factorizations play a key role in, for ex-
ample, examining the existence of positive storage functions
for finite-dimensional systems [12].

Definition 3.8: Suppose that F ∈PW q×q induces a sym-
metric factorization for an element in PW q×q. The factor-
ization is said to be a symmetric (anti-)Hurwitz factorization
if all the zeros of the determinant of F belong to C− (C+,
respectively).

The next theorem extends the result given in [2]:
Theorem 3.9: Let Γ ∈PW q×q. Γ allows both a symmetric

Hurwitz factorization and a symmetric anti-Hurwitz factor-
ization if and only if

Γ( jω) > 0, ∀ω ∈ R.
Proof: The statement on the symmetric Hurwitz factor-

ization is trivial because, in Proposition 3.3, the determinant
of F already has no zeros in C+. A symmetric anti-Hurwitz
factorization can be then obtained from a symmetric Hurwitz
factorization of Γ>.

IV. Proof of theMain Result

Having established Theorem 3.2, we can proceed to the
proof of the main result Theorem 2.3.

Proof of Theorem 2.3: Let Φ ∈ E ′(R2) be symmetric.
We run the cycle (iv) ⇒ (iii) ⇒ (i) ⇒ (ii).

(iv) ⇒ (iii): Suppose that QΦ admits a dissipation func-
tion Q∆ with symmetric ∆ ∈ E ′(R2)q×q. From the definition
of the dissipation function (5) we have∫ ∞

−∞
QΦ−∆(w) dt = 0, ∀w ∈ Dq.

Then, by [15, Theorem 6.2], there exists a symmetric Ψ ∈
E ′(R2)q×q such that

d
dt

QΨ(w) = QΦ−∆(w), ∀w ∈ (C∞)q.
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Since Q∆(w) ≥ 0 by (6) we obtain d
dt QΨ(w) ≤ QΦ(w) for

all w ∈ (C∞)q. Hence QΨ is a storage function for QΦ.
(iii) ⇒ (i): Let Ψ = Ψ∗ ∈ E ′(R2)q×q induce a storage

function for QΦ. Then the integration of (4) for w ∈ Dq

readily yields (3) and hence QΦ is average nonnegative.
(i) ⇒ (ii): We show the contraposition. Suppose that there

exists ω0 ∈ R such that Φ̂(− jω0, jω0) � 0. Then there exists
v ∈ Cq satisfying

v∗Φ̂(− jω0, jω0)v < 0. (14)

Take any ρ ∈ D such that

ρ̂(0) , 0. (15)

For a positive integer N, define wN ∈ D by

wN := ρ ∗ (e jω0t)|[−N,N]√
2N

v.

Using Parseval’s identity∫ ∞
−∞

QΦ(w) dt =
1

2π

∫ ∞
−∞

ŵ(− jω)∗Φ̂(− jω, jω)ŵ( jω) dω

(16)
that holds for every w ∈ D , we can obtain∫ ∞

−∞
QΦ(wN) dt =

∫ ∞
−∞

f (ω) · Nπ−1 sinc2(Nω) dω, (17)

where sincω := sin(ω)/ω and

f (ω) := v∗ρ̂( jω)∗Φ̂ (− j(ω + ω0), j(ω + ω0)) ρ̂( jω)v.

We show that f belongs to the space S of testing
functions of rapid descent. First ρ̂ belongs to S because S
is invariant under the Fourier transform [8] and ρ belongs
to S . Second, the growth rate of Φ̂(− jω, jω) as a function
of ω is at most that of polynomials because Φ̂(ζ, η) satisfies
the Paley-Wiener estimate (2). Therefore f belongs to S .

Because, in (17), Nπ−1 sinc2(Nω) converges to δ with
respect to the topology of the dual of S as N goes to
infinity [8], the integral in its right hand side converges
to f (0) = |ρ̂(0)|2v∗Φ̂(− jω0, jω0)v that is negative by (14) and
(15). Therefore there exists wN such that

∫ ∞
−∞ QΦ(wN) dt < 0

and hence QΦ is not average nonnegative.
(ii) ⇒ (iv): By Theorem 3.2, there exists F ∈ E ′(R2)q×q

that induces the symmetric factorization

Φ̂(−ξ, ξ) = F̂ ˜(ξ)F̂(ξ).

Define ∆ ∈ E ′(R)q×q by

∆̂(ζ, η) := F̂(ζ̄)
>

F̂(η). (18)

Then we can see that ∆ equals to the tensor product F̄>s ⊗Ft,
where F̄ is defined by the action 〈F̄, f 〉 := 〈F, f̄ 〉 for f ∈ D .
Hence, for all w ∈ (C∞)q,

Q∆(w) = (w> ∗ F̄>) · (F ∗ w)

= (F ∗ w)
> · (F ∗ w)

= ‖(F ∗ w)(·)‖2

≥ 0.

(19)

Moreover the equality (6) holds from Parseval’s identity (16)
and the equation ∆̂(− jω, jω) = Φ̂(− jω, jω) which can be
derived by a straightforward calculation. Hence Q∆ is a
dissipation function for QΦ.

V. Dissipativity of Pseudorational Behaviors
In this section we discuss dissipativity of pseudorational

behaviors [14] with respect to the quadratic differential forms
induced by distributions. Let R ∈ E ′(R)•×q be pseudora-
tional [14] and B be the behavior defined by R:

B := {w ∈ (C∞)q : R ∗ w = 0}.
Following [6], we introduce the notion of dissipativity for
pseudorational behaviors as follows:

Definition 5.1: Let B be the behavior with pseudorational
R ∈ E ′(R)•×q and let Φ, Ψ, and ∆ ∈ E ′(R2)q×q be symmetric.
• The pair (B,QΦ) is said to be dissipative if the inequal-

ity (3) holds for all w ∈ B.
• QΨ is said to be a storage function for (B,QΦ) if (4)

holds for all w ∈ B
• Q∆ is said to be a dissipation function for (B,QΦ) if

(5) holds for all w ∈ B and (6) holds for all compactly
supported w ∈ B.

Theorem 3.2 enables us to give a sufficient condition for a
pseudorational behavior to be dissipative, to admit a storage
function, and to admit a dissipation function:

Proposition 5.2: Let B be the behavior with pseudora-
tional R ∈ E ′(R)•×q and Φ ∈ E ′(R2)q×q be symmetric.
Suppose that there exists X ∈ E ′(R)•×q such that

Φ̂(− jω, jω) + X̂(− jω)>R̂( jω) + R̂(− jω)>X̂( jω) ≥ 0 (20)

for all ω ∈ R. Then (B,QΦ) is dissipative, admits a storage
function, and admits a dissipation function.

Proof: Note that, for the distribution Φ0 ∈ E ′(R2)q×q

defined by Φ̂0(ζ, η) := Φ̂(ζ, η) + X̂(ζ)>R̂(η) + R̂(ζ)>X̂(η), the
inequality (20) is equivalent to

Φ̂0(− jω, jω) ≥ 0. (21)

First we show that (B,QΦ) is dissipative. Take any w ∈ B.
Parseval’s identity and (21) yield

∫ ∞
−∞ QΦ0 (w) dt ≥ 0. Since

we can easily show

QΦ0 (w) = QΦ(w) (22)

using the equation R ∗ w = 0, (B,QΦ) is dissipative.
Then we construct a dissipation function for (B,QΦ).

From Theorem 3.2, there exists F ∈ E ′(R)q×q that induces
the symmetric factorization Φ̂0(−ξ, ξ) = F̂ ˜(ξ)F̂(ξ). Define
∆ ∈ E ′(R2)q×q by (18). Then (5) follows from (19) for
all w ∈ B and (6) follows from Parseval’s identity, (22),
and the equation

Φ̂0(−ξ, ξ) − ∆̂(−ξ, ξ) = 0 (23)

for all compactly supported w ∈ B. Therefore Q∆ is a
dissipation function for (B,QΦ).

Finally, to give a storage function for (B,QΦ), let

Ψ̂(ζ, η) :=
Φ̂0(ζ, η) − ∆̂(ζ, η)

ζ + η
.
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Fig. 1. Delayed resonator

Then Ψ, the inverse Laplace transform of Ψ̂, belongs
to E ′(R2)q×q by (23) and [15, Lemma 3.3]. Take any w ∈ B.
Then, from [15, Lemma 3.4], we have

d
dt

QΨ(w) = QΦ0−∆(w) ≥ QΦ0 (w) = QΦ(w)

and hence QΨ is a storage function for (B,QΦ).
The next proposition gives a necessary and sufficient

condition for dissipativity of behaviors B that admit an
image representation

im M := {M ∗ ` : ` ∈ (C∞)m}

with M ∈ E ′(R)q×m.
Proposition 5.3: Let B = im M with M ∈ E ′(R)q×• and
Φ ∈ E ′(R2)q×q be symmetric. Then (B,QΦ) is dissipative if
and only if

M̂(− jω)>Φ̂(− jω, jω)M̂( jω) ≥ 0 (24)

for all ω ∈ R.
Proof: This is a direct consequence of Parseval’s

identity (16) and the image representation B = im M.

A. Example

Let us consider the mechanical system depicted in Fig. 1.
In this figure, m > 0 denotes the mass, k > 0 the spring
constant, and c > 0 the damping coefficient. f is the force
applied to the mass and x is the relative position of the mass
from its equibrium. g and τ are nonnegative constants and
gx(· − τ) represents a delayed feedback. Such a feedback is
used in, for example, delayed resonators [3].

The dynamics of the system can be written by the equa-
tion mẍ(t) = f (t) − kx(t) − cẋ(t) − gx(t − τ) or, equivalently
by (mδ′′ + cδ′ + kδ + gδτ) ∗ x = δ ∗ f . Therefore the set
of all the trajectories taken by w := [x f ]> is given by

B = ker
[
mδ′′ + cδ′ + kδ + gδτ −δ

]
=: ker R.

Now let
Φ :=

1
2

[
0 δ′ ⊗ δ
δ ⊗ δ′ 0

]
.

The quadratic differential form QΦ(w) = f ẋ represents the
mechanical energy supplied to the mass.

We examine dissipativity of (B,QΦ) by Proposition 5.2.
Let X := [δ 0]>. Then a straightforward computation gives
that the left hand side of (20) equals[

ω(cω − g sin(τω)) 0
0 0

]
.

Hence, from Proposition 5.2, a sufficient condition
for (B,QΦ) to be dissipative is

ω (cω − g sin(τω)) ≥ 0, (25)

which can be shown to be equivalent to the inequality

c ≥ gτ. (26)

Using Proposition 5.3, we can show that this sufficient
condition (26) is also necessary. Note that the behavior B
admits the image representation

im
[
δ mδ′′ + cδ′ + kδ + gδτ

]
=: im M.

Then we can easily check that the left hand side of (24)
is equal to that of (25). Hence, from Proposition 5.3, the
sufficient condition (26) is also necessary.

VI. Conclusion

Dissipativity of pseudorational behaviors is studied. We
have established a basic equivalence condition for average
nonnegativity of the quadratic differential forms induced by
distributions, as a generalization of the finite-dimensional
counterpart. For its proof, we have derived a new necessary
and sufficient condition for entire functions in the Paley-
Wiener class to be symmetrically factorizable. We also has
given some conditions for pseudorational behaviors to be
dissipative. An example was given to illustrate the results.
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