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Conley Index Theory

MOHAMED BARAKAT AND STANISLAUS MAIER-PAAPE

Abstract— Conley’s index theory provides powerful tools to
prove either the existence or the nonexistence of connecting
orbits between equilibria of the dynamical systems under con-
sideration. Conley’s idea was to relate the local and the global
topological properties of the dynamical system by an algebraic
object called the connection matrix. The structure of this matrix
imposes serious restrictions on the possible configurations of
local and global topological data. These restrictions can now
be utilized to derive unknown properties of the system out of
known ones.

This proceedings paper is an excerpt from the expository
part of [BMPQ9], where the interested reader can find ad-
vanced applications of @\ILEY index theory.

f(z) = heght(z) p4
o f(z) = hdght(z)

P1
|. HISTORICAL REMARKS Fig. 1. Critical points on toru§ and heartH

In order to give some examples illustrating the usefulness

of CONLEY index theory we first make some historicalfynction for both surfaces. On the tor@ we have four
remarks. This introductory section is not necessary to URgitical pointsp;, ..., ps With cg = c» = 1 ande; = 2. On

derstand the formal theory starting in Section ~ the heartH we have also four critical points bug = ¢; = 1
One of the motivations of ©ONLEY was to generalize andc, = 2. Hencex(T) = 0 and y(H) = 2.

MORSE theory. The main idea of MRSE theory is 0 Now CoNnLEY's idea was to replacg by the flow gener-

study the topological properties of andimensional smooth ated by the gradien f and develop a general index theory

manifold X' by studying the critical points of a so-calledfor flows on manifolds. Note that in @ILEY's theory the

a smooth function with non-degenerate critical points. For The first central notion in GNLEY index theory is the
such a non-degenerate critical poipte X the MORSE  ConLEY index of isolated invariant sets (a formal definition
lemma guarantees the existence of a coordinate system will be given in @)). For the purpose of this introductory
(z1,...,r,) aroundp such thatf can be written as sedion we only need the GNLEY index of the whole

2 2 2 2 manifold X and those of the hyperbolic equilibriaof the
f@) = fp) —ai = — @y mp 4 T flow, which correspond to the (n)gl-degene?ate) clr?tical points
The number is called the MorRsEindex of the critical point of the MoORSE function f.
p and denoted byndex(p). Define the homology CoNLEY index CH,(X) of the
Let ¢, denote the number of critical points of dkse closed manifoldX as the graded object of homology groups
index~. The MoRSE formula of X, i.e.
" H.(X):= H.(X)=H,(X,0) = (Hy(X), H (X),...).
X(X):Z(—l)vcv- 1) CH.(X) (X) (X,0) = (Ho(X), Hi(X) ()2
=0 For the purpose of this section we take homology with values

computes the BLER-POINCARE characteristicy(X) in in a field K for simplicity.
terms of the indices of the critical points ¢f, where by Let v denote the dimension of the unstable manifold of a

definition hyperbolic equilibriump € X. If the flow ¢ is a gradient flow
R i of a MoRrsEfunction f, thenv is the MoRsEindexindex(p)
X(X) = Z(_l) Bi(X), mentioned above. The homology@LEY index C H.(p) of
o ] =0 p now generalizes the MRSEindex in the following way
which is the alternating sum of theeBTI numbers. (see also Prop2.1): It is again a graded object @-vector

We illustrate this with two examples in Figufle It turns  spaces”'H, (p) = (CHo(p), CH;(p),...) such that
out that the height functiorf(z) = height(x) is a MORSE

K ifi=
o _ _ CH;(p) = o
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We assume for simplicity thap is a strict gradient flow
with a finite setP of equilibria, all of them hyperbolic.
Define the sum of graded objects

C=(Ciiso = @CH* (p)-

peEP

Consider a sequence of maps= (A1, Ao,...) with A, :
C; — C;_1 such thatA;,_; o A; = 0, turning C into a
complex. We will write C* for the complexC endowed
with A as a boundary operator. A sequen&eis called a
connection matrix if, among other things (see D&b), the
following property holds:

H;(C?) = CH;(X). (3)

A. HomologyCONLEY index

The following theory has been initiated byoQLEY
[Con78] in order to study invariant sets of dynamical sys-
tems. For a subsét C X define

Inv(Y) :=Inv(Y,¢) :={z € Y| p(R,z) CY} CY,

the invariant subsedf Y.

A subsetS C X is invariant under the flowyp, if S =
Inv(S). S is called anisolated invariant setf there exists a
compactsetY C X (anisolating neighborhoogsuch that

[e]

S=Inv(Y)CY,

o
whereY denotes the interior of".

In our heart example from above it can be verified that L€t M be an isolated invariant set. A pair of compact

A= (Al, AQ) in

a:=(0)

(1 1
CA .0 K! K! ax=( )K2<—O

is a connection matrix.
One of the main results of @\LEY index theory implies

that non-trivial entries in this connection matrix correspond

to heteroclinic connectionbetweenps — ps andpy — po.
Another major result is RANZOSA'S existence result of a

sets (N,L) with L C N is called anindex pair for M
(cf. [MMO2, Def. 2.4)) if

1) N\ L is anisolating neighborhooaf M.

2) L is positively invarianti.e., ¢([0,¢],z) c L for all
x € L satisfyingy([0,¢],2) C N.

3) Lis anexit seffor N, i.e., forallz € N and allt; > 0
such thatp(t1,x) € N, there exists & € [0,¢] for
which ¢ ([0, to], z) C N and¢(to, x) € L.

Let M C S be an isolated invariant set with index pair

connection matrix [Frag89, Thm. 3.8] yielding in particular(?V, L). We associate to such a pair a comp&x N, L) =

(3), whereas uniqueness in not always guaranteed.
Therefore, in general, connection matrices may be used

reduce the huge amount of possible heteroclinic connections,

and even prove existence of some of the connections.

C.(IV)/C.(L) of relative (simplicial or singular..) chains.
{he homologyConLEY indexof M is defined by

CH,.(M)= H,.(N,L) := H,(C,(N, L)), (4)

As a nice application of the above developed notionwhere H,(N,L) = (Hg(N, L))rez-, denotes the relative

the MoRsE formula (1) now immediately follows from the
existence of a connection matrix. In cageis the gradient
flow of a MoRsEfunction f thendimg CiA = ¢;, the number
of critical points of f with MORSEindexi. Then

X(X) >

(1) dimg H;(X)

n
=0

Yoo (=1)" dimg H;(C?)
>

2

imo(—1)" dimg cp

i:o(_l)icia

where the fore-last equation is a standard application of the

homomorphism theorem.

II. CONLEY INDEX THEORY

homology groups (cf. [MMO02, Def. 3.7, Thm. 3.8]). Note,
that there always exits an index paiV, L), such that
H.(N,L) = H.(N/L,[L]) (see [MM02, Remark 3.9]). We
usually take coefficients i /27Z.

Before we proceed, let us recall the homologgNLEY
index of some specific isolated invariant sets.

Proposition 2.1: Assume thatS contains only a hyper-
bolic fixed point with an unstable manifold of dimensian
(i.e., MORsE indexn). Then S is an isolated invariant set
and
Lo
0

if k=n,

CH(S) = { otherwise.

For the remainder of this paper, we will abbreviate this
statement by saying that theo@LEY index of S is equal to
>r e, writeCH,(S) = X"

Note, that usually=™ = (S™,x*) denotes thehomotopy
type of the index pairV, L) of a hyperbolic fixed point
of MORSE index n. But since we are only interested in
homology, we abuse the notation.

Let X be a locally compact metric space. The object of In order to apply ©NLEY’s theory to MORSE decompo-

study is aflow ¢ : R x X — X, i.e., a continuous map
R x X — X which satisfiesp(0, ) = x andp(s, ¢(t,z)) =
o(s+t,x) forall z € X ands,t € R. (X, ¢) is called a
dynamical system.
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sitions of the attractor, we need to know the@ EY index

of the attractor itself. By the continuation property [MMO02,
Thm. 3.10] it is the same as the one of a stable fixed point
(see [MM96, Prop. 4.1]).
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Proposition 2.2:1f the dynamical system(X,¢) pos-
sesses a global attractdr, then we have
Zs k=0,
0 k+£0.

for

CHj (A) = for

The empty setS is also an isolated invariant set having

the trivial CONLEY index

CH (S)=0 forall k. (5)

There is a partial order, induced by the flow, generated
by the relationsg >, p wheneverCon(M(q), M (p)) #
(). This so calledflow-induced orderis a subset of every
admissible order, and in this sense minimal. Normally this
order is not known and one is content with a coarser order.
If, for example, a vaPuNOV or energy functiorn¥ is known
with E(xz) > E(p(t,z)) for all ¢ > 0, wheneverr € X is
not a steady state, then defining the partial order by

This occurs e.g. if an isolating neighborhood of a paralle} > . ;. iff E(y) > E(x) for all y € M(q) andx € M(p),
flow is considered. Similarly, a heteroclinic connection be-

tween two hyperbolic fixed points stemming from a saddl
node bifurcation has trivial GNLEY index, although the
isolated invariant set is no longer empty.

B. Posets

A set P together with a strict partial order (i.e., an
irreflexive and transitive relation-C P x P) is called a
poset(i.e., partially ordered set) and is denoted (@ >).

A subset] C P is called aninterval in (P, >) if for all
p,q € I andr € P the following implication holds:

q>r>p = rel.

The set of all intervals i{P, >) is denoted byJ(P, >).

An n-tuple (Iy,...,1,), n > 2, of intervals in (P, >)
is called adjacentif these intervals are mutually disjoint,
Ui, I is an interval in(P,>) and for allp € I;, ¢ € I
the following implication holds:

i<k = p¥aq

The set of all adjacent-tuples of intervals in(P,>) is
denoted byJ,, (P, >).

If (I1,...,1I,) is an adjacent-tuple of intervals in( P, >),
then denotel, I, ... I, = |J;_, I;, which by definition is
again an interval.

If (I,J) € J5(P,>) as well as(.J,I) € Jo(P,>), thenI
and J are said to bencomparable

C. MORSE decomposition
For a subsely ¢ X the w-limit setof Y is w(Y) :
Neso ¢([t,00),Y), while the a-limit set of Y is a(Y) :=

mt>0 gD((—OO,—t),Y). ) ]
For two subsetd7,Y, C X define theset of connecting
orbits

Con(Y1,Y2) = Con(Yy,Y2;X)
= {zeX|alz)CcY andw(z) C Ya}.
Let S be an isolated invariant set arié, >) be a poset.

A finite collection
M(S) ={M(p) |pe P}

of disjoint isolated invariant subsefe (p) of S is called a
MoRsEdecompositiorif there exists a strict partial order
on P, such that for every: € S\ |J,p M(p) there exist
p,q € P, such thaty > p andz € Con(M (q), M (p)).

The setsM (p) are called MORSE sets A partial order on
P satisfying this property is said to mmissible
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yields an admissible order, in case the energy levels of
all non-equilibrium MORSE sets are isolated in the energy
spectrum. This order is calleshergy-induced order

For an intervall define the set

M(I) = JM(p)u | J Con(M(q), M(p)).

pel p,q€l

The setM (1) is again an isolated invariant set (cf. [MMO02,
Prop. 2.12]). If(1, J) € Jo(P,>), then(M (1), M(J)) is an
attractor-repeller pairin M (1.J) (cf. [MMO02, Def. 2.1]).

D. Connection matrices

We start by revising the definition of connection matrices
following [BR09]. Contrary to [BR09] we apply matrices
from the left and hence use the column convention, as widely
used in the ©NLEY index literature.

Let M(S) = {M(p) | p € (P,>)} be a MORSE
decomposition ofS. Hence eachM (p) is an isolated in-
variant set and the @\LEY index CH.(M(p)) is well-
defined (by 4)). In what follows, we consider the collection
C :={CH.(M(p)) | p € P} of abelian groups, which are
indexed byP, and a group homomorphism

A: P CH.(M(p)) — €D CH.(M(p)).

pEP peP

(6)

For an intervall in (P,>) set

C.(I) :== @ CH.(M(p))
pel
and denote byA(7) : C.(I) — C.(I) the homomorphism
mr o Ao, wherer : Cy(I) — Ci(P) is the canonical
injection and 7y C.(P) — I) is the canonical
projection.

If p1,p2 € P, we refer to the restriction oA to C,(p2)
by A(-,p2) : Ci(p2) = C.(P), and the compositiorr,, o
A(-,p2), wherem,, is the projectionC,(P) — Ci(p1), is
denoted byA(p1,p2) : Ci(p2) — Ci«(p1). ThenA can be
visualized as a matrix witl\(-, p2) as itsps-th column and
A(p1,p2) as its entry at positiorpy, p2). In particular, for
I € J(P,>) the homomorphism\ (I) may be be represented
as

C.
O

A(I) = (A(p17p2))p17pzel :
P cH.(M(p)) - P CH.(M(p)).

pel pel

Definition 2.3 ([Fra88, Def. 1.3]):A being as above:
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1) A is said to beupper triangularif A(pi,p2) # 0 (i) (N1, No) is an index pair for the attractav/(I).
implies po > p1 Or p1 = po.

2) A is said to bestrictly upper triangularif A(p1,ps) # The existence of an index tripléN,, Ny, Ny) for the
0 implies p > py. attractor-repeller paifM (1), M(J)) is always guaranteed

3) A is called aboundary mapf it is @ homomorphism ¢ MMo2, Thm. 4.2]), providing a short exact sequence of
of degree—1, i.e., it mapsC,(P) to C,,—1(P), and  nain complexes

AoA=0.
Proposition 2.4 ([Fra89, Prop. 3.3]):
Let C = {CH.(M(p)) | p € P} be as above and let
A Dpep CH(M(p)) = @,pep CH:(M(p)) be @nupper o e (N, Ny) = €, (Na, No) — C.(Na, Ni) — 0,
triangular boundary map. Then:
1) C.(I) and A(I) form a chain complex denoted by
CA(I) forall T € I(P,>).
2) For all (1, J) € J2(P,>), the obvious injection and where¢, (NV;, N,) is the complex of relative chains as i) (
projection maps (1, I.J) andp(IJ, J) are chain maps This short exact sequence induces a long exact homology

and sequence

0 Ay M oy P oagy Lo

()
is a short exact sequence.
In other words, the degreel property andA o A = "'—>Hn+1(N2’N1))
0 endow C,(P) with a chain complex structure (called
C2(P)). The property “upper triangular” guarantees that 6&1
A(I) is also a boundary operator 6h (I) leading toC'2 (I). H, (N1, Ng) — H, (N2, Ng) — H, (N3, N1)
It further implies for a pair(Z,J) of adjacent intervals )
that A(I.J),c.y = A(I), allowing one to viewC2(I) @,
as a subcomplex of’2(1.J), with C2(.J) being naturally H, (N1, No)
isomorphic to the quotient compleX® (1.7)/C2 (1), making " ’
(7) a short exact sequence.
The first statement of Propositidh4 allows one to define
the homology groups

In other words the last long exact sequence is by definition
H,(CA(I)) := ker A(I)/imA(T), (ct. (4)

shortly denoted asi.A(I), while the second statement
leads for eacHI, J) € Jo(P,>) to a long exact homology
sequence

o —— H, 1 A(J 8
+1 ()) 8 @’H

6 CHA(M(1) = CHA(M(17)) = CHA(M(J)) 5
H,A(I) — HA(LT) — HnA(J))

On
: —
H, 1A(I) — , 9)

whered, are the connecting homomorphisms constructed b Now we are ready to state the defir_lition Of, a connec-
the snake Lemma. lon matrix (cf. [Fra89, Def. 3.6]), which avoids braids

To state the definition of a connection matrix we still needCf- [BR09, Def. 2.7]). The definition of a connection matrix
some more preliminaries from the dynamics side. For a pariglates the aIg_ebrau_:aIIy induced long exact sequeBge (
(I,J) of adjacent interval§M (1), M(J)) is an attractor- ard Fhe dynamically induced long exact sequerie fhore
repeller pair for the isolated invariant skf(I.J), as stated precisely:
before. Definition 2.5 (Connection matrix):

By definition anindex triple( Ny, N7, Ny) for the attractor- | et ¢ = {CH,(M(p)) | p € P} be as above and let
repeller pair(M (1), M(J)) satisfiesNy, C N; C No and A - @pep CH,(M(p)) — @pep CH, (M p)) be an upper

(i) (N2, Ny) is an index pair for the isolated invariant settriangular boundary map\ is called aconnection matrixf

M(1J); for each intervalK € J(P,>) there exits an isomorphism

(i) (N2, Ny) is an index pair for the repelleV/ (.J); 0(K) : HA(K) — CH,.(M(K)) such that for all pairs
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(I,J) € J2(P,>) of adjacent intervals the following diagram coefficients in a field, as we do by taki#y 2Z-coefficients,
this is immediate.
(10) Remark 2.8:In practice, the lack of topological data, in
particular of the index triples on the dynamical side, prevents
Snt1 On-+1 us from constructing the maps i9)(explicitly. Therefore
o(I) in the software packageonl ey, we can only check a
HA(T) CHn(M(I)) part of the defining properties of connection matrices. More
precisely, besideA being an upper triangular boundary map
0(1) [MPMWO07, Section 3, (C1,C2)], we, so far, only check
H,A(1J) ——— CH,(M(1J)) abstract isomorphism#&l,, A(K) =~ CH, (M(K)) for each
interval K € J(P,>) as in [MPMWO07, Section 3, (C3)].

o) Accordingly, we call the matrices computed lopnl ey

H,A(J) ——— CH,(M(J)) possibleconnection matrices.
n O I1l. EXAMPLE
o() ) . .
Hy 1 A(D) CH,_1(M(I)) A. FRANZOSA's transition matrix example
We look at a gradient flow serving as a transition system
connecting the two systems
. T = y
. . . : . . 1 (12)
is an isomorphism of long exact sequences, i.e., that addi- y = Oy —xlxz — 3 (1 — x) .
tionally all the squares commute.
Remark 2.6 ([BR09, Remark 3.4]We want to empha- atf =6’ andd = 6¢":
size the importance of first choosing a fixed isomorphism
0(K) for each interval'. This single isomorphism enters in i = gy
all the commutative diagram4@). Notably, in RANZOSA'S 1
definition of connection matrices also a fixed isomorphism 7y = Oy—=x <x — —) (1—-x) (12)
6(K) for each interval K has to be chosera priori . ) .
(cf. [Fra88, Def. 1.2] or [Fra89, Def. 2.4]). 0 = e(0—0)(0"-0),

Following [BR09], we show that this braid free deﬁnmonwith 0< @ «1andl < 6" < oo as before and small

coincides with Franzosa’s definition of connection matrices . o Lo
[Fra88, Def. 1.4] or [Fra89, Def. 3.6]: € > 0 fixed. This is also studied in [Fra89, Example 6.2].

In contrast to the above definition of connection matricesThe additional equation fof = 6(t) is decoupled from the

FRANZOSA's definition requires the isomorphism of two chers.{@ =0} s inva}riant anq atracting, whilg) = 6"}
. . o . is invariant and repelling (cf. Figuriél-A ). A sketch of the
graded module braids. The first braid is obtained as the . . q. i given in Figuréll-A .
homology of a chain complex braid in the setup of the
upper triangular boundary map (cf. [Fra89, Prop. 3.4] 0
together with [Fra89, Prop. 2.7]). The other is obtained as = ‘9, o
the homology of the chain complex braid of an index filtra-
tion, which in turn generalizes our index triplesaAl3\MON
proved in [Sal85] that index filtrations of ®RSE decompo-
sitions always exit, (see also [Fra86, Thm. 3.8], [FM88], and
[Mis95, Thm. 4.2.4]). That an index filtration of a dRSE
decomposition always induces a chain complex braid w
proved in [Fra86, Section 4], see also the discussion before o o _ , y oo o
[Mis95, Def. 4.3.2]. Let1’,2’) 3’ denote the equilibria fof :_0 an(_ﬂ , 2.3
Clearly, and because of the a priori chosen isomorphisn_‘??r_'Ote tho_se fo = 6" _1/’_2/’3/ ret/f/;un//th/e/lr G)NL_EY
9(K), the isomorphism of the long exact sequences iindices, while the ©NLEY indices of1”,2”,3" are raised

Definition 2.5 gives rise to the isomorphism of the gradeo,Oy one, i.e.

Fig. 2. The flow in thed-component

We refer for coding details to the example worksheet
(,fsr anzosa_al | on the homepage [BMPROS].

module braids, as required byREANZOSA. CH.(M(1") = ¥°, CH,(M(2)) = %! and
Corollary 2.7: The definition of connection matrices fol- (g, (M(3)) = xh

lowing FRANZOSA [Fra88, Def. 1.4] is equivalent to Defi- cCH,(M(17)) = %', CH.(M(2")) = X2 and

nition 2.5 above. CH,(M(3") = x2

FRANZOSA's existence theorem [Fra89, Thm. 3.8] guaran- (13)
tees the existence of at least one connection matrix, providedin this worksheet we perform computations with different
all CH,.(M (p)) are free over the coefficient ring. By taking orders and different GNLEY index data.
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Explicit computations in the worksheet show that there are
no connection matrices satisfying the above requirements.
But due to RANZOSA's existence result [Fra89, Thm. 3.8]
at least one connection matrix is always guaranteed. This in-
consistency tells us that our proposed order is not admissible,
i.e., that it does not contain the flow-induced order.

The strategy now is to enlarge the order, as a subsétof
P, to avoid inconsistency. The following four possibilities
2" > 3,3">2,1" > 2, 1" > 3 are in question. The
last two can be ruled out immediately, because addihg
2" implies that{2’,2”} (and {1’,1”}) is not anymore an
interval, and adding” > 3’ implies that{3’, 3"} is no longer
an interval. However, the se{¢’, i’} are always intervals by
construction.

Variant 3: We add2” > 3’ to the generating relations
Fig. 3. The flowe of the extended system and retain the enriched @LEY index information above
(13), (15), and @6). Again we run into an inconsistency (no
connection matrix matches the data), which tells us that our

Variant 1: The flow-induced order>,, (in sh?rt >) ' proposed order is again not admissible, i.e., that it does not
least contains all connections known for the= 6" and the  gntain the flow induced order.

6 = 0" system, together with the connections between the

we have at least the relations relation3” > 2’. This indeed proves that the flow-induced
S D AR VA VST order >, is generated by the relationd4) together with
o 3” > 2'. Our computations yield the unique connection
1" >1, 2">2" 3">3. (14) matrix
To the GNLEY indices of the equilibria we only add the L 1 1
CoNLEY index of the whole invariant set/ (P), which is -
trivial, i.e., besides13) 11

CH.(M(P)) =0. (15)
Apparently we get non-unique connection matrices Thus, the above inconsistency is resolved. Since furthermore
1 - - L S ({2'},{3"}) € J2(P,>,) is a pair of adjacent intervals
-1 - o and A(2',3") # 0 (cf. [MPMWO07, Section 3,(C4)]), the
-1 R | existence of a connecting orb¥’ — 2’ is proved. This
B R S connecting orbit was already found irRENZOSA's original
R article (see [Fra89, Example 6.2]). The line of arguments
provided above is nevertheless new.
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