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The PABTEC Algorithm for Passivity-Preserving Model Reduction of
Circuit Equations

Tatjana Stykel and Timo Reis

Abstract— We present a passivity-preserving balanced trun- circuit topology, and® , £ and ¢ are resistance, inductance
cation model reduction method for circuit equations (PABTEC).  and capacitance matrices, respectively. We will assume that
This method is based on balancing the solutions of the projected .

Lure equations and admit computable error bounds. We « the matrixA,, has full column rank;
show how the topological structure of circuit equations can o the matrix[ A., A, Az, Ay] has full row rank;
be exploited to reduce the computational complexity of the « the matricesg , £, ¢ are symmetric, positive definite.
presented model reduction method. The first two conditions mean that the circuit does not contain

I. INTRODUCTION loops of voltage sources and cutsets of current sources. These
‘ganditions together with positive definiteness of the element

With decreasing structural size and increasing complexi ) , N
atrices guarantee that the pensi¥ — A is regular, i.e.,

of modern integrated circuits, there is a growing deman X ah
for new modelling techniques and simulation algorithms foflet()‘E —A) # 0. Moreover, system @), (2_) IBassIVe, I.€.,
circuit design that make use of the structure and properties bfd0€S Not generate energy, 7a1mi:|pro_ca_l, L.e., its transfer
the underlying problem. The numerical treatment of complefdnction G(s) = C(sE ’TA) B satisfies the symmetry

circuit models containing hundreds of millions of equationd€!2tiON G (s) = SextG(s)” Sexe With an external signature

and variables is extremely expensive with respect to botfrxt = diadUn.. —1y,), see [1]. Passivity is an important
computing time and memory requirements. Therefore, tRystem property in circuit design. It is well known in network

reduction of model complexity or model order reduction ig"€0"Y [2] that system (1) is passive if and only if its transfer
of great importance. function G positive realmeaning thatG is analytic in the

. T/—\ - ..
Electronic circuits often contain large linear RLC subPPen right half-planeC, and G(s) + G” (s) is positive
networks that consist of resistors, inductors and capacitor§Mdefinite for alls € C..

only. Such subnetworks are used to model interconnects,A general idea of model reduction is to approximate the
transmission lines and pin packages. Using a modified nod&f9€-scale system (1) by a reduced-order model

analysis (MNA), linear RLC circuits can be modelled by Eé?(t) _ Z%’(t) +]§u(t), @)
a linear system of dlfferenf;al—algebralc equations (DAES) 7t = CF),
Ei(t) = B I - .
;8 _ Cz%j— ult) (1) whereE, A € RY, B e RY™, C e R™! and/ < n. It is
required that the approximate system (3) captures the input-
where ) output behavior of (1) to a required accuracy and preserves
A.cAT 0 0 passivity and reciprocity.
E = 0 L 0], For linear systems, a variety of passivity-preserving meth-
0 0 0 ods exist. These are interpolation-based methods like PRIMA
- [3], SPRIM [4] and spectral zero interpolation [5], [6] and
—ARTA -4, —A, also balancing-related methods [7], [8], [9], [10]. Interpola-
A= AT 0 o |, (2)  tory model reduction methods are closely related to rational
AT 0 0 Krylov subspace methods. Despite the successful application
- v of these methods in circuit simulation, they provide good
—Az 0 local approximations only and so far, there exist no global
B = 0 0|=C". error bounds. Another drawback of Krylov subspace methods
L 0 —1 is the ad hoc choice of interpolation points that strongly
Here A, e R™nme, A, e R™ " A, €eR™ " A, e R influence the approximation quality. Recently, an optimal

and A; € R™™ are incidence matrices describing thePoint selection strategy based on tangential interpolation
has been developed [11], [12] that provides an optifiial
This work is supported in part by the DFG Research CentarionN approximation.

in Berlin and by the Research Networky RENE - System Reduction for . . L .

Nanoscale IC Desigriunded by the German Federal Ministry of Education In this paper, we consider the PAssivity-preserving Ba-

and Science (BMBF), Grant No. 03STPAE3. lanced Truncation model reduction method for Electrical
Tatjana Stykel and Timo Reis are with Institir Mathematik, MA 4-5,  Gircuits (PABTEC) developed first in [13]. Exploiting the

Technische Universit Berlin, StraBe des 17.Juni 136, 10623 Berlin, . . . .

Germany,st ykel @mt h. tu-berlin.de, reis@mth.tu- circuit topologlcal structure, we present an Improvement

berlin. de to this method that further reduces the numerical effort in

ISBN 978-963-311-370-7 1729



T. Stykel and T. Reis - The PABTEC Algorithm for Passivity-Preserving Model Reduction of Circuit Equations

computing the reduced-order model. Besides preservationwhere A = A — BC, P, and P, are the spectral projectors

passivity and reciprocity, the PABTEC method provides alsonto the right and left deflating subspaces of the pencil

computable error bounds. AE — A corresponding to the finite eigenvalues and
Throughout the papeRR™™ denotes the space af x m .o . A1

real matrices. The open right half-plane is denote@hyand Mo = sli>nolo Gls)=1-2 sll>nolo C(sE—A)7'B.

j is the imaginary unit. The matriAT denotes the transpose For the passive MNA System (1), (2) these equations are

of A. An identity matrix of ordern is denoted byl,, or splvable for X € R™", K, € R»™, J. € R™™ and

Slmply by[ We denote bym(A) andker(A) the image and Y € R»", K, € R™", J, € R™™, respective|y, see [13]

the kernel of the matrix, respectively. A matrixZ € R™*  Moreover, there exist the extremal solutions that satisfy

is called a basis matrix for a subspagec R™ if Z has

full column rank andm(Z) = Z. A matrix Z’ € R™"* is 0 < Xmin £ X < Ximax, 0= Yinin <Y < Yinax

called a complementgry maFrix if [Z, Z']is ngnsingular. for all symmetric solutionsY andY” of (4) and (5), respec-
Further, for symmetric matrice¥ andY’, we write X > Y tively. The minimal solutionsX,,,;, andY;,;, are called the

(X > Y)if X —Y is positive definite (semidefinite). bounded real controllabilityand observability Gramiansof
Il. PASSIVITY-PRESERVING BALANCED the Moebius-transformed systeG. .
TRUNCATION In the bounded real balanced truncation method, we de-
termine the Cholesky facto® and L of X,,;, = RR” and

In this SeCtion, we describe the PABTEC method thaj/min — LLT, respective|y, and Compute the Singu|ar value
is based on bounded real balanced truncation applied #composition

a Moebius-transformed system.
For a square transfer functigd with det(I + G(s)) Z 0, LTER = [Uy, Uy {
a Moebius transformations defined as

Gls) = M(G)(s) = (I - G(s)) (I + G(s)) .

II
! H2:| [Vlv VQ}Tv

where the matricef/;, U] and [V;, V] have orthonormal

columns,
One can show thaG is positive real if and only if the I, = diag(m Iy, . .., 7 11,),
Moebius-transformed functio6s is bounded real, i.e( is I, = diag(m, 11 vy
.. ~ ~ T, . . A . r419 s gty
analytic inC, andI — G(s)G (s) is positive semidefinite | ... M > ... > 7 > Tyt > ... > m,. The valuesr;

for all s € C., see [2]. are called thecharacteristic valueof G. A reduced-order

H _ —1 A
For the transfer functiotz(s) = C(sE — A)™ B of the 40 foré7 can be computed by projection onto the left and

pa§siv¢ system (1), we fir_st dete_rmilié(s) = M(G)(s) right subspaces corresponding to the dominant characteristic
which is bounded real. This function can be represented 35 a5 We obtairC: (s) = Co(sEy — A)) LB, + I with

G(s) = C(sE — A)"'B + I with

. . . . ~ I 0 i — WT(A - BC)T 0
E=E, A=A-BC, B=-v2B=-C". Er=10 ol r= 0 e
Then using the bounded real balanced truncation method [8], . —2wWTB ¢ — [V3CT, C
(10], G(S)A can be approximated by a bounded real function T B ) T [ ’ 00} )
G, (s) = C,(sb,.—A,) "' B,.+I of lower dimension. Finally, 12 .
. — — /2 .
a back transformation whereW = LU, II; /*, T =RV II; '°, and the matrices
. . ) R . B, andC,, are chosen such that— My = CyoBoo-
G(s) = M (G,)(s) = (I — G(s)) (I + Gr(s)) Using the structure of circuit equations, the model reduc-

— . . . tion procedure presented above can be made more efficient
will gives the positive real function that can be realized 38 1d accurate. Since the MNA matrices in (2) satisfy
G(s) = C(sE — A)~!'B with '

ET = Sint E Sinta AT = Sint A Sinta BT = Sext C Sin‘m

- - ~ A 1. 4 ~ 2 4 ~ 2 A
E=B, A=A - B0, B:ng,ﬁ, C= %CT. where
. . . Sint = diag(lnnvilnL77[nq/)a
Consider the dual projected Lur'e equations Sext = diag(y,, —In,)
EXA"+ AXE"+2PBB"P = —2K K[, we find thatP, = Si; P7 Sy, and
EXCT - PbBM! = -K_JF, 4)

Ymin = Sint Xmin Sint = SintRRTSijr;t = LLT
JJI'=1-MMI,  X=PXP, . o . o
Thus, for the linear circuit equations (1), (2), it is enough
and to compute only one projector and solve only one projected
ETY A+ ATYE + 2PTCTOP, = —2KTK, Lure equat|9n. Anot_her prolgctor and also the solution of
- gy - the dual Lur'e equation are given .for free. quthermore, we
—E'YB+ P C"My = 2K, J,, (5)  can show thal.” ER = RS, ER is symmetric. Then the

JIJ, =1— MFM,, Y = P'Y P, characteristic values; can be computed from an eigenvalue
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Algorithm 1. Passivity-preserving balanced truncation foprojector P, onto the right deflating subspace of the pencil

electrical circuits (PABTEC).

AE — (A— BC) corresponding to the finite eigenvalues along

Given passivés = (£, 4, B, C'), compute a reduced-order the right deflating subspace corresponding to the eigenvalue

modelG = (E, 4, B, C).
1) Compute the Cholesky factdt of the minimal solu-
tion X,.;, = RRT of the projected Lur’e equation (4).
2) Compute the eigenvalue decomposition

Ay

RTSintER = [Ulv UQ] |: A2:| [Vlv V2]T7

where[Uy, Us] and[V1, V3] have orthonormal columns,

A1 = dianl, ceey )\gf), A2 = diag()\ng, ey /\nf)
3) Compute the eigenvalue decomposition
(I — Mp)Sext = UgAUd,
whereUj, is orthogonal and\, = diag(\y, ..., Am).
4) Compute the reduced-order system
I 0
=i o)
[1—1 2WTAT V2WTBC,
2 |-V2B.CT 2I-B,Cy]’ ()
~ wTB
B= [_Bw/ ﬁ} ,
C= [CT, coo/\/ﬂ,
where
Boo = SO|A0|1/2UgSext7 C(oo = U0|AO|1/2a

W =LU|M[TV2, T = S LU S AL 712,
Sy = diag(sign(\1), . . ., sign(\m)),

|Ao| = diag(| A1, -, [Aml),

Sy = diag@ign(As), - - -, sign(y; )

|AL] = diag(|A1], ..., | Ag ).

decompositionof R” S, ER instead of a more expensive
singular value decomposition. Finally, using the symmetry

of (I — My)Sext, We can determind3,, and C,, from the
eigenvalue decomposition @f — M) Sext. We summarize
the PABTEC method in Algorithm 1.

One can show the reduced-order model computed by
the PABTEC method preserves not only passivity but also

reciprocity. Moreover, we have the following error bound
M+ Gl (s + - 4 7o) @)
B ||I+GHHOO(7TT"+1 -‘-...—|—7Tq)7

provided || + G|lm, (mr41 + ... + m4) < 1, see [10] for
details.

|G - Gllz

I1l. TOPOLOGICAL ANALYSIS

at infinity are given by

[T—2ATZH;'Z7A, 2AT ZH; ' ZTA,
Mo = T 7 17—1 7T 1,14 |6
—2ATZH ' ZTA, —I+2ATZH; ' Z7A,
[ Hs(HyHy—I)  HsHyA,Hg 0
| —AT(HyH, — 1) —ATH,A,Hy 0
where

Ho=ZT(A, R AT+ A, AT+ A, AT)Z,
H, = ZZ;KIG/ALLilA?ZCRIq/’
Hy = A, R AT + AL AT + A AT

+ AL ATZ, L T ZE A LT AT
Hs = ZTHyZ,., (10)
Hy=2Z.H;'ZT,
Hs = ZCKI‘VH]TIZS;{IVALL_lAf -1,
Hy=1-L.'ATZ,  H'ZT A,
Z = ZCZQ/{IfoC’

Z, is a basis matrix foiker(A7T),

Zy1v—c IS @ basis matrix foker([ Ay, Az, Ay 17 Z,),

ij/fc is a complementary matrix 8, 7, —,

Zoy7v 1S a basis matrix forker([ Ao, Ag, Az, Ay ]7).
Proof: It has been shown in [13] that

My =1+ Bl A;'B,

with
CA R AT - A AT AL —A,
Ag = AT o 0 |,
AT 0 I
A;r 0
Bo=v2|0 0
0 I
Let
X1 Xp2 1 )
X1 Xoo| = ———= A(; BO'
X311 Xa2 V2

Then the matrices(;; satisfy the equations

(ARRAAI + A7AT)X11 + AcXo1 + Ay X3 = A7, (11)
—Al'X; =0, (12
—Al X1+ X3 =0, (13)

Using the topological structure of circuit equations, th&nd

matrix My and the projecto, can be computed in explicit
form as given in the following theorem.

Theorem 1:Let £, A, B andC be as in (2). Then
the matrixMy = I — 2 lim C(sE — A+ BC)~!'B and the

55— 00
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(AR AT + A AT) X 15 + AcXoo + Ay X0 =0, (14)
—AT'X1, =0, (15)
—ATX 15 + X350 =1. (16)



SubstitutingXs; from (13) in (11), we obtain
(A R AL + AL AT + A, AD) X1y + Ao Xon = A7. (17)
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(10) coincide with those in [13], where the representation
(9) for the projectorP,. has been proved. [ ]
Note that the matriced; in (10) are more efficient to

Furthermore, it follows from equation (12) that columns ofompute than those presented in [13]. Inde&d, and H3

X1 belong toker(AT) = im(Z.), i.e., X11 = Z:Y; for
some matrixY;. SubstitutingX;; in (17) and multiplying
this equation from the left byz”, we get

ZE(AGR AL + AL AT + A AL 2.0

Let Y, = Zyzv—cY11 + Zuv CY12. Then a multiplication
of (18) from the left by(Z; ;,,_ )" yields HyY12 = Z7 Az
with Hy and Z as in (10). Sinced, is nonsingular, we have
X1 =2Zc:Zgrv—cY11+ ZHJIZTAL
Xs1 = AN (Zc Zyzv—c Y1 + ZHy ' Z7 A7)
= ATzH; ' ZT Az

—7TA;. (18)

Analogously, we find from equations (14)—(16) that
Xig = ZcZyzo—cYar — ZHy ' ZT Ay,
Xao=1-ATZH;'ZT A,

with some matrixYs;. Finally, substituting the matrice¥,
XSl, X9 andX32 in

I—-2ATX —2ATX

_ T ,—1 _ T 11 T 12
My=1+BjA, By = C9Xa, I — 92X

and taking into account thal? 7.7, s, .= 0, we obtain

the expression (8) fon/j.
In order to prove (9), we first show that

Z H Z QCRIWH;I ?RIW

CRIV CRIV —

where
—1
H1 Pf}{ZfVPu’\IV + QCKZW/ALL AfoxZ'V’
Qexzv is @ projector ontdker([A., Ay, Az, Ay "),
ch_Iw/ =1- QC?{_IV~
Since im(Zyx7v) = iIm(Qexzv ), the pl’OjEC’[OI’Q(RIq/ can

be represented 89,47, = Zc}(IfVZ with Z7 Zegzy = 1.
Then

I =271y = ZTf{—lszlQ Z

CRIV T CRIV

ZTH QC!{IV ZCKZ'V
=Z"A7'z72% 0,2, 1,
Hence, (Z% ;, H\Z,,7,)"t = ZTH;'Z. On the other
hand, we have
(Zg;(Iq/lecxIv)_l = (ZCT;(I'VALL_ AchxIlV)_l = Hfl'
Thus,
ZM{IW/Hl_lzg;(Z'V = ZCT\ZV(ZC}{IW/HIZC&ZfV)_lzg;{IfV
1
= ZmszTH ZZ[TUV
—1
= Q(KI’V 1 Q(:RI'V'
Analogously, we can show thaf.H; 'z7 = Q. H;'QT,

where Hy = A.cAT + QTH,Q,. and Q. is a prolector
onto ker(A?). Thus, the matricedd,, Hs, Hs and Hg in

1732

have smaller dimension and they are often much better con-
ditioned thanf; and A5 used in [13]. The basis matricés
andZ., 7, can be computed by analyzing the corresponding
subgraphs of the given network graph as described in [14].
For example, the matri¥. can be constructed in the form

k1

ZC:HC )
ki

where 4, = [1,...,1]T e R¥, i = 1,...,s, and I, is

a permutation matrix, by searching the components of con-
nectivity [15] in the C-subgraph consisting of the capacitive
branches only. As a consequence, the nonzero columns of
ZT[Ag, Az, Ay] form an incidence matrix, and, hence,
Zx1v—c Can also be determined from the associated graph
as described above. In this case, the complementary matrix
Zy 1 Tequired for)M is just a selector matrix constructed
from the identity matrix by removing some columns. One can
see that the resulting basis matrices and also the mafiiges
Hs, Hs and Hg are sparse. Of course, the projecter will
never be constructed explicitly. Instead, we use projector-
vector products required in the numerical solution of the
Lur'e equation.

IV. COMPUTING THE GRAMIANS

In order to compute the Gramial,,;, we have to solve
the projected Lur'e equation (4). Dy = I — M, M is
nonsingular, then this equation is equivalent to the projected
Riccati equation

(A- BC)XET + EX(A—- BC)" +2P,BBTPT
+2(EXCT-PBM{)Dy(EXCT - PBM{)T =0,
X=PXPl (19)

that can be solved via Newton’s method. This method was
first developed for standard Riccati equations=€H) [16],

[17] and then extended in [10], [18] to projected Riccati
equations. In each Newton iteration, we have to solve the
projected Lyapunov equations of the form

EXFT + FXET = -PGG"PT, X = P.XPT (20)

with given matricest), F', G, the projectorP, as in (9) and
P, = St P Sine. Such equations can be solved using the
generalized alternating direction implicit (ADI) method [19].
Low-rank version of this method provides low-rank Cholesky
factors of the solution of (20) that allow, finally, to determine
an approximate solution of the projected Riccati equation
(19) in factored formX,., ~ RRT with R € R™* and
k < n, see [10] for details.

The most expensive step in the ADI method is solving
linear systems of the forfiE + 7F)z = f with different
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Fig. 1. The bounded real characteristic values of the Moebius-transformé&dy. 2. The frequency responses of the original and the reduced-order

system. models.

o Absolute error and error bound

10 w

parameters-. This can be done either by computing sparse
LU factorization or by using Krylov subspace methods [20].
In case of singulad — M,M{, small to medium-sized
DAE systems can be transformed similarly to the standar 107° | 1
state space case [21] to systems of smaller dimension fi
which the bounded real projected Riccati equations exis
For large-scale problems, the numerical solution of Lure
equations requires further investigations.

—e—Error
— Error bound

Magnitude

V. NUMERICAL EXAMPLE

In this section, we present some results of numerice
experiments to demonstrate the feasibility of the PABTEC ‘ ‘
method for large-scale circuit equations.

We consider a transmission line model consisting o
a scalable number of RLC ladders. We have a reciprocaty 3 The absolute errdG(jw) — G(jw)| and the error bound (7).
passive DAE system of order= 127 869 with a single input
and a single output. The minimal solution of the projected
Riccati equation (19) was approximated by a low-rank matrix[S] R. lonutiu, J. Rommes, and A. Antoulas,
Xmin ~ RRT with R € R™® using Newton’s method.
Figure 1 shows that the characteristic values decay rapidly,
SO we can expect a good approximation by a reduced-orde“é
model. The original system was approximated by a mode
of order/ = 24. In Figure 2 we present the magnitude of
the frequency responsé&s(jw) and G‘(jw) for a frequency
rangew € [1, 10'%]. We also display in Figure 3 the absolute
error |G(jw) — G(jw)| and the error bound (7).

10
Frequencyw
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